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SQUARE ROOTS OF THE CANONICAL SHIFTS

MARIE CHODA

1. INTRODUCTION

Assume that N C M is a pair of II; factors with [M : N] < oo. If M is
hyperfinite, then N is hiperfinite ([10]) so that M has many *-endomorphisms p with
p(M) = N. These x-endomorphisms do not always give us right informations of the
inclusion N C M. What kind of x-endomorphisms o of M with (M) = N reflect the
inclusion N C M canonically? In this paper we give some results coming from this
question. In a series of studies on index theory for pairs N C M of infinite factors,
Longo’s canonical endomorphism y for N C M is used to investigate the relation of
the inclusion N C M {13, 14]. The endomorphism = is literally canonical for the
inclusion N C M but the range of it has the relation M D N > y(M).

The finite case version I’ of the canonical endomorphism + is introduced by
Ocneanu [16] to classify subfactors of the hyperfinite II; factor with index less than 4.
The endomorphism I' is called the canonical shift and defined as a *-endomorphism
on the tower {M’' N My }z=12,.. of the relative commutant algebras induced by the
tower

NCMCMC-- - CMy={Mg_1,e)C---

of Jones basis constructions with the Jones projections {ex}r=12,. for N C M of II;
factors with finite index. Then canonical shift I is extended to the finite von Neumann
algebra A = = (LkJ{M "N My }) . The I' is determined bty M D N canonically but
has the inclusion 4 D B D I'(A) for B= = (U{M{ ﬂMk})”. If M D N is a pair
of hyperfinite II; factors with finite index and tkhe finite depth, then the pair A D B
is antiisomorphic to the pair M D N ([21]). Hence I' can be considered as a *-
-endomorphism of M with the properties that M > N D I'(M) and [M : I'(M)] =
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= [M : N}’ if M D N has finite depth.

The purpose of this paper is to give a *-endomorphism p of A with the property
that p(A) = B and p? = I' for the pair N C M of hyperfinite II; factors with index
less than 4. We call such a *+-endomorphism p a square root of I'.

If the principal graph of N C M is one of An(n 2 4), Daa(n 2 3), Es, Eg, EWM
(n =6,7,8), then a square root p of I' is given by

plz) = klirgo Adwvgop_y---vi(z), (z € A).

Here the unitary vy = (¢ + 1)ex — 1 is given by the complex number ¢ satisfying the
equality: (¢ +1)% = g[M : N]. In such cases, A (resp. B) is a factor and includes the
factor R = {e;;4 > 2} (resp. Ry = {ei;1 > 3}"). To determine the square roots of
I' we need-the commuting square

A D B
U U
R O R,

Using the property of the dual principal graph for A D R, we show that if the principal
graph of M D N is type An(n > 4) or Eg then the square root of I’ is unique and
that if M D N is of type Dan(n > 3) then there are precisely two square roots of I'.

If the principal graph of M D N is As (resp. Dy), we have M = N<,2,
(resp. N<14Z3) with respect to an outer action . In the case of the crossed product
M = N<oG of I factor N by an outer action o of an abelian group G, the square
roots of I' also exist and they are determined by & and the group of isomorphisms
from G onto G.

We investigate *-endomorphisms p of A satisfying more weak conditions than
square roots of I' and call the property self-conjugate (cf. [14]). A square root of I'
is of course self-conjugate. If M = N<,G for a finite non abelian G, then A can not
have any self conjugate *-endomorphism.

The canonical shift I is a 2-shift ([2]) on the tower of the relative commutant
algebras and a square root p of I' is a 1-shift on the same tower, and so we can
compute the entropy of those *-endomorphisms. They satisfy the following equality:

2H(p) = H(I') =log[M : N].

The author thanks M. Izumi and Y. Kawahigashi for valuable discussions and S.
Popa for conversations on this subject. She also thanks New South Wales university
and C. Sutherland for warm hospitalities during her stay, where she prepared a part
of this paper. Some valuable comments are given by the referee of this paper whom
she thanks too.
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2. PRELIMINARIES

Throughout this paper, M is a type II; factor with the faithful normal trace 7
such that 7(1) = 1 and N is a subfactor of M with [M : N] < oo. By iterating
the Jones’ basic construction [10], we obtain a whole tower of factors with Jones

projections {e;}:
N=M_,CM=MyCM C- - CMj={(Mj_1,e;)C---.
Let
Ay =M’ N Mg and BkzM{ﬂM;, (kBO)

The canonical trace 7 is extended to the Markov trace on each M;, which we denote
by the same notation 7. The canonical conjugation Ji on the Hilbert space L2(My, 7

L4
is defined by Ji(z) = z* for all z € M;. We denote by M., the factor = (U Mj) ,
b

where 7 is the GNS representation with respect to 7. Let
A=MnNMy, and B= M NM.

The canonical shift I' is an endomorphism on the von Neumann algebra M’ N My
which is defined by I'(z) = Juy1Jnzndns1 for n 2 k for all z € M’ N Mai. The
definition does not depend on n ([16], see also [3]) and I' is r-preserving ([2], [3]).
Hence I' is extended to a 7-preserving *-endomorphism of A and satisfies

(M N\ M) = M{, s\ Myya, forall<k.

The I' is a 2-shift in the sense of [2].

Let End(M ,T) be the set of r-preserving *-endomorphisms of M and Aut{M)
the set of automorphisms of M. For any p € End(M, 1), p(M) is a subfactor of M
because 7 is faithful and ultra-weakly continuous.

We denote by E, the conditional expectation E,ary of M onto p(M).

DEFINITION 2.1. A p € End(M, 7) is irreducible if p(M)’' N M = C1. The index
Ind(p) is [M : p(M)]. Let p have finite index. If there exists a projection e € M
which satisfies that

Ey(e) = (Indp)™'1,  p*(M) = {e} Nnp(M)
then p is said to be basic and such a projection e is called a basic projection for p. If

M = g-weak closure of U(p’ (MY NM)
¥
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then p is said to have the generating property. If p is basic and satisfy the generating
property, p 1is said to be standard. The p has finite depth if the dimensions of the
center of p*(M)' N M are bounded. The principal graph (resp. dual principal graph)
for p is the principal graph (resp. dual principal graph) for the pair M D p(M). A
o € End(A, 7) is called a square root of I' if ¢(A) = Band ¢ = I'.

We need the following properties ([2]) of basic endomorphisms:

ProrPoSITION 2.2. Let p € End(M, 7). Then
(1) p is basic if and only if M is the basic extension for p(M) D p*(M).
(2) Assume that p is basic. Then there exists a po € Aut(My,) which satisfies

Poa(er) = €xm1, Poo(Mi) = Mi—1 and pu|M = p.

Hence the principal graph of p is same with the dual principal graph of p.
(3) If p € End(M, 7) is basic, then the entropy H(p) of p satisfies

k '
H() = im HEO0Y 030

LEMMA 2.3. Let p € End(M, 7) satisfies the generating property, then p is a
shift in the sense of Powers ([24]):

ﬂpf(M) =Cl.

Proof. Let z € (\p'(M). For any € > 0, there are an integer k and an z; €
J

€ p¥(M)'NM which satisfies that [|z—zx||2 < €. Let B be the conditional expectation
of M onto p*(M) N M. Since M is a factor, we have Ei(z) = 7(z)1, so that
[lz — r(z)1]|2 < €. |

Here we give some examples of basic but not standard *-endomorphisms and
standard *-endomorphisms, which have a key role in the last section.

EXAMPLE 2.4. A x-endomorphism of a hyperfinite II; factor is defined in [5, Sec-
tion 4.4]. We review it because we need the notations in below. Let Cy C By be a pair
of finite dimensional von Neumann algebras. Let [Co — By be the inclusion matrix
for Co C By. Let 8 =||[Bo — Cy}||*>. Assume 2 < 8 < 4. Then the Bratteli diagram
for Co C By is one of the Coxeter graphs G of types An, D, En,AS;I), Ds‘l), E,(,l) . Let
g be a number with B =2+ ¢+ ¢~'. Then normalized Markov trace 7 of modulus
for Co C By has an extension r to the fundamental extension algebra B; = (B, eo),
where eg is the projection from L?(By, 7} onto L?(Cy, 7). By the induction, we have
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the projectionle,- from L?(B;~1,7) onto L2(B;_2,7), Bj = (Bj_1,¢;-1) and the nor-
malized Markov trace T with modulus 8 on B; for all j. Let v; = (¢ + 1)e; — 1 and
Ci= vgBovgl. Let C; be the algebra generated by {Cj-1,€j-1}. Let 7 be the GNS

representation of | B; with respect to 7 and put
H

4
BG)== (U Bj) .
b
The *-endomorphism & is defined for all z € B(G) by

d(z) = kl-ifl;: Vo * - DREVE - V] Vg

14
The subfactor = (U Cj) of B(G) coinsides with @(B(G)), which we denote by C(G).
i

LEMMA 2.5. The ¢ € End(B(G), 7) is basic but does not satisfy the generating
property if dimCjp 2 2.

Proof. We show that p = eo is a basic projection for . Put B = B(G) and
C = C(G). By the Markov property, 7(Ep,(p)z) = 7(z)/8 for all z € Bo. Hence
Eg,(p) = 1/B, so that E¢,(p) = 1/8. Since the commuting square condition E¢, =
= EcEp, is satisfied, we have that

EC(P) = ECEB1(p) = EB,EC(P) = EC;(P) = (1/ﬁ)1

By the definition, @(v;) = v;4+1 for all j. Hence

‘

@(Cj+1) = {{ﬁ(cl), V2, V3, .04, ’Uj+1}”.

Since v;vj 419/ = V;j4+1Vjvj4+1 and vjvj4i = vj4qv; for all i > 2 and j > 0, we have
zvy = voz for all z € &(C,) = v1Crvy*, which implies that &(Cj41) C {p} N C.
Therefore $2(B) C {p}' N C. On the other hand, by [19} {p}’ N C is a subfactor of
C which satisfies [C : {p}' N C] = [B : C] because Ec(p) = (B : C]7'1. The pair
®%(B) C {p} N C satisfies

[C:{pY NC)=[B:C]=[8(B): #(C)] = [C: $*(B)).

Hence
8%(B) = {p}' N C = {p}' N &(B).

Thus & is a basic *-endomorphism of B with a basic projection eg. By the definition,
&(z) = z for all z € Cy. Hence by Lemma 2.3, & does not satisfy the generating
property if dimCy > 2.
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ExaMPLE 2.6. Let R be the hyperfinite II; factor generated by the sequence
{ei,i = 1} of projections satisfying the Jones relations for A € (0,1/4] U
U{{4cos®*(x/n))~;n > 3}:

{eje; =ee;, ifli—jl#1

giejes = ,\e,', if h - ]l =1

The ¢ € End(R, 7) defined by a{e;) = e;j41 for all 7 > 1 is basic and the projection
e; is a basic projection for o. Since oI(RY N AR D {e1,e3,...,e5-1}", o satisfies the
generating property. Hence ¢ is standard. '

Furthermore if A > 1/4, & has the form

- - £ L
o(z) = kllrgc VIUy - VETUR - - Vs V)

for all z € R, where q is the number with A(¢+ ¢~ +2)=1and v; = (g + 1)ex — 1.
Throughout this paper, we denote this endomorphism o of R by o).

ExamMpLE 2.7. The typical example of standard endomorphisms is the canonical
shift I' of the factor A = M' N M, for the pair M O N of type Ii; factors with
[M : N] < oo and finite depth. In fact, I' is basic by [2] and, since I'(A;) = MINM; 42,
it satisfies the generating property by the following:

[ "
(U((ri (M' N ML) NM' N Mm)) o7 (U(sz n M’)) .
J i

If M D N has finite depth, then I' has the generating property ({19]). Hence I is

standard.

The following proposition is fundamental in our main results and assures that
basic *-endomorphisms have parallel properties as braided endomorphisms in the
sense of [15].

LEMMaA 2.8. Assume that p € End(M, ) is basic and e is a basic projection
for p. Then the sequence {e; = p'~*(e);j = 1,2,...} satisfies the Jones relations for
A= (Indp)~1.

Proof. By [2; Proposition 22], a basic projection e satisfies that ep(e)e =
= Ea(ple)e) = Ey(e)e = de. Hence (p(e)ep(e))? = Ap(e)ep(e) and so ple)ep(e) =
= Ap(e) by the relation that ||p(e)ep(e) — Ap(e)]|2 = 0. Since p is a *-endomorphism
and p*(M) = {e}’ N p(M), the sequence (¢;); satisifies the conditions. n

A p € End(M, 7) with finite index is said a braided endomorphism ({15]) if there
is a unitary u in p?(M)’NM which satisfies the braiding relation up(u)u = p(u)up(u).
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Proposition 2.9. Let p € End(M, 1) satisfy Indp < 4. If p is basic, then p is a
braided endomorphism.

Proof. Assume that p is basic. Let ¢ be a basic projection of p. Let take a ¢
with Ind(p) = 2+ ¢+ ¢! Let u= (g+ 1)e — 1. Then u € p* (M) N M. Since
ep(e)e = Ind(p)~le and p(e)ep(e) = Ind(p)~'p(e) by Lemma 2.8, the pair (p,u)
satisfies the braiding relation. ' (]

3. SELF CONJUGATE #*-ENDOMORFPHISMS

In this section, we study *-endomorphisms of the relative commutant algebra A
for the inclusion N € M with respect to relations of basic endomorphisms. In this
section we assume that A is a factor. For a ¢ € End(4, 7), let

Aut(A4,0) = {8 € Aut(4) : §(c"(A)) = o™ (A) for all n}.

LEmMA 3.1. The following three statements are equivalent for p, o € End(A, 7);

(1) there exists a 6 € Aut(A, o) with p =0 -0,

(2) there exists a 0’ € Aut(c(A),0) withp=6¢ -,

(3) o™(A) = p"(A) for all n.

Proof. 1t is clear that (1)=>(3) and (2)=>(3). Put 6 = c~!p and ¢ = po~!, then
we have (3)=>(1) and (3)=-(2). [ |

DEeFINITION 3.2. Two p, o € End(A, 7) are equivalent if they satisfies one of the
conditions in Lemma 3.1. The conjugate p of p with the property p(A) = B is defined
by

p=p"'T.

A p € End(A, 7) with p(A) = B is self conjugate (cf. [14]) if p is equivalent to p.

Proposition 3.3. (1) If ¢ € End(A, ) is a square root of I, then o is self-
-conjugate. '

(2) If p € End(M, 7) is basic and p(M) = N, then the restriction of p3} to A is
self-conjugate and satisfies '

P (Mi OV M) = M{ y N My forall k < 1.

Proof. (1) It is obvious by the definitions.
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(2) If p is basic, then po(M{NM;) = M{_ N M;_,, forall 0 < i < j, by
Proposition 2.2. Therefore the restriction of p! to A satisfies

P (A) = B and pF(A) = M| N Me = (peo I)*(A) for all k. n

A von Neumann subalgebra D of a von Neumann algebra C is called normal in C
if (D'NCYNC = D. I [M : N] < 4, then by Skau’s lemma ([5]) {e:;7 € 2}'NMy = M.
Hence M is normal in My,. If M = N<,G for an outer action o of G of a factor N,
then M is also normal in M, (cf. see [24]). If N C M is an inclusion of hyperfinite
IT; factors with finite index, then M is normal in M, if and only if N C M is strongly
amenable in the sense of Popa ([22]). When an inclusion N C M has finite index,
N C M is called extremal if Eprenn, (1) = [M 2 N]711 ([23)).

THEOREM 3.4. Assume that M is hyperfinite. If N C M is strongly amenable
and a p € End(A, 1) is self-conjugate, then we have
p(M: n MJ) = Mt',-*-l N Mj+l) for all j ? i.

Furthermore, if N C M is extremal, then a self-conjugate p is standard and

2H(p) = H(T).

Proof. First we show that if p is self-conjugate then p(M] N My ) = M{ ; N My
for alli > 0. By the definition, p(M'N M) = M{NMy. Assume that p(M/NMy) =
= M/, N M for all < k — 1. Then

PH(A) = p7 T (A) = pT T(MY_y N M) = p™ (M1 0 M),

Hence
PIME N Mos) = pMHH(A) = My N Moo,

If M is normal in M, then M; is normal in M, for all j. Hence we have for all
i<J
Since
MiNMe C Mo
U U
M{ NM; C M,
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satisfy the commuting square condition [22],
E,a)(e2) = Emiam (e2) = Erinme, Enale2) =

= EMian(EZ) =[M: N]_ll = Ind(p)_"l.

Since p satisfies p/(A) = M} N My, for all j, p(B) = M3 N Moo = {e2}' N M{ N M.
It implies that e, is a basic projection for p. Also p has the generating property by
the relation:

J

(U(P’ (4)n A)) = (U((M} N Moo) N Moo N M’)) Dx (U(M,- n M’)) = A.
i i

Therefore p is standard.

Put k; = j. Then p satisfies the conditions (1) and (2) for 1-shift in {2]. Hence
. H(A)
Hip) = klingo ko

On the other hand, by [2]

H(I) = o, @

Hence we have 2H(p) = H(T'). n

The above Theorem holds for an inclusion of non hyperfinite II; factors if M is
normal in M.

REMARK. If the principal graph and the dual principal graph for an inclusion
N C M are different, then there does not exist any self conjugate p € End(A, 7). For
example, consider M = N<,G by an outer action « of a non abelian finite group
G. Then M is normal in M. Since G is non abelian, the dual principal graph
for N C M is diferent from the principal graph. Hence any p € End(4, ) is not
self-conjugate By Theorem 3.4.

4. THE SQUARE ROOT OF THE CANONICAL SHIFT

In this sec.‘tion, we obtain the square roots of the canonical shift of the pair of
hyperfinite type II; factors with index smaller than 4 and Jones pairs.

Let G be one of the Coxeter graphs An, Doy, Es, Es, B\, ESY and E(M. Let
M = B(G) and N = C(G) in Example 2.4. For convenience sake, we denote the
projection ¢; implementing the conditional expectation of B; onto B;_; in Example
2.4 by e_;. Also we denote by e, {n 2 1) the projection for the pair M,y D M,_»



154 MARIE CHODA

and v; = ge; — (1 — ¢;) for all j € Z. Let p be the *-endomorphism & of M onto N
in Example 2.4. Then p is basic by Lemma 2.5. Hence p has the extension (which we
denote by the same notation p) to M by Proposition 2.2. The following lemma is
essentially contained in the example in [5, Section 4.4] and the existence of a square

root of the canonical shift is really depend on the result of the following lemma.

LEMMA 4.1. Under the above conditions

p(z) - Ad(”kvk—l ceewg e -u_(j_l))(z), for z € pJ(M)' N Mg (3 >0, k - ].)

Proof. The unitaries {v;}; satisfies v;2;41v; = vi;1t;9:4 for all integers i. Hence
for all 1,
plei) = eimg = J]_1_.11;10 Advivi-g -~ vi(ei).

By the definition,

o(z) = J_l_ingduo ev-j(z), (z€My=M).

The algebra { z eyt Ti, Y € Mo} is dense in M; with respect to the o-strong
topology and p 1‘5 a *-endomorphism of M; onto My. Hence we have
ply) = lim Advivo---v-5(y), (v€ M)
because vip(z)vi = p(z) for all z € M. By a similar method we have
plz) = J_l_ifg}Ad(t)Wbl ceevgevj(2)),  (z € My).

On the other hand p'(eg) = e—; € p'(M) for 1 < 7 < ¢. Therefore p has the form in
the statement. |

PROPOSITION 4.2. Assume that G Is neither of type Az or Dy. Then thep=2 =T
onA=MNMe.

Proof. By the method of [20], all basic extension algebras M; are realized as the
factor acting on L2(M, 1). Let yo(a) = JoaJy for all a € M. Then we have

P(.’E) = Jep1 k2 Sedip1 = p_(k"'l) “Yo- P Yo ,pk(x)’

for all z € M’ N Ma;. In order to prove I'(z) = p~%(z) for all z € M/ N My, it is
sufficient to show

Yopvo(z) = p~}(z) for all z € pF (MY N M;.
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Let z € pF(M)’ N My, then Lemma 4.1 implies the following two relations:
pHz) = Ad(vE oy 05 Vh4a ) (@)

and
Yo - p - vo(x) = Ad(ro(ve) - - - Yo(va) - - Yo(¥-(k-1)))-

On the other hand, G is the principal graph of B(G) D C(G) ([1, 4]). (In [4], we
proved this fact if G is one of An, Dan, Es and Eg. Let G be one of EJ(I) (7 =6,7,8),
then there exists a pair M D N with the principal graph G ([5]). On the other hand,
G has only one biunitary connection by [11]. Hence by a similar method in {4] we can
prove that for such a G.) By the shape of the graph G,

M]_, N M; =Ce; ®C(1—¢;)
for all j. Since
Mj_y = Jo(@' ~2(M)' N BL*(M)))Jo = yo(p' ~2(MY)  for all j
we have

yole;) € P (MY N p 72 (M) = Ce_j42 ® C(L ~ e-jy2),

for all j. Comparing the value of the trace of those two projections, we have

vo(ej) = e-jq2.

Hence for all j
Yo(v3) = v1(;_a)-
This implies p™%(z) = 70 - p - 70(z) for all & € pF (M)’ N My. |

Now we study s-endomorphisms for the pair given by crossed products, in order
to obtain a square root of I' for the pair M O N with the principal graph of Az or
Dy.

Let N be a finite factor, G a finite abelian group and « an outer action of G
on N. Let M = N<,G. We denote the canonical unitary in M which corresponds
g € G by uo(g). The action & is defined by & (uo(g)a) = (v, g)ue(g)a, (v € G, gc
€ G, a € N). Then the automorphism &, induces an unitary ui(y) on L*(M, 7).
The factor generated by M and {u1(¥);v € G} is the basic extension algebra M; and
the projection from L2(M,r) onto L%(N, ) is:

_ u1(7)
21 = Z 'GI .

v€G
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Iterating this method, we have the sequence {u2i-1(7);7 € G}iz1 and {ux(g);g €
€ G}iy1 of unitaries, which satisfy

M = {Mai1,u5:(G)}" and Maip1 = {Mai, u2i41(G)}".

For a x € G we put

5= Y G gy 220

9€G ‘IG‘l
i1 = Z(X, 9) —u2i+|1g‘|b(g)).
9€G

Here 1 is an isomorphism from G onto G. We remark that e; +1 does not depend on
the choice of 1. The projection e satisfies the property (J) for all 3.

LEMMA 4.3. For all i > 1, the following hold:
Jaitizi(g)Jai = u2i42(9), T'(u2i(g)) = uzita2(g)
Joir1uzip1(7)J2i41 = u2ita(y),  T'(u2i43(7)) = vaiss(g).

Proof. For the sake of simplicity, we denote wun;_1,uz, uzi41 and uzi42 by
vy, v3,v3 and vy, respectively. Let e be a Jones projection for the inclusion My; D
D Mai_2. Remark that vy(g) € Mj;_, N My, for all ¢ € G. Using the Fourier
expansion with respect to the orthonormal basis in Ms; module My;_3, we have

avz(9)* =) > vi(t)va(h)eva(hg) vi(t)*a,

teG hEG

for all @ € My;. It implies that

Jaiva(g) 2 = Z z vi(t)va(h)eva(hg) v1(t)

teG heG

for all g € G. By the formula in [20], e is given by

e= ﬁ >N vs(s)vak)va(l)va(p) =

s,peG KIEG

= 57 5 2t Bun(a(tna(h
teG kEG
Hence

Taiva(9)Jai = I—(‘;I 37 5t b us(t)oa(g) = usisale) = vals)

teG heG
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for all g € G. Let & be the cyclicic vector for Ma;q1 in L2(Maiy1, 7). Then
T'(ugi(9))zéo = Jaig1uzira(9)2" 6o = Jaipr104(2")o = ag(z)éo = uaisa(g)zéo

for all £ € My;41, because uz(g) € M' N My, Hence I'(ugi(g)) = uzi+2(g) for all
g € G, and similarly I'(ugi41(7)) = ugiss(y) for all y € G. |

THEOREM 4.4. Let p be an isomorphism of A onto B. Then p? = I' if and only
if there exist an isomorphism ¥ from G onto G and a x € G which satisfy that

(1) pluzi(g)) = (X, 9uzi+1(¥(g)), forallgeC

(2) plunir1(¥(9)) = (X, 9) Ytuzisa(g), forallg &G

Proof. The factor M} N M is generated by the family {u2i(9), u2it+1(7); 9 €
€G, ve@G, iz j+2)}. Let ¢ be an isomorphism from G onto G. Remark that 3
satisfies (¥(h), g) = (h,9¥(g)}, for all h,g € G. Since u;(s)u;(t) = uj(t)ui(s) for all
5,8t € GUG I |1 = j| # 1 and ugiq1(7)uai(g) = (7, 9)u2i(g)usi+i(y) for all i,g € G
and v € G, the map p defined by (1) and (2) is extended to a *-endomorphism of
M'N My,. By Lemma 4.1, I'(u2i(g)) == u2i42(g) = p*(u2i(g)) forallg € G, i 2 1
and I(uzi—1(7)) = waip1(y) = p*(ugi—1(y)) for all v € G, ¢ » 1. Hence I' and
p € End(A, 1) satisfy I' = p?.

Conversely, let p be a square root of I'. Remark that M is normal in M. Hence
by Proposition 3.3 and Theorem 3.4, p(M] N M;) = M{ O M;4,, for all 0 €72 < 5.
Remark that Ms; is generated by {us2:(g); g € G} and Ma;_; and that Ad u:(g) is an
outer automorphism of Mp;_1 for all g € G. The unitary p(u2i(g)) € Mai+1 preserves
Moy; glovally invariant for all ¢ € G. Hence for a ¢ € G there is a unitary v € My;
and a 9(g) € G with p(ua(g)) = vugir1(¥(g)). On the other hand,

p({u2i(9); 9 € GY") = p(Ms_s N Mai) = {uzipa(7);7 € GV,

which implies that v € My N {uziti1(y) : v € é’}”. Hence v is a scalar. Since p is a
*-endomorphism, we have a x; € G and an isomorphism %; from G onto G with

pluai(g) = {xi, Ppu2it1(¥:(9)), (9 € G).

Similarly for all ¢ we have a h; € G and an isomorphism ¢ from G onto G with-
plu2i+1(¥)) = (v, hidusira(pi(y)) forall y € é Since

uzir2(g) = I'(u2:(9)) = p({xs, g)u2i+1(%i(9))) =
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= {xi, 9){¥i(9), hi)uzisa((¥(9)))

for all ¢ € G, and {u2:42(g); ¢ € G} is orthonormal family with respect to 7, we have
that ¢ = ¥~ and (xi,9) = (¥i(g), h:}~!. Similarly, we have

(Xi+i> 92045341 (i (9)) = {xs) D ruagi+s)+1(¥:(9))

for all 4,7 and g € G. Hence x; = x; and 9; = ¢; for all 7 and j. Thus there are a
x € G and an isomorphism ¢ from G onto G which satisfy the conditions (1) and (2)
for alli and g € G. [ |

We denote the x € G and the isomorphism # from G onto & with the properties
(1) and (2) by x, and 1,. It is obvious that the correspondence: p — (x,,%¥,) is one
to one.

COROLLARY 4.5. Let M = N<,G, for an outer action of a finite abelian group
G on a finite factor N. Then there exists an one to one correspondence between the
set of square roots of I' and G x Iso(G, G), where Iso(G, G) is the set of isomorphisms
of G onto G.

COROLLARY 4.6. Let M D N be one of the following pairs:

(1) M D N is Jones pair R D R;.

(2) M = N<,G of Iy factor N by an outer action & of an abelian finite group G.

(3) M is hyperfinite and [M : N] < 4.

(4) M is hyperfinite and the principal graph of M O N is one of EY forn =
= 6,7,8. Then there exists a square root ¢ of the canonical shift I'.

Proof. (1) If A > 1/4, then A D B is isomorphic to the pair {e; : i > 2}’ D

D {e; : 1 > 3}” by Skau’s lemma. Hence the ¢ € End(A, 7) defined by o(e;) = e;41 is

the square root of I'. If A < 1/4, then the drived tower is precisely the sequence of

fixed point algebras for the tensor product action of the torus T on & M2(C) (k > 0)
E

[5]. Hence the endomorphism of A, which shifts one factor in the infinite tensor
product to the right, is a square root of I.

(2) This is clear by Corollary 4.5.

(3) By the results ([5, 7, 9, 11, 16, 17, 21]) of the classification for subfactors of the
hyperfinite II; factor with index less than 4, it is sufficient to prove the statement in
the case where the principal graph of M D N isone of A,(n > 3), Da.(n > 4), Es, Es.
If the principal graph is A, (n > 3), the subfactor is unique up to conjugacy ([11,
16, 17, 21]). Hence we have a square root of I' by (1). If the principal graph is
Dy, (n 2 2), then the subfactor is unique up to conjugacy ([11,16,17]) so that M D N
is isomorphic to B(G) D C(G) for the Coxeter graph G of D2, (n > 2). In the case of
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n > 3, o0 = p~?! in Proposition 4.2 is a square root of I'. If n = 2, it is obvious by (2).
If the principal graph of M D N is E¢ (resp. Ej), then M D N is either isomorphic
or anti-isomorphic to B(G) D C(G) of the coxeter graph G of type Eg (resp. E3) (]9,
11, 17]). Hence they have a square root of I' by Proposition 4.2.

(4) Kawahigashi ([11]) proved that each Coxeter graph of type Egl), E-Svl), Egn
has only one biunitary connection. Hence M D N is isomorphic to B(G) D C(G)
([17]). By Proposition 4.2, M D N has a square root of I'. n

Next we give a characterization for a p € End(4, 7) to be a square root of I'. By
the fact that e; € M{_, N M; for all ¢ > 2, we have the following commuting square
coming from M D N:

A=MNMex O B=MnNMx
U U
R={e;:i1<2}" D Ra={e;:i23}".

Here A = [M : N]~!. We denote the tower of basic constructions for B C A as follows:

RCACAl(R)=<A,6R)C:A2(R)C

LEMMA 4.7. Let M D N be a pair with 2 # [M : N] < 4. If dim(M' N M) = 2,
then a self conjugate o satisfies that

o(e;)=ej4; foralli>2.

Proof. First we remark that M is normal in M. In fact, it is clear that
(M' N M) N My D M. On the other hand, since [M : N] < 4, we have
(M' N My) N My C {ez,e3,...} N My = M by Skau’s lemma. Hence M is nor-
mal in M. By Theorem 3.4, dim(M/_, N M;) = dim M’ N M, = 2 for all i. Since
e; € M{_, N M; for all i, we have {e;}" = M]_, N M;. By Proposition 3.4,

o({e:}) = o(Mi_s N M;) = (M{_y N M;41) = {eig1}”
It implies that o(e;) = e;41 or (&) = 1 — €41 for all i. Hence o(e;) = ei41 because
o is trace preserving. n

REMARK. Under the conditions of Lemma 4.7, two self conjugate o, p € End(A, 7)
satisfy that o(R) = Ry = p(R) and o(z) = p(z) for all ¢ € R. This fact is a key in
the characterization for square roots of I'.

A square root of I' is self-conjugate. Hence we have:
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COROLLARY 4.8. If the principal graph of M D N is one of Coxeter graphs
An (n23),Dg, (n 2 3), E5,E3,E§1) (1=6,7,8) and Ay, then a square root o of I'
must satisfy a(e;) = e;4 for all i 2 2.

CoroLLARY 4.9. If the principal graph for M D N is of type An (n > §), then
there exists a unique square root of I'.

Proof. If M D N is of type Ap (n > 3), then there exists a square root o of I'
by Corollary 4.6. The o satisfies o(e;) = eiy1 for all i > 2 by Corollary 4.8. Since
M O N is of type An, we have A = R = {e;;1 > 2}”. Therefore the square root of I'
is unique. | |

ProposiTIiON 4.10. Assume that M D N satisfies the conditions in Lemma
4.7. Then the number of square roots of I' is smaller than the cardinal number of
projections p € A' N Ax(R) with 7(p)[A : R] = 1. Here 7 is the Markov trace of
modulus [A : R}~ for the pair R C A.

Proof. Since R is a subfactor of A with finite index {[5]), there exists a projection
e € A which satisfies that {e}) N R = P is a subfactor of R and 4 = {R,e}” is
isomorphic to the basic extension (R, ef) for the inclusion R O P via an isomorphism
p with p(z) = z (z € R) and p(e) = ek ([10]). Here el is the projection of L?(R)
onto L2(P). Let o and p be square roots of I'. Then o and p are self-conjugate. Hence
o(z) = p(z) for all z € R by Lemma 4.7. This implies that ¢(P) = p(P). Assume that

o # p. Then o(e) # p(e) because Zz;ey;;z,-,y; € R} is a dense #*-subalgebra of

A ([19]). Two projections o(e) and p(e') are contained in o(P) No(4) = p(P) Np(A)
and 7(c(e)) = 7(p(e)) = [A : R]7!1. Since P' N A is isomorphic to A’ N A3(R), we
have the conclusion. .

COROLLARY 4.11. If M D N is a pair of hyperfinite Il; factors with the principal
graph Eg, then there exists the unique square root of I'.

Proof. If the principal graplh of M O N is the Coxeter graph Eg, then there
exists a square root of I' by Theorem 4.6. On the other hand, A D R is isomorphic
to the pair of factors with index 3 + /3, which is constructed from the Coxeter graph
E¢ by the method in [5, Section 4.5]. Okamoto ([18]) showed that the principal graph
for the pair is the following:
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On the other hand, Haagerup proved that if a finite depth subfactor has index 3 +/3
then the dual principal graph must be the above graph. The graph means that there
exists only one projection p € A’ N Ax(R) with 7(p) = [4 : R]~!1. The pair M D N
satisfies the conditions in Lemma 4.8, Hence a square root of I' for M D N must be
the endomorphism in the proof of Theorem 4.6 by Proposition 4.10. u

LEMMA 4.12. Let o € End(A, 7). If a subfactor R of A containes a projection e
with E,ay(e) = (Ind(0))~'1, then o satisfies
Egr(o(u)) =0

for all unitaries u € A with the property Ep(u) = 0.

Proof. 1t is sufficient to prove 7(zo(u)) = 0 for all z € R. By the property of
e, we have Eq(ry(¢) = Eor)Eoa)(e) = (Ind(0))~11. It implies that R is the basic

3

extension of ¢(R) D {e} No(R) ([19]). Hence {Za,-eb,-; ai, b; € a(R)} is a dense
*-subalgebra in R. We have
r(aebo(u)) = r(eba(u)a) = T(Eqary(e)bo(u)a) =
= (Ind o)~ 7(beo(u)a) = (Ind ¢) " *r(uo"*(ab)) = 0 for all a,b € o(R).
This implies 7(za(u)) = 0 for all 2 € R. [ ]

ProPosITION 4.13. Assume A = R<,G of a factor R by an outer action & of a
finite abelian group G. Let p € End(A, ) be irreducible. Then there is a one to one
correspondence between G and

2 = {0 € End(4, 7); p(A) = 0(4), and p(y) = o(y) for all y € R},

via ¢ = py for the p, defined by the below (*).
If G = Z; and there is a projection e € R with Eyg)(e) = (Indp)~11, then
pPrP=c? forallo € X.

Proof. Let u(g) be the canonical unitary in A corresponding g € G. Foray € G,
let py be the #-isomorphism from A onto p(A) defined by

(x) pr(@) = 3 (7, 9)p(u(9) ER(u(g)*z)), forallz € A.
geG

Then py(z) = p(z), for all z € R, that is p, € T.
Conversely, let ¢ € £. Then

p(u(9))p(a)p(u(9))” = p(u(g)au(g)") = o(u(g)au(9)") = o(u(g))o(a)o(ulg)"
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for all a € R, g € G. Hence p(u(g))*o(u(g))) € "N A= C1l. We put

7(9)1 = p(u(g)) o(u(g)), forallgeG.

Then we have ¥ € & and for all z € A

o(z) =0 (}: u(g)En(u(g)‘z)) = 1(9)p(u(9))p(Brlu(g)"z)) = py(2)-
g

g

If py = py for v,x € G, then {7, 9)p(u(9)) = py(u(9)) = px(u(9)) = {x. 9)r(u(g)) for
all g € G. It implies that v = x.

For a ¥ € G, put o = p,. Since Er(u(g)) = 0 for all g € G, it follows by Lemma
4.12 that Er(p(u(g))) = 0 for all 1 # g € G. Assume that G = Z, then there exists
a z € R such that p{u) = uz, where u = u(g) for the generator g € G. Then for an
TEA,

o(z) = p(Er(2)) — p(v)p(Er(u(z))) = p(ER(z)) — uep(Er(uz)).
Hence for all z € 4,

o¥(z) = pA(Er(2)) + pluap(Bn(uz))) = p*(En(2)) + p(uz) = p%(z). W

COROLLARY 4.14. If M D N has the principal graph Dy, (n > 3), then there
exist precisely two square roots of I'.

Proof. Let the principal graph of M O N be the Coxeter graph Do, (n > 3).
Then we have a square root of I' by Corollary 4.6. Remark that ¢ is irreducible
because A D B is isomorphic to M D N [21]. If p is a square root of I', then o(z) =
= p(z) for all z € R by Lemma 4.7. On the other hand, A D B is the simultaneous
crossed products R<doZ; D Ra<oZ2 by an outer action o of Z;. Hence we have
precisely two square roots of I' by Proposition 4.13. L]
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