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PREDUALS OF SOME FINITE DIMENSIONAL ALGEBRAS

DEREK J. WESTWOOD

1. INTRODUCTION

In [2] J. Erdos studied operators on L?[0, 1] which have as eigenvectors the set
® = {ps = X[a,1] : 0 € a < 1}, and left as a conjecture that all such operators are
reflexive. The objective of this paper is to establish properties of finite dimensional
algebras which can be used to prove this conjecture for p = 2. To this end let.T
be a linear operator acting on C® with Euclidean norm, and let Ay be the algebra
generated by T and the identity. We consider the problem of describing the predual
Qr of Ay which consists of the set of (weak*-continuous) linear functionals on Ar.
It is well-know Ay has property (A1), that is, if ¢ belongs to Qr then there exist
vectors z and y in C™ such that ¢(A) = (Az,y) for A € Ar. It is customary to denote
¢ by [z ® y]. In a finite dimensional setting an operator 7" has property (A;(1)) if
an grbitrary ¢ acting on Ar can be written ¢ = [z ® y] with [|z]|? = ||y]|® = |l¢]l-
See [3] for a discussion of the properties (A1} and (A3(r)}. Very little is known about
property (A;(1)) for operators on C®. It is shown in [4] that for n 2> 4 not all operators
enjoy this property. It is easy to verify that normal operators have property (A;(1))
and it is shown in [7] that unweighted shifts also have property (A;1(1)). Below we
introduce another class of operators with property (A;(1)) and use results obtained
to prove Erdos’ ¢conjecture.

2. GENERALITIES

It is assumed throughout this section that T is an operator on C* with minimal
polynomial of degree n. This assumption guarantees that @r is n dimensional.
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n
It is well-known that any functional on A7 is of the form ¢ = Z[zk ® yi] with
k=1

n n
Z||z:k||2 = Zﬂykliz = |l¢|l. It easily follows that T has property (A;(1)) if, and
k=1

= k=1
only if, the set
Ci={lz@y :|lz|| <1,|lyll €1} is convex.

Define a map p: C; — €” by p([z ® ¢]) = (2,9, (T2,y),.. ‘»(Tﬂ_lzxy)) and
let €2 be the image of €, under this map. Since p extends to a linear map on Qr it
follows that C, is convex if, and only if, C; is convex. Notice that if v € C; then so
does tw if |t| < 1 and that C, contains an open ball centered at the origin in Qp. It
will be more convenient to view C» as a subset of R?? in the obvious way. Let L be a
linear functional on R?" and k a real number . Then we call the hyperplane L(z) = k
a support plane for C; if it has non-empty intersection with C5 and

(i) for I > k the hyperplane L(z) = I has empty intersection with C, or

(ii) for I < k the hyperplane L(z) = I has empty intersection with Cy.

Notice that since C; contains the origin there is no loss in assuming each support
plane is of the form L(z) = k with k > 0, and that (i) holds.

LeMMA 1. The set C, is convex if, and only if, the intersection of each support
plane for Co with Cq is convex.

- . . . 1
Proof. Necessity is obvious. For sufficiency it is enought to show v=p (i[x ® yl+

+ %[u ® v}) belongs to C; whenever [z ® y] and [u ® v] belong to C;. Choose t so that

tv belongs to the boundary of the convex hull of C;. Then tv for some ¢ > 1 belongs
to a support plane 7 for C2. It follows that tv is a convex combination of vectors in
7 N Cy. Therefore tv, and hence v, belongs to C». [ ]

Next we give a description of support planes. As noted above a given support
plane may be written in the form L(z) = m, where

m=max{l > 0: (L(z) =) NC; # B}

Now, L(z) = I may be written

n—1 n—1
> arRe(T*z,y) + beIm(T*z,y) = I, or Re ((Z(a,c - ibk)T") z, y) =1
k=0

k=0

It is easy to see that ! is maximum when z is a unit maximizing vector for
n—1 ) n=1 n—1

Z(ak —ib)T* and y = ‘Z(ak —1ib;)T*z, normalized. Let A = Z(ak —ibg)T* and
k=0 k=0 k=0
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suppose, without loss of generality, that ||A|| = 1. It follows that if 7 is a support
plane for Cy then there exists A in Az such that

7N Cy = {p([z ® Az]) : 2 a unit maximizing vector for A} =
= {p([z ® Az]) : {|z|| = 1 and & belongs to the eigenspace

corresponding the largest eigenvalue of A*A}.

Of particular interest is the case where A = I. In this case 7 N €y is the image
under p of the set C3 = {[z ® #] : ||z|| = 1}. It is easy to see that if ) is convex then
50 is Cz. In light of what is known, the following seems reasonable.

CONIECTURE. If C3 Is convex, then s0 is (1.

To facilitate the study of Cs, define a map g : €3 — €~ ! by ¢g([z ® z]) =
= ((Tz,z),(T%z,z),...,(T" 'z, z)) and let C4 denote the image of C3 under ¢q. We
will regard C4 as a subset of R?"~2 in the obvious way. A necessary condition for
Cs to be convex is that each support plane for C4 intersected with C4 is convex.
However this alone is not sufficient since we must exclude the possibility that C4

has “holes” in it. We can give a description of support planes for C4. Suppose
n—1

EakRe(Tz, z) + bpIm(Tz, 2) = m is a support plane for Cs.
k=1
Then this plane may be written Re(Az, £} = m where

n=1l
(1) A=) apT —in T
k=1
Therefore we have Re(Az,z) + Re(z,4%*z) = 2m or (A + A)z,z) = 2m. It
follows that 2m is either the least or greatest eigenvalue of A 4+ A*. Since we can
replace A by —A there is no loss in assuming 2k is the greatest eigenvalue of A + A*.
We conclude that a support plane for C4 is of the form {gflz ® 2]) : ||z|] = 1 and z
belongs to the eigenspace corresponding to the largest eigenvalue of A+ A* for some
A of the form given in (1)}.
We will need the following lemma concerning maximizing vectors.

LEMMA 2. Suppose A is an operator on C"*. Then
(i) The set of maximizing vectors for A together with 0 is a subspace of C™,

which we call the maximizing subspace of A.

(ii) The maximizing subspace of A coincides with the eigenspace of the largest
eigenvalue of A*A.

(iii) If # is maximizing for A then Az is maximizing for A*.

(iv) The maximizing subspace of A and the maximizing subspace of A* have the
same dimension.
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3. OPERATORS WITH PROPERTY (A;(1))

THEOREM 3. The operator T acting on C" represented by the matrix below has
property (A;(1)).

T 0 o - - 0 0 1
M — Ao Az a - 0 0
A=A A=A As
(2) P =
An-i 0
1_)\1 —/\2 Az-—)«;; . L )‘n—-l —A,; An.

Moreover an operator represented by the Schur product of P with a matrix of the
form given below also has property (A:1(1)).

r 1 0 ¢ 0 07
731 0 0 0
a1a9 ay 1 0 0
(3) Q= a1dada G203 az 1 0
1
La1a% ...8p—1 @435 ...0p-1 . LR/ PR T PO R / O | 1]

REMARKS 1. It is routine to verify that an operator T is of the form described in
Theorem 3 if, and only if, it is unitarily equivalent to an operator having eigenvectors
given by the columns of @, with corresponding eigenvalues Aj, Az, ..., An. It follows
that each operator in Ar is representable by a matrix of the form the Schur product
of P with Q.

2. It is enought to prove Theorem 3 assuming the ); are distinet: Property
(A1(1)) is a property of Ar rather than T and if S has repeated eigenvalues then
As C Ar for some T with distinct eigenvalues. It follows .Ag has property (R;(1))
since any subalgebra of an algebra with property (A;(1)) also has property (A;(1)).

3. There is no loss of generality in assuming the a; are all non-zero: If any a;
is zero then Ar is reducible and direct sums of algebras with property (A;(1)) also
have property (A;(1)).

The following results are needed to prove Theorem 3. Assume the ); are distinct
and that the a; are non-zero. Let A € Ap. Then A is represented by a matrix of the
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form
r+ ci 0 0 . . .
ar(cy — cz) 2 0
‘ajan(e; = cz) aa(ca —c3) cs
(4) R=
Cn—1 0
L . . . . an_1(cn_1 — Cn) Cn J

LEMMA 5.}Suppose A has matrix R as described above and A* has two linearly
independent maximizing vectors. Then A is a multiple of the identity.

Proof. As noted in Section 1 the maximizing vectors for A* constitute a subspace

of C™, hence we can find a maximizing vector on the plane =(®) with equation
21 + @120+ 318223+ -+ Tidy ... Bn12n = 0

where (21,22, ..., zn) denotes a generic point in C".

We prove by induction on n that if A* has a maximizing vector on 7" then A is
a multiple of the identity. Assume first that » = 2 and that (z;, z2) is maximizing for
A* and z; + @122 = 0. Then we get an equation

[31 a1t —C)] [a] _ [Gz+@(er —C2)z2 ]| _ [—515222] _ [5221
0 2 29 Co2g Cazg C222

It follows that [|A*|] = |¢2| and since it is assumed a; # 0 we have A = c3[.

Next, the inductive step. Let ¢ = (21,22,...,2,) be a maximizing vector for
A* on 7). Then the first component of AA*z is ¢1(€121 + @ile; — Ta)2zr + -+ +
+@1az .. .an_1(51 —_ Ez)zy,) = 61(3221 + (e — )z + @1z, .+ @G - .En_1z,,)) =
= ¢1%321. There are now two cases to consider.

CASE 1. z; = 0. In this case the operator A; which is represented by R with the
first row and column removed has a maximizing vector on 7"~ 1. It follows from the
inductive hypothesis that A* has matrix

'-5;[ 51(61 — 52) 5162('51 - 52) - - - @1Q2.. -En—l(al — -c'g) 7
0 Ca 0 - 0
0 0 Cs - 0

(5) Re=
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Moreover since z is maximizing for A* and the first component of AA*z is zero
it follows that ||A*|] = [¢2]. An examination of the upper left hand two by two block
of Ry shows this is not possible unless ¢; = ¢5.

CASE 2. z1 # 0. It follows that ||[4AA*|| = ¢1Z2. An examination of the upper left
hand two by two block of R shows that if ¢; # ¢a then ||A|| is strictly greater than
the maximum of [e;| and |cp|. It follows that ¢; = ¢, and that A* is represented by a
matrix of the form

N'Eg 0 0 S 0 7
0 By @a(cx-—T3) T2...Gp—1(E2 — Es) ‘
0 0 €3
L0 0 0 - [ 4
Furthermore ||A*|| = [¢2], so since A* contains the block
[Ez @r(%2 — Ea)]
0 o)

we get a contraction if ¢ 3 ¢a and so on. It follows that A is a multiple of the identity.
|

The following is immediate from Lemmas 2 and 4.

COROLLARY 5. If A has matrix of the form described in (3) and A # I then the
maximizing subspace for A is one dimensional.

LEMMA 6. If A has matrix of the form described in (3) and A # I then the
eigenspace of the greatest eigenvalue, X, of A+ A* is one dimensional.

Proof. The proof is similar to the proof of Lemma 4. Assume the Lemma is false.
The proof is by induction on n that this leads to a contradiction. Assume first that
n = 2 and that (), 22) is a non-zero vector in the eigenspace corresponding to A and
that z; + @29 = 0. Then

([ 1 0} + [El E1(51—52)]) [21} _ [0121 + %121 +51(E1—32)22} _
01(61 - Cz) Cy ‘ 0 Co 23 (11(61 - Cz) + Co22
_ [ (e1 +C2)z ]
Lai(er —ea)z1 +Taza ]
Since 2z; # 0 it follows that A = ¢; + &;. This shows that ¢; + &, is real and from

z 1
a +62. With z = [0]

the discussion in Section 2 that max{Re(Az,z): ||z| = 1} = 3
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' 0
we find Re(Az,z) = Ree; and with z = [ 1] , Re(Az,z) = Recy. It follows that

¢ =czand A =l
Next, the inductive step. Let & = (21, z2,. .., 2, ) be an eigenvector corresponding
to A on #{"). Then the first component of (4 + A*)z is

e121 + (G121 + G (61 — )z + -+ @182 .. G161 — B)2n) =
=c12 + (€azy + (61 —T2) (21 + Ti2p - -+ @z .. n_12n)) = (1 + C2)21.

(6)

There are now two cases to consider.

CASE 1. z; = 0. It follows from the inductive hypothesis that A* has matrix
Ry given in (5) and that A = ¢ + s, that is, max{Re(Az,2) : ||z|] = 1} = Reea.
Now consider (Az, z) for z = (\Vesgn(ai(c1 — ¢2)),v/1—=¢,0,0,...,0). It is routine to
show Re(Az, z) = Re(cy +€(c1 — ¢2) + |a1(c1 — c2)}v/EV/1 — €), and that this quantity
is greater than Recs if ¢1 # ep, and ¢ is sufficiently small.

CAsE 2. 21 # 0. It follows that max{Re(Az,z) : ||z|| = 1} = %(cl + @2).
Assume ¢; # ¢z. Then it is shown in Case 1 that max{Re(Az, z) : ||z|| = 1} is greater
than Recy and a similar argument shows it also to be greater than Ree; which is
a contradiction. Equation (6} shows ¢; + &, to be real since it is an eigenvector of
A+ A* and it follows that ¢; = ¢;. It follows that max{Re(Az, z) : ||z|| = 1} = Reca.
An argument similar the one used in case 1 shows that if any diagonal entry of A
does not equal ¢y we get a contradiction. u

‘LEMMA 7. Let T be of the form described in Theorem 3 with the ); distinct and
each a; non-zero. Then {[z ® z] : ||z|| = 1} is convex.

Proof. We show that the set €4 described in Section 2 is convex. Let S be the
subset of the unit sphere in C" consisting of those (21, 22, - . ., z») for which z; +@1 22+
+&1822z3 4 - -+ 818z - - - Gn-12n = 0. Then S is homeomorphic with a unit hemisphere
in R?"~1, Define a map ¢ from S to Cs by p(z) = (T, z),(T?z, z),...,(T" 1z, z)).
Since [z ® z] = [’z ® e®z] for any 6 it follows that ¢ is surjective. Lemma 6 shows
that the intersection of each support plane for €y with C, is a single point. This
shows that 8C4, the outer boundary of Cy4, is homeomorphic with the unit sphere
in R2n-2 Lemma 6 also shows that each point in 8Cy is the image under ¢ of a
unique point in S. It follows from the continuity of ¢ that the preimage of 8C4 in S
is homeomorphic with the unit sphere in R2"~2, It is a consequence of the Browder
Fixed Point Theorem, see, for example [5], that C4 is homeomorphic with the unit ball
in R?"~2. Since each support plane for £, intersects 8C4 in a single point it follows
that C4 i3 convex. n

Proof of Theorem 3. By Lemma 1 it is enought to show that the intersection of
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each support plane for C; with Cy is convex. It is shown in Section 2 that such an

intersection has the form
Z = {[z ® Az] : z is a unit maximizing vector for 4 and ||A|| = 1}.

If A is not multiple of the identity then 7 is a single point by Lemma 5, and if 4
is a multiple of the identity it follows from Lemma 7 that 7 is convex. [ |

4. AN APPLICATION

We now turn attention to the conjecture of Erdos cited in the introduction. He
showed that the algebra A(®) of operators having as eigenvectors the set @ consists
of operators of the form

x

© (af)(@) = @)@ - [ ¥ s

0

where ) is a function which is bounded on [0, 1), absolutely continuous on [0, a] for
1

each a < 1, and for which sup (1 —z)¥ {/M’(t)lth} < oo. Let A denote the set
0<z<
' 0

of all such A.

In this paper we restrict attention to the case p = 2, although it seems likely that
the techiniques could be extended to deal with the general case.

It is shown in [4] that if A is a reflexive algebra with property (A;) then every
weakly closed subalgebra of A is reflexive. Erdos showed that A(®) is reflexive, so
we will be able to prove his conjecture, at least for p = 2, by showing that A{®) has
property (A1).

Note that an example of Larsen and Wogen [6] shows there exists operators with
spanning sets of eigenvectors which are not reflexive.

The following is a standard result. See [1].

LEMMA 8. Let A be a weak* closed algebra of operators acting on a Hilbert
space H and let ¢ > 0 be given. Suppose ¢ is a weak*-continuous linear functional
on A of unit norm Then there exist sequences of vectors {z,} and {y.} in H with
Z“z,“z Z”%HZ 1+ ¢ such that p = Z[x, ® wil.

=1

LEMMA 9. Suppose ¢ is a weak*-continuous linear functional of unit norm acting
on A(®). Let € > O be given. then there exist vectors z and y in the unit ball of
L?[0,1] such that [jp — [z ® y]|| < e.
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Proof. It follows from Lemma 8 that there exist sequences of vectors {z,} and

k4] n n
. : €
{yn} in L?[0,1] with E |lzi|i2 = E [l < 1 such that [j¢ — E [z oull < 3

il i=1 i=1
Partition [0,1] into m equal subintervals and let {ex} denote the characteristic func-

tions of these subintervals normalized. For m sufficiently large each z; and y; can be

approximated arbitrarily closely by linear combinations of {ez}. It follows that there
n

exist m and such step functions that [[¢ — Z[fi ® Q'i]H < €. Let H be the subspace

i=1

of L2[0, 1] with orthonormal basis {ex}. Then it is easy to see that each A € A(9)
leaves H invariant and that the restriction of A to  has matrix representation of the

form given in (2). It follows from Theorem 3 that there exist f and ¢ in the unit ball
of H such that

> (AlMfi, 0:)) = (AlMf,g) for A€ A(S),

i=1

and hence from the invariance of ‘H that

i(Aff:ge)=(Af,y) for A € A(9).

i=1
It follows that ||¢ — [f ® g]ll < €. [ |

LEMMA 10. Suppose Ay € A(®), that |Ma)| = ||A|l for some a € [0,1) and
that X is not constant. Then ||Ax]| > ||M|co-

Proof. Assume first that ) is constant on [a,1). Then as in the proof of Lemma
9 the restriction of Ay to some invariant subspace has matrix given by (2) with

A=A (%) An examination of the 2 by 2 diagonal blocks shows ||Ax|| > ||A]|co-

Now assume A is not constant on [a,1). If b > a then

Ax(pa — @1) = Ma)pa — A(b)ps = A(a)(wa ~ @o) + (A(a) = A(B))ps-

Since this is an orthogonal sum any choice of & with A(a) # A(b) shows ||A,|| >
> [Alleo- n
At), t<a

DEFINITION 11. For X € A, define A, by As(t) = {A( )t
a), Za

subset of A consisting of those A for which
() 11431l > Mo, and
(b) lim |4 = 45, | = 0.
It follows from Lemma 3.1 of [2] that (b) is equivalent to

(b)' lim(1 - o)} { i |x(t)12dt} =0.

0

. Let A; be the
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LemMA 12. Suppose A € A;. Then Ay has 2 maximizing vector.

Proof. Assume without loss that ||A,]| = 1. Then there exists a sequence {f,} in
the unit ball of L2[0, 1] with ||Ax fa]| — 1. By dropping to a subsequence, if necessary,
it can be assumed {f,} converges weakly to some f. Since {|Ax(fn — f) + Arfll — 1,
it follows from the facts that {f, — f} converges weakly to 0 and ||A,|| = 1 that

(8) [AsFll = il£l and {ll4x(fa = Dl = 1 = £} = 0.

We will now assume that f = 0 and obtain a contradiction.
Fix a in (0,1) and write f, = kn @ hn, Where kn = X[0,51f and hn = X{a,11fa-

CramM 1. The sequence {k,} — 0 strongly.
Proof. Assume not. then by dropping to a subsequence if necessary we can
assume ||k,|| — 6 > 0. Let K be the operator defined by (K f)z = /.\'(t)f(t)dt.
0
a 3
Then Kk, tends pointwise to zero and |[(Kakn)z| < / N(®)J2dt 3 |lkn]| for each

z. It follows from the bounded convergence theorem thgt | Kaknll — 0. Let M, be
the operator defined by (Ma f)z = AMz)f(z). Then Ax(kn @ hn) = (Makn @ Axhy) —
—Kk,. By assumption ||M)}| = ||All < 1, and hence, given € > 0, for n sufficiently
large [|Ax(kn @ hn)ll> < [[Makall* + [l 4ahn]l® + €, and hence lim ||Ax(ks @ Ro)l|? €
< || Mlooll&nli2 +]|Rn]i?, which contradicts (8) and establishes the claim. The following
is now immediate. :

CraM 2. Without loss of generality given a in (0,1) it can be assumed that for
n sufficiently large fn = X{4,17/n-

Now for each a € [0, 1) it follows that 0 = nhn;xo lAafn — A, full = nlingo |Axfr —
=xa)fall 2 1 —{|Alles, and this contradiction completes the proof.

LeEMMA 13. Suppose Ay € A(®) has unit norm and a unit maximizing vector
with Ayf = g. Then for almost every a € [0, 1)

1
#(a) = X(@a(a) - ¥(a) j a(t)dt.

Proof. Fix a € [0, 1) and write orthogonal sums f = f; ® ap, and g = g1 ® Bs-
Now if v is any scalar Ax(f1 ® aps + v¢a) = g1 ® Bea + A(a)rpa.
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By assumption for all v we must have || f1 & @@as +1¢al] 2 |91 © Bpa + Aa)vpall
and since f and ¢ have unit norm

1f1 ® apa + 1900l — |1f1 © a0all 2 |lg1 ® Bea + Ma)yeall® — llg1 & Bpall?

which reduces to

7% + o7 + @y 2 [Ma)*I® + AA(a}y + B (a)y.

And it easily follows that o = SA(a). In other words

/1 F(t)dt = A(a) j g(t)dt.

Differentiating the sides of this equation now completes the proof. a
LEMMA 14. For each n we have ||Asn|| = 1.

Proof. Since A;n = (A)™ it is enough to prove the lemma for n = 1. Assume
[l4r¢l] = 1 for some r < 1. Then since A(t) = rt satisfies condition (b’) of Definition
11, it follows that A(t) = rt belongs to 4;. By Lemma 12, Ar; has a unit maximiz-

ing vector f with As f = g. By (7) g(2) = r:cf(z)—/ rf(t)di. By Lemma 13, f(z) =
0

1 1 z

= reg(z) — r/g(s)ds. Hence, g(z) = r222g(z) — r%/g(s)ds - /|:r2tg(t)—

E & 0

—/Irzg(-s‘)ds:l dt = r?z?g(z) — rzmjg(s)(ﬁ - jfztg(t) - j {j”zg(s)ds] dt. In-
o LY

t . ¢]
tegrating the third term by parts gives

z 1 z

1, gz z[1 1
E)/rztg(t)dt:—rzt/g(s)cht+0/ L/rzg(s)ds}dt:—rgxfg(s)dsfof['/ﬂg(s)ds]dt.

I3 T

Therefore g(z) = r2z%g(z) and this contradiction completes the proof. |

LEMMA 15. Suppose ¢ is a weak®-continuous linear functional of unit norm
acting on A(®) such that |p(I)| < 1. Then there exist vectors f and g in the unit
ball of L2[0, 1] such that ¢ = [f ® g].

Proof. Since the unit ball in ,A( @) is weak*-compact there exists Ay of unit norm
in A(®) such that p(4,) = 1. By Lemma 9 there exist sequences {f,} and {g} in
the unit ball of L2[0, 1] with ||¢ — [f» ® gn]|| — 0. By dropping to subsequences, if
necessary, it can he assumed these sequences converge weakly to f and g respectively.
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Since @(Ax) = 1 we have (Axfn,g9n) — 1 and hence [|Ax(fn — f) + Arfl| — L.
It follows from the facts that {f, — f} converges weakly to 0 and ||Ax|| = 1 that

(9) 1AxfIE=IIFIl and {|Ax(fa = Ol = lIfa = fII} — O,

and hence that

(10) Axf=g and {JlAx(fa— Nl = (9= — )} — 0.

We will now assume that {f, — f} does not converge strongly to zero and obtain a
contradiction.

Fix a in (0,1) and write fo — f = k, ® hn, Where kn = xjo,q)(fn — f) and
hy = X[a.l](fn - f)

CramM 1. The sequence {kn} — 0 strongly.

Proof. This is almost identical to the proof of Claim 1 in Lemma 11. The only
difference being that an appeal to Lemma 10 shows the existence of 7 < 1 with
(| Maknl| < nlikn

The following is an immediate consequence of Claim 1.

CraiM 2. Without loss of generality given ¢ in (0,1) it can be assumed that for
n sufficiently large fn — f = X[a,1](fn — f) and hence that gn — g = X{a,1)(9n — 9).

It follows from the assumption thatg{ fn — f} does not converge strongly to zero
that by replacing {f, — f} by a subsequence it can be assumed that ||f, — f|] — 6 > 0.
Let un, = f, — f, normalized and let v, = g, — ¢, normalized.

CramM 3. The sequence {[f ® v,]} converges to 0.

Proof. Fix a € (0,1). Then given b with a < b < 1, for n sufficiently large

[f ® vn] = [xq0,01f ® X3, 130n] + [Xfa,1)f ® Xp,19n). If 0 is sufficiently close to 1 then
second term is small for any choice of b. To show that the first term can be made
small choose A € A with ||4,]] = 1. Then

(A1) [x0,af ® xpp,119](A2) = (ArX[0,0)f Xp,19n) = (X[6.1)A2X[0,]F X[b,1]¥n )

- It follows from (7) that for 2 > a we have .
a a ifa 3 (a 3
[(Axxp,a (@)= |- [ X(O)F(t)dt|< { W(i)izdt} { !f(t)lzdt} s{ M'(t)Izdt}-
[romesiyfareg yfrorg <y
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o Z
It follows from Lemma 3.1 of [2] that (1 — a)% {fl)\'(t)]zdt} < 3. Hence for
0

z > a that |(Axxjo,qa)f)(z)] < 3(1 — a)~%, and so [ixrs, 1145 X0, 1] < 3(1 = a)~¥(1-
—b)%. Then from (11) IIxt0,a3f ® Xb,219n](Ax)| < 3(1 — a)~3(1—5)*%, and this can be
arbitrarily small by an appropriate choice of b.

CLAIM 4. The sequence {[u, ® v,]} converges to a functional y onA(®) such
that Jul] = 1, p(4y) = L.

Proof. To show {[u, ® v,]} converges it suffices to show {[(fn — f) ® (9. — 9)]}
converges. Now, [(fo — F)®(gn = 9)] = [fn®gn]—[f@(gn ~9)] ~ [(fn — ) ®g]+[fDg].
By Claim 2 for @ € [0,1) and n sufficiently large this may be rewritten [(fo — f) @
(9n = D+ [F®X[a,1)(9n ~ D+ X[a1)(fo — @]+ [F B = [(fn — /) ®(9n —9)] +[[®
X[a,11(n — 9)} + [X(a,11(fa — ) ® X{a,139] + [f ® g]. Since the third term can be made
arbitrarily small by choosing a sufficiently close to 1, and by Claim 3 the second term
is small for n sufficiently large, the first part of Claim 4 is established. That ||ull=1
and p(Ax) = 1 follows from (9) and (10).

To complete the proof we obtain the contradiction that {[un ® vn]} is not a
Cauchy sequence. Consider [un ® vp](Asmy] = (Atmaun, vs). Since [up ® v5](Ar) =
= (Axtn,vn) = 1 as n — oo, it follows from Claim 2 that (Aymaun,vn) — 1 as
n — co for fixed m. On the other hand if n is fixed then (Aimyun,vn) — 0 as
m — co. Since, by Lemma 14, ||Asmy]| = 1 this gives the desired contradiction.

We conclude that {f, — f} converges strongly to 0 and that ¢ = [f ® g]. [ |

It remains to deal with case where ¢ is a functional of unit norm on A(&) and
(,D(I ) = 1.

LEMMA 16. Suppose ¢ is a functional on A(#) of unit norm and that @(I) = 1.
Then either

(2) ¢ is a point evaluation. That is there is an in [0,1) such that ¢(A,) = A(a)
or

(b) There is Ay € A(®) with X bounded away from 0 and ¢(Ax) = 0.

Proof. Assume (b) is false and suppose A € 4 is strictly monotonic increasing.
Then @(A) — eI) = 0 for some & € C. Since (b) is assumed false it follows that
Aa) = o for some a € [0,1] and that ¢{A\) = A(e). Let u be another strictly
monotonic increasing function in A. Then @(A,) = u(b) for some b € [0,1]. If b # a
then v = X — A(a) 4+ i(u — u(b)) is bounded away from 0 and ¢(4,) = 0. It follows
that ¢(Ax) = A(a) for each A € A which is absolutely continuous on [0,1]. To show
that a € [0,1) it is enough to show that the densely defined functional n(4x) = A(1)
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is not weak*-continuous.

AMz) ifzgl—%{
Given A € A define A, by Ap(z) = 1 -

CraiM. The sequence {A,;} converges weak* to X.

Proof. This is essentialy contained in Lemma 3.5 of [2].

1
Let 2 be the piecewise linear function for which (l - 57‘-) =1 for n even and

7 (1 — 51;) = ~1 for n odd. A routine calculation shows u € A.

It now follows that #{u,) = (—1)", showing that 7 is not weak*-continuous. Now,
it follows that a < 1 and from the claim that ¢ is a point evaluation. |

LEMMA 17. Suppose ¢ is a functional of unit norm acting on A(®) such that
@(I) = 1. Then there exist z any y in L*[0, 1] such that ¢ = [z ® y].

Proof. If ¢ is point evaluation at @ then ¢ = [p, ® p,] normalized. By Lemma
16 if ¢ is not point evaluation there is g € 4 bounded away from 0 with ¢(4,) = 0.
Notice that A4, is invertible. Define a new functional on .A(®) by ¢, (Ax) = p(AuA).
Since ¢,(I) = 0 it follows from Lemma 15 that there exist z and y in L2[0, 1] such
that o, = [z ® y]. Now, p(Ax) = p(AuA71A4) = pu(A7A) = (471 Axz,y) =
(Axr(4;'2),y). Therefore = [A7'z ® y]. ]

The following is now immediate from the above.

LEMMA 18. The algebra A(®) has property (A;) and hence every unital subal-
gebra of A(®) is reflexive.

Finally, a word about maximizing vectors. The proof of Lemma 14 (with r =
= 1) shows that not all operators in A(®) have maximizing vectors. However it is a

consequence of the above that the following is true.

PROPOSITION 19. Suppose Ay € A(®). Then A, has 2 maximizing vector if,

and only if, there is a weak*-continuous linear functional ¢ of unit norm acting on
A(P) with p(Ay) = 1.
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