PREDUALS OF SOME FINITE DIMENSIONAL ALGEBRAS

DEREK J. WESTWOOD

1. INTRODUCTION

In [2] J. Erdos studied operators on $L^p[0,1]$ which have as eigenvectors the set $\Phi = \{\varphi_a = \chi_{[a,1]} : 0 \leqslant a < 1\}$, and left as a conjecture that all such operators are reflexive. The objective of this paper is to establish properties of finite dimensional algebras which can be used to prove this conjecture for p=2. To this end let T be a linear operator acting on \mathbb{C}^n with Euclidean norm, and let \mathcal{A}_T be the algebra generated by T and the identity. We consider the problem of describing the predual Q_T of A_T which consists of the set of (weak*-continuous) linear functionals on A_T . It is well-know A_T has property (A_1) , that is, if φ belongs to Q_T then there exist vectors x and y in \mathbb{C}^n such that $\varphi(A) = (Ax, y)$ for $A \in \mathcal{A}_T$. It is customary to denote φ by $[x \otimes y]$. In a finite dimensional setting an operator T has property $(A_1(1))$ if an arbitrary φ acting on \mathcal{A}_T can be written $\varphi = [x \otimes y]$ with $||x||^2 = ||y||^2 = ||\varphi||$. See [3] for a discussion of the properties (A_1) and $(A_1(r))$. Very little is known about property $(A_1(1))$ for operators on \mathbb{C}^n . It is shown in [4] that for $n \ge 4$ not all operators enjoy this property. It is easy to verify that normal operators have property $(A_1(1))$ and it is shown in [7] that unweighted shifts also have property $(A_1(1))$. Below we introduce another class of operators with property $(A_1(1))$ and use results obtained to prove Erdos' conjecture.

2. GENERALITIES

It is assumed throughout this section that T is an operator on \mathbb{C}^n with minimal polynomial of degree n. This assumption guarantees that Q_T is n dimensional.

It is well-known that any functional on \mathcal{A}_T is of the form $\varphi = \sum_{k=1}^n [x_k \otimes y_k]$ with

 $\sum_{k=1}^{n} ||x_k||^2 = \sum_{k=1}^{n} ||y_k||^2 = ||\varphi||.$ It easily follows that T has property $(A_1(1))$ if, and only if, the set

$$C_1 = \{ [x \otimes y] : ||x|| \le 1, ||y|| \le 1 \}$$
 is convex.

Define a map $p:\mathcal{C}_1\to\mathbb{C}^n$ by $p([x\otimes y])=((x,y),(Tx,y),\ldots,(T^{n-1}x,y))$ and let \mathcal{C}_2 be the image of \mathcal{C}_1 under this map. Since p extends to a linear map on Q_T it follows that \mathcal{C}_2 is convex if, and only if, \mathcal{C}_1 is convex. Notice that if $v\in\mathcal{C}_2$ then so does tv if $|t|\leqslant 1$ and that \mathcal{C}_2 contains an open ball centered at the origin in Q_T . It will be more convenient to view \mathcal{C}_2 as a subset of \mathbb{R}^{2n} in the obvious way. Let L be a linear functional on \mathbb{R}^{2n} and k a real number. Then we call the hyperplane L(x)=k a support plane for \mathcal{C}_2 if it has non-empty intersection with \mathcal{C}_2 and

- (i) for l>k the hyperplane L(x)=l has empty intersection with \mathcal{C}_2 or
- (ii) for l < k the hyperplane L(x) = l has empty intersection with C_2 .

Notice that since C_2 contains the origin there is no loss in assuming each support plane is of the form L(x) = k with $k \ge 0$, and that (i) holds.

LEMMA 1. The set C_2 is convex if, and only if, the intersection of each support plane for C_2 with C_2 is convex.

Proof. Necessity is obvious. For sufficiency it is enought to show $v = p\left(\frac{1}{2}[x \otimes y] + \frac{1}{2}[u \otimes v]\right)$ belongs to C_2 whenever $[x \otimes y]$ and $[u \otimes v]$ belong to C_2 . Choose t so that tv belongs to the boundary of the convex hull of C_2 . Then tv for some $t \geqslant 1$ belongs to a support plane π for C_2 . It follows that tv is a convex combination of vectors in $\pi \cap C_2$. Therefore tv, and hence v, belongs to C_2 .

Next we give a description of support planes. As noted above a given support plane may be written in the form L(x) = m, where

$$m = \max\{l > 0 : (L(x) = l) \cap \mathcal{C}_2 \neq \emptyset\}$$

Now, L(x) = l may be written

$$\sum_{k=0}^{n-1} a_k \operatorname{Re}(T^k x, y) + b_k \operatorname{Im}(T^k x, y) = l, \text{ or } \operatorname{Re}\left(\left(\sum_{k=0}^{n-1} (a_k - \mathrm{i}b_k) T^k\right) x, y\right) = l.$$

It is easy to see that l is maximum when x is a unit maximizing vector for $\sum_{k=0}^{n-1} (a_k - \mathrm{i} b_k) T^k \text{ and } y = \sum_{k=0}^{n-1} (a_k - \mathrm{i} b_k) T^k x, \text{ normalized. Let } A = \sum_{k=0}^{n-1} (a_k - \mathrm{i} b_k) T^k \text{ and } x$

suppose, without loss of generality, that ||A|| = 1. It follows that if π is a support plane for C_2 then there exists A in A_T such that

$$\pi \cap \mathcal{C}_2 = \{p([x \otimes Ax]) : x \text{ a unit maximizing vector for } A\} =$$

$$= \{p([x \otimes Ax]) : ||x|| = 1 \text{ and } x \text{ belongs to the eigenspace}$$

$$\text{corresponding the largest eigenvalue of } A^*A\}.$$

Of particular interest is the case where A = I. In this case $\pi \cap C_2$ is the image under p of the set $C_3 = \{[x \otimes x] : ||x|| = 1\}$. It is easy to see that if C_1 is convex then so is C_3 . In light of what is known, the following seems reasonable.

CONJECTURE. If C_3 is convex, then so is C_1 .

To facilitate the study of C_3 , define a map $q: C_3 \to \mathbb{C}^{n-1}$ by $q([x \otimes x]) = ((Tx,x),(T^2x,x),\ldots,(T^{n-1}x,x))$ and let C_4 denote the image of C_3 under q. We will regard C_4 as a subset of \mathbb{R}^{2n-2} in the obvious way. A necessary condition for C_4 to be convex is that each support plane for C_4 intersected with C_4 is convex. However this alone is not sufficient since we must exclude the possibility that C_4 has "holes" in it. We can give a description of support planes for C_4 . Suppose $\sum_{k=1}^{n-1} a_k \operatorname{Re}(Tx,x) + b_k \operatorname{Im}(Tx,x) = m$ is a support plane for C_4 .

Then this plane may be written Re(Ax, x) = m where

(1)
$$A = \sum_{k=1}^{n=1} a_k T^i - i b_k T^i.$$

Therefore we have $\operatorname{Re}(Ax,x) + \operatorname{Re}(x,A^*x) = 2m$ or $((A+A^*)x,x) = 2m$. It follows that 2m is either the least or greatest eigenvalue of $A+A^*$. Since we can replace A by -A there is no loss in assuming 2k is the greatest eigenvalue of $A+A^*$. We conclude that a support plane for \mathcal{C}_4 is of the form $\{q[x \otimes x]\} : ||x|| = 1$ and x belongs to the eigenspace corresponding to the largest eigenvalue of $A+A^*$ for some A of the form given in $\{1\}$.

We will need the following lemma concerning maximizing vectors.

LEMMA 2. Suppose A is an operator on \mathbb{C}^n . Then

- (i) The set of maximizing vectors for A together with 0 is a subspace of \mathbb{C}^n , which we call the maximizing subspace of A.
- (ii) The maximizing subspace of A coincides with the eigenspace of the largest eigenvalue of A^*A .
 - (iii) If x is maximizing for A then Ax is maximizing for A^* .
- (iv) The maximizing subspace of A and the maximizing subspace of A^* have the same dimension.

3. OPERATORS WITH PROPERTY (A₁(1))

THEOREM 3. The operator T acting on \mathbb{C}^n represented by the matrix below has property $(A_1(1))$.

(2)
$$P = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 & 0 \\ \lambda_1 - \lambda_2 & \lambda_2 & 0 & \cdots & 0 & 0 \\ \lambda_1 - \lambda_2 & \lambda_2 - \lambda_3 & \lambda_3 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \lambda_1 - \lambda_2 & \lambda_2 - \lambda_3 & \cdots & \ddots & \lambda_{n-1} - \lambda_n & \lambda_n \end{bmatrix}$$

Moreover an operator represented by the Schur product of P with a matrix of the form given below also has property $(A_1(1))$.

(3)
$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ a_1 & 1 & 0 & 0 & \cdots & 0 \\ a_1 a_2 & a_2 & 1 & 0 & \cdots & 0 \\ a_1 a_2 a_3 & a_2 a_3 & a_3 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 a_2 \dots a_{n-1} & a_2 \dots a_{n-1} & \cdots & a_{n-2} a_{n-1} & a_{n-1} & 1 \end{bmatrix}$$

REMARKS 1. It is routine to verify that an operator T is of the form described in Theorem 3 if, and only if, it is unitarily equivalent to an operator having eigenvectors given by the columns of Q, with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. It follows that each operator in \mathcal{A}_T is representable by a matrix of the form the Schur product of P with Q.

- 2. It is enought to prove Theorem 3 assuming the λ_i are distinct: Property $(A_1(1))$ is a property of A_T rather than T and if S has repeated eigenvalues then $A_S \subset A_T$ for some T with distinct eigenvalues. It follows A_S has property $(A_1(1))$ since any subalgebra of an algebra with property $(A_1(1))$ also has property $(A_1(1))$.
- 3. There is no loss of generality in assuming the a_i are all non-zero: If any a_i is zero then \mathcal{A}_T is reducible and direct sums of algebras with property $(A_1(1))$ also have property $(A_1(1))$.

The following results are needed to prove Theorem 3. Assume the λ_i are distinct and that the a_i are non-zero. Let $A \in \mathcal{A}_T$. Then A is represented by a matrix of the

form

Lemma 5. Suppose A has matrix R as described above and A^* has two linearly independent maximizing vectors. Then A is a multiple of the identity.

Proof. As noted in Section 1 the maximizing vectors for A* constitute a subspace of \mathbb{C}^n , hence we can find a maximizing vector on the plane $\pi^{(n)}$ with equation

$$z_1 + \overline{a}_1 z_2 + \overline{a}_1 \overline{a}_2 z_3 + \dots + \overline{a}_1 \overline{a}_2 \dots \overline{a}_{n-1} z_n = 0$$

where (z_1, z_2, \ldots, z_n) denotes a generic point in \mathbb{C}^n .

We prove by induction on n that if A^* has a maximizing vector on π^n then A is a multiple of the identity. Assume first that n=2 and that (z_1,z_2) is maximizing for A^* and $z_1 + \overline{a}_1 z_2 = 0$. Then we get an equation

$$\begin{bmatrix} \overline{c}_1 & \overline{a}_1(\overline{c}_1 - \overline{c}_2) \\ 0 & \overline{c}_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} \overline{c}_1 z_1 + \overline{a}_1(\overline{c}_1 - \overline{c}_2) z_2 \\ \overline{c}_2 z_2 \end{bmatrix} = \begin{bmatrix} -\overline{a}_1 \overline{c}_2 z_2 \\ \overline{c}_2 z_2 \end{bmatrix} = \begin{bmatrix} \overline{c}_2 z_1 \\ \overline{c}_2 z_2 \end{bmatrix}$$

It follows that $||A^*|| = |\overline{c}_2|$ and since it is assumed $a_1 \neq 0$ we have $A = c_2 I$.

Next, the inductive step. Let $x = (z_1, z_2, ..., z_n)$ be a maximizing vector for A^* on $\pi^{(n)}$. Then the first component of AA^*x is $c_1(\overline{c_1}z_1+\overline{a_1}(c_1-\overline{c_2})z_1+\cdots+\overline{a_n}(c_n)$ $+\overline{a}_1\overline{a}_2\ldots\overline{a}_{n-1}(\overline{c}_1-\overline{c}_2)z_n)=c_1(\overline{c}_2z_1+(\overline{c}_1-\overline{c}_2)(z_1+\overline{a}_1z_2\ldots+\overline{a}_1\overline{a}_2\ldots\overline{a}_{n-1}z_n))=$ $=c_1\overline{c}_2z_1$. There are now two cases to consider.

CASE 1. $z_1 = 0$. In this case the operator A_1 which is represented by R with the first row and column removed has a maximizing vector on $\pi^{(n-1)}$. It follows from the inductive hypothesis that A* has matrix

Moreover since x is maximizing for A^* and the first component of AA^*x is zero it follows that $||A^*|| = |\bar{c}_2|$. An examination of the upper left hand two by two block of R_2 shows this is not possible unless $c_1 = c_2$.

CASE 2. $z_1 \neq 0$. It follows that $||AA^*|| = c_1\bar{c}_2$. An examination of the upper left hand two by two block of R shows that if $c_1 \neq c_2$ then ||A|| is strictly greater than the maximum of $|c_1|$ and $|c_2|$. It follows that $c_1 = c_2$ and that A^* is represented by a matrix of the form

$$\begin{bmatrix} \overline{c}_2 & 0 & 0 & \cdots & 0 \\ 0 & \overline{c}_2 & \overline{a}_2(\overline{c}_2 - \overline{c}_3) & \cdots & \overline{a}_2 \dots \overline{a}_{n-1}(\overline{c}_2 - \overline{c}_3) \\ 0 & 0 & \overline{c}_3 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \overline{c}_n \end{bmatrix}.$$

Furthermore $||A^*|| = |\overline{c}_2|$, so since A^* contains the block

$$\begin{bmatrix} \overline{c}_2 & \overline{a}_2(\overline{c}_2 - \overline{c}_3) \\ 0 & \overline{c}_3 \end{bmatrix}$$

we get a contraction if $c_2 \neq c_3$ and so on. It follows that A is a multiple of the identity.

The following is immediate from Lemmas 2 and 4.

COROLLARY 5. If A has matrix of the form described in (3) and $A \neq I$ then the maximizing subspace for A is one dimensional.

LEMMA 6. If A has matrix of the form described in (3) and $A \neq I$ then the eigenspace of the greatest eigenvalue, λ , of $A + A^*$ is one dimensional.

Proof. The proof is similar to the proof of Lemma 4. Assume the Lemma is false. The proof is by induction on n that this leads to a contradiction. Assume first that n=2 and that (z_1,z_2) is a non-zero vector in the eigenspace corresponding to λ and that $z_1 + \overline{a}_1 z_2 = 0$. Then

$$\begin{pmatrix} \begin{bmatrix} c_1 & 0 \\ a_1(c_1 - c_2) & c_2 \end{bmatrix} + \begin{bmatrix} \overline{c}_1 & \overline{a}_1(\overline{c}_1 - \overline{c}_2) \\ 0 & \overline{c}_2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} c_1 z_1 + \overline{c}_1 z_1 + \overline{a}_1(\overline{c}_1 - \overline{c}_2) z_2 \\ a_1(c_1 - c_2) + \overline{c}_2 z_2 \end{bmatrix} = \begin{bmatrix} (c_1 + \overline{c}_2) z_1 \\ a_1(c_1 - c_2) z_1 + \overline{c}_2 z_2 \end{bmatrix}.$$

Since $z_1 \neq 0$ it follows that $\lambda = c_1 + \overline{c}_2$. This shows that $c_1 + \overline{c}_2$ is real and from the discussion in Section 2 that $\max\{\operatorname{Re}(Ax,x): ||x|| = 1\} = \frac{c_1 + \overline{c}_2}{2}$. With $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

we find $\operatorname{Re}(Ax, x) = \operatorname{Re} c_1$ and with $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\operatorname{Re}(Ax, x) = \operatorname{Re} c_2$. It follows that $c_1 = c_2$ and $A \neq c_1 I$.

Next, the inductive step. Let $x = (z_1, z_2, ..., z_n)$ be an eigenvector corresponding to λ on $\pi^{(n)}$. Then the first component of $(A + A^*)x$ is

(6)
$$c_1z_1 + (\overline{c}_1z_1 + \overline{a}_1(\overline{c}_1 - \overline{c}_2)z_1 + \dots + \overline{a}_1\overline{a}_2 \dots \overline{a}_{n-1}(\overline{c}_1 - \overline{c}_2)z_n) = c_1z_1 + (\overline{c}_2z_1 + (\overline{c}_1 - \overline{c}_2)(z_1 + \overline{a}_1z_2 \dots + \overline{a}_1\overline{a}_2 \dots \overline{a}_{n-1}z_n)) = (c_1 + \overline{c}_2)z_1.$$

There are now two cases to consider.

CASE 1. $z_1=0$. It follows from the inductive hypothesis that A^* has matrix R_2 given in (5) and that $\lambda=c_2+\overline{c}_2$, that is, $\max\{\operatorname{Re}(Ax,x):||x||=1\}=\operatorname{Re} c_2$. Now consider (Ax,x) for $x=(\sqrt{\varepsilon}\operatorname{sgn}(\overline{a_1(c_1-c_2)}),\sqrt{1-\varepsilon},0,0,\ldots,0)$. It is routine to show $\operatorname{Re}(Ax,x)=\operatorname{Re}(c_2+\varepsilon(c_1-c_2)+|a_1(c_1-c_2)|\sqrt{\varepsilon}\sqrt{1-\varepsilon})$, and that this quantity is greater than $\operatorname{Re} c_2$ if $c_1\neq c_2$, and ε is sufficiently small.

Case 2. $z_1 \neq 0$. It follows that $\max\{\operatorname{Re}(Ax,x): ||x|| = 1\} = \frac{1}{2}(c_1 + \overline{c}_2)$. Assume $c_1 \neq c_2$. Then it is shown in Case 1 that $\max\{\operatorname{Re}(Ax,x): ||x|| = 1\}$ is greater than $\operatorname{Re} c_2$ and a similar argument shows it also to be greater than $\operatorname{Re} c_1$ which is a contradiction. Equation (6) shows $c_1 + \overline{c}_2$ to be real since it is an eigenvector of $A + A^*$ and it follows that $c_1 = c_2$. It follows that $\max\{\operatorname{Re}(Ax,x): ||x|| = 1\} = \operatorname{Re} c_2$. An argument similar the one used in case 1 shows that if any diagonal entry of A does not equal c_2 we get a contradiction.

LEMMA 7. Let T be of the form described in Theorem 3 with the λ_i distinct and each a_i non-zero. Then $\{[x \otimes x] : ||x|| = 1\}$ is convex.

Proof. We show that the set C_4 described in Section 2 is convex. Let S be the subset of the unit sphere in \mathbb{C}^n consisting of those (z_1, z_2, \ldots, z_n) for which $z_1 + \overline{a}_1 z_2 + \overline{a}_1 \overline{a}_2 z_3 + \cdots + \overline{a}_1 \overline{a}_2 \cdots \overline{a}_{n-1} z_n \geqslant 0$. Then S is homeomorphic with a unit hemisphere in \mathbb{R}^{2n-1} . Define a map φ from S to C_4 by $\varphi(x) = ((Tx, x), (T^2x, x), \ldots, (T^{n-1}x, x))$. Since $[x \otimes x] = [e^{i\theta}x \otimes e^{i\theta}x]$ for any θ it follows that φ is surjective. Lemma 6 shows that the intersection of each support plane for C_4 with C_4 is a single point. This shows that ∂C_4 , the outer boundary of C_4 , is homeomorphic with the unit sphere in R^{2n-2} . Lemma 6 also shows that each point in ∂C_4 is the image under φ of a unique point in S. It follows from the continuity of φ that the preimage of ∂C_4 in S is homeomorphic with the unit sphere in R^{2n-2} . It is a consequence of the Browder Fixed Point Theorem, see, for example [5], that C_4 is homeomorphic with the unit ball in R^{2n-2} . Since each support plane for C_4 intersects ∂C_4 in a single point it follows that C_4 is convex.

Proof of Theorem 3. By Lemma 1 it is enought to show that the intersection of

each support plane for C_2 with C_2 is convex. It is shown in Section 2 that such an intersection has the form

$$\mathcal{I} = \{[x \otimes Ax] : x \text{ is a unit maximizing vector for } A \text{ and } ||A|| = 1\}.$$

If A is not multiple of the identity then \mathcal{I} is a single point by Lemma 5, and if A is a multiple of the identity it follows from Lemma 7 that \mathcal{I} is convex.

4. AN APPLICATION

We now turn attention to the conjecture of Erdos cited in the introduction. He showed that the algebra $\mathcal{A}(\Phi)$ of operators having as eigenvectors the set Φ consists of operators of the form

(7)
$$(A_{\lambda}f)(x) = \lambda(x)f(x) - \int_{0}^{x} \lambda'(t)f(t)dt$$

where λ is a function which is bounded on [0,1), absolutely continuous on [0,a] for each a<1, and for which $\sup_{0< x<1} (1-x)^{\frac{1}{p}} \left\{ \int\limits_0^x |\lambda'(t)|^q \mathrm{d}t \right\}^{\frac{1}{q}} < \infty$. Let Λ denote the set of all such λ .

In this paper we restrict attention to the case p=2, although it seems likely that the techniques could be extended to deal with the general case.

It is shown in [4] that if \mathcal{A} is a reflexive algebra with property (A_1) then every weakly closed subalgebra of \mathcal{A} is reflexive. Erdos showed that $\mathcal{A}(\Phi)$ is reflexive, so we will be able to prove his conjecture, at least for p=2, by showing that $\mathcal{A}(\Phi)$ has property (A_1) .

Note that an example of Larsen and Wogen [6] shows there exists operators with spanning sets of eigenvectors which are not reflexive.

The following is a standard result. See [1].

LEMMA 8. Let \mathcal{A} be a weak* closed algebra of operators acting on a Hilbert space \mathcal{H} and let $\varepsilon > 0$ be given. Suppose φ is a weak*-continuous linear functional on \mathcal{A} of unit norm. Then there exist sequences of vectors $\{x_n\}$ and $\{y_n\}$ in \mathcal{H} with $\sum_{i=1}^{\infty} ||x_i||^2 = \sum_{i=1}^{\infty} ||y_i||^2 \leqslant 1 + \varepsilon \text{ such that } \varphi = \sum_{i=1}^{\infty} [x_i \otimes y_i].$

LEMMA 9. Suppose φ is a weak*-continuous linear functional of unit norm acting on $\mathcal{A}(\Phi)$. Let $\varepsilon > 0$ be given, then there exist vectors x and y in the unit ball of $L^2[0,1]$ such that $||\varphi - [x \otimes y]|| < \varepsilon$.

Proof. It follows from Lemma 8 that there exist sequences of vectors $\{x_n\}$ and $\{y_n\}$ in $L^2[0,1]$ with $\sum_{i=1}^n ||x_i||^2 = \sum_{i=1}^n ||y_i||^2 \leqslant 1$ such that $\left\|\varphi - \sum_{i=1}^n [x_i \otimes y_i]\right\| < \frac{\varepsilon}{2}$. Partition [0,1] into m equal subintervals and let $\{e_k\}$ denote the characteristic functions of these subintervals normalized. For m sufficiently large each x_i and y_i can be approximated arbitrarily closely by linear combinations of $\{e_k\}$. It follows that there exist m and such step functions that $\left\| \varphi - \sum_{i=1}^{n} [f_i \otimes g_i] \right\| < \varepsilon$. Let $\mathcal H$ be the subspace of $L^2[0,1]$ with orthonormal basis $\{e_k\}$. Then it is easy to see that each $A \in \mathcal{A}(\Phi)$ leaves $\mathcal H$ invariant and that the restriction of A to $\mathcal H$ has matrix representation of the form given in (2). It follows from Theorem 3 that there exist f and g in the unit ball of H such that

$$\sum_{i=1}^{n} (A|\mathcal{H}f_{i}, g_{i})) = (A|\mathcal{H}f, g) \text{ for } A \in \mathcal{A}(\Phi),$$

and hence from the invariance of \mathcal{H} that

$$\sum_{i=1}^{n} (Af_i, g_i) = (Af, g) \text{ for } A \in \mathcal{A}(\Phi).$$

It follows that $||\varphi - [f \otimes g]|| < \varepsilon$.

LEMMA 10. Suppose $A_{\lambda} \in \mathcal{A}(\Phi)$, that $|\lambda(a)| = ||\lambda||_{\infty}$ for some $a \in [0,1)$ and that λ is not constant. Then $||A_{\lambda}|| > ||\lambda||_{\infty}$.

Proof. Assume first that λ is constant on [a,1). Then as in the proof of Lemma 9 the restriction of A_{λ} to some invariant subspace has matrix given by (2) with $\lambda_i = \lambda\left(\frac{i-1}{n}\right)$. An examination of the 2 by 2 diagonal blocks shows $||A_{\lambda}|| > ||\lambda||_{\infty}$. Now assume λ is not constant on [a,1). If b > a then

$$A_{\lambda}(\varphi_a - \varphi_b) = \lambda(a)\varphi_a - \lambda(b)\varphi_b = \lambda(a)(\varphi_a - \varphi_b) + (\lambda(a) - \lambda(b))\varphi_b.$$

Since this is an orthogonal sum any choice of b with $\lambda(a) \neq \lambda(b)$ shows $||A_{\lambda}|| >$ $> \|\lambda\|_{\infty}.$

DEFINITION 11. For $\lambda \in \Lambda$, define λ_a by $\lambda_a(t) = \begin{cases} \lambda(t), & t < a \\ \lambda(a), & t \ge a \end{cases}$. Let Λ_1 be the subset of Λ consisting of those λ for which

- (a) $||A_{\lambda}|| > ||\lambda||_{\infty}$, and

(b) $\lim_{a\to 1} ||A_{\lambda} - A_{\lambda_a}|| = 0$. It follows from Lemma 3.1 of [2] that (b) is equivalent to

(b)'
$$\lim_{a \to 1} (1-a)^{\frac{1}{2}} \left\{ \int_{0}^{a} |\lambda'(t)|^{2} dt \right\}^{\frac{1}{2}} = 0.$$

DEREK J. WESTWOOD

LEMMA 12. Suppose $\lambda \in \Lambda_1$. Then A_{λ} has a maximizing vector.

Proof. Assume without loss that $||A_{\lambda}|| = 1$. Then there exists a sequence $\{f_n\}$ in the unit ball of $L^2[0, 1]$ with $||A_{\lambda}f_n|| \to 1$. By dropping to a subsequence, if necessary, it can be assumed $\{f_n\}$ converges weakly to some f. Since $||A_{\lambda}(f_n - f) + A_{\lambda}f|| \to 1$, it follows from the facts that $\{f_n - f\}$ converges weakly to 0 and $||A_{\lambda}|| = 1$ that

(8)
$$||A_{\lambda}f|| = ||f|| \text{ and } \{||A_{\lambda}(f_n - f)|| - ||f_n - f||\} \to 0.$$

We will now assume that f = 0 and obtain a contradiction.

Fix a in (0,1) and write $f_n = k_n \oplus h_n$, where $k_n = \chi_{[0,a]} f_n$ and $h_n = \chi_{[a,1]} f_n$.

CLAIM 1. The sequence $\{k_n\} \to 0$ strongly.

Proof. Assume not. then by dropping to a subsequence if necessary we can assume $||k_n|| \to \delta > 0$. Let K_λ be the operator defined by $(K_\lambda f)x = \int_0^x \lambda'(t)f(t)dt$.

Then $K_{\lambda}k_n$ tends pointwise to zero and $|(K_{\lambda}k_n)x| < \left\{\int\limits_0^a |\lambda'(t)|^2 \mathrm{d}t\right\}^{\frac{1}{2}} ||k_n||$ for each x. It follows from the bounded convergence theorem that $||K_{\lambda}k_n|| \to 0$. Let M_{λ} be

the operator defined by $(M_{\lambda}f)x = \lambda(x)f(x)$. Then $A_{\lambda}(k_n \oplus h_n) = (M_{\lambda}k_n \oplus A_{\lambda}h_n) - K_{\lambda}k_n$. By assumption $||M_{\lambda}|| = ||\lambda||_{\infty} < 1$, and hence, given $\varepsilon > 0$, for n sufficiently large $||A_{\lambda}(k_n \oplus h_n)||^2 \le ||M_{\lambda}k_n||^2 + ||A_{\lambda}h_n||^2 + \varepsilon$, and hence $\lim_{n \to \infty} ||A_{\lambda}(k_n \oplus h_n)||^2 \le ||\lambda||_{\infty} ||k_n||^2 + ||h_n||^2$, which contradicts (8) and establishes the claim. The following is now immediate.

CLAIM 2. Without loss of generality given a in (0,1) it can be assumed that for n sufficiently large $f_n = \chi_{[a,1]} f_n$.

Now for each $a \in [0,1)$ it follows that $0 = \lim_{n \to \infty} ||A_{\lambda} f_n - A_{\lambda_a} f_n||$

LEMMA 13. Suppose $A_{\lambda} \in \mathcal{A}(\Phi)$ has unit norm and a unit maximizing vector with $A_{\lambda}f = g$. Then for almost every $a \in [0,1)$

$$f(a) = \overline{\lambda(a)}g(a) - \overline{\lambda'(a)}\int_{a}^{1}g(t)dt.$$

Proof. Fix $a \in [0,1)$ and write orthogonal sums $f = f_1 \oplus \alpha \varphi_a$ and $g = g_1 \oplus \beta \varphi_a$. Now if γ is any scalar $A_{\lambda}(f_1 \oplus \alpha \varphi_a + \gamma \varphi_a) = g_1 \oplus \beta \varphi_a + \lambda(a)\gamma \varphi_a$. By assumption for all γ we must have $||f_1 \oplus \alpha \varphi_a + \gamma \varphi_a|| \ge ||g_1 \oplus \beta \varphi_a + \lambda(a)\gamma \varphi_a||$ and since f and g have unit norm

$$||f_1 \oplus \alpha \varphi_a + \gamma \varphi_a||^2 - ||f_1 \oplus \alpha \varphi_a||^2 \geqslant ||g_1 \oplus \beta \varphi_a + \lambda(a)\gamma \varphi_a||^2 - ||g_1 \oplus \beta \varphi_a||^2$$

which reduces to

$$|\gamma|^2 + \alpha \overline{\gamma} + \overline{\alpha} \gamma \geqslant |\lambda(a)|^2 |\gamma|^2 + \beta \overline{\lambda(a)\gamma} + \overline{\beta} \lambda(a)\gamma.$$

And it easily follows that $\alpha = \beta \overline{\lambda(a)}$. In other words

$$\int_{a}^{1} f(t)dt = \overline{\lambda(a)} \int_{a}^{1} g(t)dt.$$

Differentiating the sides of this equation now completes the proof.

LEMMA 14. For each n we have $||A_{t^n}|| = 1$.

Proof. Since $A_{t^n}=(A_t)^n$ it is enough to prove the lemma for n=1. Assume $||A_{rt}||=1$ for some r<1. Then since $\lambda(t)=rt$ satisfies condition (b') of Definition 11, it follows that $\lambda(t)=rt$ belongs to A_1 . By Lemma 12, A_{rt} has a unit maximizing vector f with $A_{rt}f=g$. By (7) $g(x)=rxf(x)-\int\limits_0^x rf(t)\mathrm{d}t$. By Lemma 13, $f(x)=\frac{1}{2}$

$$= rxg(x) - r\int_{x}^{1} g(s)ds. \quad \text{Hence, } g(x) = r^{2}x^{2}g(x) - r^{2}x\int_{x}^{1} g(s)ds - \int_{0}^{x} \left[r^{2}tg(t) - \int_{t}^{1} r^{2}g(s)ds \right] dt = r^{2}x^{2}g(x) - r^{2}x\int_{x}^{1} g(s)ds - \int_{0}^{x} r^{2}tg(t) - \int_{0}^{x} \left[\int_{t}^{1} r^{2}g(s)ds \right] dt. \quad \text{Integrating the third term by parts gives}$$

$$\int_0^x r^2 t g(t) dt = -r^2 t \int_t^1 g(s) ds \Big|_0^x + \int_0^x \left[\int_t^1 r^2 g(s) ds \right] dt = -r^2 x \int_x^1 g(s) ds + \int_0^x \left[\int_t^1 r^2 g(s) ds \right] dt.$$

Therefore $g(x) = r^2 x^2 g(x)$ and this contradiction completes the proof.

LEMMA 15. Suppose φ is a weak*-continuous linear functional of unit norm acting on $\mathcal{A}(\Phi)$ such that $|\varphi(I)| < 1$. Then there exist vectors f and g in the unit ball of $L^2[0,1]$ such that $\varphi = [f \otimes g]$.

Proof. Since the unit ball in $\mathcal{A}(\Phi)$ is weak*-compact there exists A_{λ} of unit norm in $\mathcal{A}(\Phi)$ such that $\varphi(A_{\lambda}) = 1$. By Lemma 9 there exist sequences $\{f_n\}$ and $\{g_n\}$ in the unit ball of $L^2[0,1]$ with $||\varphi - [f_n \otimes g_n]|| \to 0$. By dropping to subsequences, if necessary, it can be assumed these sequences converge weakly to f and g respectively.

Since $\varphi(A_{\lambda}) = 1$ we have $(A_{\lambda}f_n, g_n) \to 1$ and hence $||A_{\lambda}(f_n - f) + A_{\lambda}f|| \to 1$. It follows from the facts that $\{f_n - f\}$ converges weakly to 0 and $||A_{\lambda}|| = 1$ that

(9)
$$||A_{\lambda}f|| = ||f|| \text{ and } \{||A_{\lambda}(f_n - f)|| - ||f_n - f||\} \to 0,$$

and hence that

(10)
$$A_{\lambda}f = g \text{ and } \{||A_{\lambda}(f_n - f)|| - (g_n - g)\} \to 0.$$

We will now assume that $\{f_n - f\}$ does not converge strongly to zero and obtain a contradiction.

Fix a in (0,1) and write $f_n - f = k_n \oplus h_n$, where $k_n = \chi_{[0,a]}(f_n - f)$ and $h_n = \chi_{[a,1]}(f_n - f)$.

CLAIM 1. The sequence $\{k_n\} \to 0$ strongly.

Proof. This is almost identical to the proof of Claim 1 in Lemma 11. The only difference being that an appeal to Lemma 10 shows the existence of $\eta < 1$ with $||M_{\lambda}k_n|| < \eta||k_n||$.

The following is an immediate consequence of Claim 1.

CLAIM 2. Without loss of generality given a in (0,1) it can be assumed that for n sufficiently large $f_n - f = \chi_{[a,1]}(f_n - f)$ and hence that $g_n - g = \chi_{[a,1]}(g_n - g)$.

It follows from the assumption that $\{f_n - f\}$ does not converge strongly to zero that by replacing $\{f_n - f\}$ by a subsequence it can be assumed that $||f_n - f|| \to \delta > 0$. Let $u_n = f_n - f$, normalized and let $v_n = g_n - g$, normalized.

CLAIM 3. The sequence $\{[f \otimes v_n]\}$ converges to 0.

Proof. Fix $a \in (0,1)$. Then given b with a < b < 1, for n sufficiently large $[f \otimes v_n] = [\chi_{[0,a]} f \otimes \chi_{[b,1]} v_n] + [\chi_{[a,1]} f \otimes \chi_{[b,1]} v_n]$. If a is sufficiently close to 1 then second term is small for any choice of b. To show that the first term can be made small choose $\lambda \in \Lambda$ with $||A_{\lambda}|| = 1$. Then

$$(11) \qquad [\chi_{0,a}]f \otimes \chi_{[b,1]}v_n](A_{\lambda}) = (A_{\lambda}\chi_{[0,a]}f,\chi_{[b,1]}v_n) = (\chi_{[b,1]}A_{\lambda}\chi_{[0,a]}f,\chi_{[b,1]}v_n).$$

It follows from (7) that for x > a we have

$$|(A_{\lambda}\chi_{[0,a]}f)(x)| = \left|-\int\limits_0^a \lambda'(t)f(t)\mathrm{d}t\right| \leqslant \left\{\int\limits_0^a |\lambda'(t)|^2\mathrm{d}t\right\}^{\frac{1}{2}} \left\{\int\limits_0^a |f(t)|^2\mathrm{d}t\right\}^{\frac{1}{2}} \leqslant \left\{\int\limits_0^a |\lambda'(t)|^2\mathrm{d}t\right\}^{\frac{1}{2}}$$

It follows from Lemma 3.1 of [2] that $(1-a)^{\frac{1}{2}} \left\{ \int_{0}^{a} |\lambda'(t)|^{2} dt \right\}^{\frac{1}{2}} \leqslant 3$. Hence for x > a that $|(A_{\lambda}\chi_{[0,a]}f)(x)| \leqslant 3(1-a)^{-\frac{1}{2}}$, and so $||\chi_{[b,1]}A_{\lambda}\chi_{[0,a]}f|| \leqslant 3(1-a)^{-\frac{1}{2}}(1-b)^{\frac{1}{2}}$. Then from (11) $||\chi_{[0,a]}f \otimes \chi_{[b,1]}v_{n}|(A_{\lambda})| \leqslant 3(1-a)^{-\frac{1}{2}}(1-b)^{\frac{1}{2}}$, and this can be arbitrarily small by an appropriate choice of b.

CLAIM 4. The sequence $\{[u_n \otimes v_n]\}$ converges to a functional μ on $\mathcal{A}(\Phi)$ such that $\|\mu\| = 1$, $\mu(A_{\lambda}) = 1$.

Proof. To show $\{[u_n \otimes v_n]\}$ converges it suffices to show $\{[(f_n - f) \otimes (g_n - g)]\}$ converges. Now, $[(f_n - f) \otimes (g_n - g)] = [f_n \otimes g_n] - [f \otimes (g_n - g)] - [(f_n - f) \otimes g] + [f \otimes g]$. By Claim 2 for $a \in [0,1)$ and n sufficiently large this may be rewritten $[(f_n - f) \otimes (g_n - g)] + [f \otimes \chi_{[a,1]}(g_n - g)] + [\chi_{[a,1]}(f_n - f) \otimes g] + [f \otimes g] = [(f_n - f) \otimes (g_n - g)] + [f \otimes \chi_{[a,1]}(g_n - g)] + [\chi_{[a,1]}(f_n - f) \otimes \chi_{[a,1]}g] + [f \otimes g]$. Since the third term can be made arbitrarily small by choosing a sufficiently close to 1, and by Claim 3 the second term is small for n sufficiently large, the first part of Claim 4 is established. That $||\mu|| = 1$ and $\mu(A_{\lambda}) = 1$ follows from (9) and (10).

To complete the proof we obtain the contradiction that $\{[u_n \otimes v_n]\}$ is not a Cauchy sequence. Consider $[u_n \otimes v_n](A_t m_{\lambda}] = (A_t m_{\lambda} u_n, v_n)$. Since $[u_n \otimes v_n](A_{\lambda}) = (A_{\lambda} u_n, v_n) \to 1$ as $n \to \infty$, it follows from Claim 2 that $(A_t m_{\lambda} u_n, v_n) \to 1$ as $n \to \infty$ for fixed m. On the other hand if n is fixed then $(A_t m_{\lambda} u_n, v_n) \to 0$ as $m \to \infty$. Since, by Lemma 14, $||A_t m_{\lambda}|| = 1$ this gives the desired contradiction.

We conclude that $\{f_n - f\}$ converges strongly to 0 and that $\varphi = [f \otimes g]$.

It remains to deal with case where φ is a functional of unit norm on $\mathcal{A}(\Phi)$ and $\varphi(I)=1.$

LEMMA 16. Suppose φ is a functional on $\mathcal{A}(\Phi)$ of unit norm and that $\varphi(I) = 1$. Then either

- (a) φ is a point evaluation. That is there is an in [0,1) such that $\varphi(A_{\lambda})=\lambda(a)$ or
 - (b) There is $A_{\lambda} \in \mathcal{A}(\Phi)$ with λ bounded away from 0 and $\varphi(A_{\lambda}) = 0$.

Proof. Assume (b) is false and suppose $\lambda \in \Lambda$ is strictly monotonic increasing. Then $\varphi(A_{\lambda} - \alpha I) = 0$ for some $\alpha \in \mathbb{C}$. Since (b) is assumed false it follows that $\lambda(a) = \alpha$ for some $a \in [0,1]$ and that $\varphi(A_{\lambda}) = \lambda(a)$. Let μ be another strictly monotonic increasing function in Λ . Then $\varphi(A_{\mu}) = \mu(b)$ for some $b \in [0,1]$. If $b \neq a$ then $\nu = \lambda - \lambda(a) + \mathrm{i}(\mu - \mu(b))$ is bounded away from 0 and $\varphi(A_{\nu}) = 0$. It follows that $\varphi(A_{\lambda}) = \lambda(a)$ for each $\lambda \in \Lambda$ which is absolutely continuous on [0,1]. To show that $a \in [0,1)$ it is enough to show that the densely defined functional $\eta(A_{\lambda}) = \lambda(1)$

is not weak*-continuous.

Given
$$\lambda \in \Lambda$$
 define λ_n by $\lambda_n(x) = \begin{cases} \lambda(x) & \text{if } x \leqslant 1 - \frac{1}{2^n} \\ \lambda \left(1 - \frac{1}{2^n}\right) & \text{if } x > 1 - \frac{1}{2^n} \end{cases}$

CLAIM. The sequence $\{\lambda_n\}$ converges weak* to λ .

Proof. This is essentialy contained in Lemma 3.5 of [2].

Let μ be the piecewise linear function for which $\mu\left(1-\frac{1}{2^n}\right)=1$ for n even and $\mu\left(1-\frac{1}{2^n}\right)=-1$ for n odd. A routine calculation shows $\mu\in\Lambda$.

It now follows that $\eta(\mu_n) = (-1)^n$, showing that η is not weak*-continuous. Now, it follows that a < 1 and from the claim that φ is a point evaluation.

LEMMA 17. Suppose φ is a functional of unit norm acting on $\mathcal{A}(\Phi)$ such that $\varphi(I) = 1$. Then there exist x any y in $L^2[0,1]$ such that $\varphi = [x \otimes y]$.

Proof. If φ is point evaluation at a then $\varphi = [\varphi_a \otimes \varphi_a]$ normalized. By Lemma 16 if φ is not point evaluation there is $\mu \in A$ bounded away from 0 with $\varphi(A_\mu) = 0$. Notice that A_μ is invertible. Define a new functional on $A(\Phi)$ by $\varphi_\mu(A_\lambda) = \varphi(A_\mu A_\lambda)$. Since $\varphi_\mu(I) = 0$ it follows from Lemma 15 that there exist x and y in $L^2[0,1]$ such that $\varphi_\mu = [x \otimes y]$. Now, $\varphi(A_\lambda) = \varphi(A_\mu A_\mu^{-1} A_\lambda) = \varphi_\mu(A_\mu^{-1} A_\lambda) = (A_\mu^{-1} A_\lambda x, y) = (A_\lambda (A_\mu^{-1} x), y)$. Therefore $\varphi = [A_\mu^{-1} x \otimes y]$.

The following is now immediate from the above.

LEMMA 18. The algebra $\mathcal{A}(\Phi)$ has property (A_1) and hence every unital subalgebra of $\mathcal{A}(\Phi)$ is reflexive.

Finally, a word about maximizing vectors. The proof of Lemma 14 (with r = 1) shows that not all operators in $\mathcal{A}(\Phi)$ have maximizing vectors. However it is a consequence of the above that the following is true.

PROPOSITION 19. Suppose $A_{\lambda} \in \mathcal{A}(\Phi)$. Then A_{λ} has a maximizing vector if, and only if, there is a weak*-continuous linear functional φ of unit norm acting on $\mathcal{A}(\Phi)$ with $\varphi(A_{\lambda}) = 1$.

REFERENCES

- DIXMIER, J., Les algèbres d'opérateurs dans l'espace Hilbertien (Algebres de von Neumann), Gauthier Villars, Paris, 1957.
- ERDOS, J., On certain abelian algebras of operators and their invariant subspace lattices, Proc. London Math. Soc., 29(1974), 77-97.

- 3. BERCOVICI, H.; FOIAS, C.; PEARCY, C., Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series, No 56, A. M. S., Providence, 1985.
- 4. HADWIN, D.; NORDGREN, E., Subalgebras of reflexive algebras, J. Operator Theory, 7(1982), 3-23.
- HOLSZTYNSKI, W., Universality of the product mappings onto products of Iⁿ and snakelike spaces, Fund. Math., 64(1969), 147-155.
- 6. LARSON, D.; WOGEN, W., Reflexivity properties of $T \oplus O$, J. Funct. Anal., 92(1990), 448-467.
- WESTWOOD, D., Computing Fourier coefficients, Rev. Roumaine Math. Pures Appl., to appear.

DEREK J. WESTWOOD 4108 State Street Drive, New Orleans, Louisiana 70125, U.S.A.

Received June 2, 1992; revised February 4, 1993.