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L,-REGULARITY OF SUBELLIPTIC OPERATORS
ON LIE GROUPS

ROBERT J. BURNS, AF.M. TER ELST AND DEREK W. ROBINSON

1. INTRODUCTION

In an earlier paper, {6] Theorem 5.3.1, it was established that the C*®-structure of
each continuous representation of a Lie group coincides with the C*°-structure for each
strongly elliptic, or subcoercive, operator, i.e., the C®-¢clements of the representation
are precisely the C®-¢clements with respect to the subcoercive operator. It is known,
however, that the differential structures, i.e., the C"-elements, do differ for certain
representations such as the left regular representation in Li(R?) or L (R?) (see, for
example, [14] and [12]). Nevertheless, in many particular classes of representations
the differential structures are the same. For strongly elliptic operators this equality
was established for unitary representations in [17], Example I1.5.10, for Lipschitz
representations in [17], Theorem I1.5.8, and for principal series representations in
[4] Theorem 6. Moreover, for subcoercive operators the coincidence was proven for
unitary representations in [6], Theorem 6.3.II, and for second-order operators with
real symmetric coefficents and Lipschitz spaces a comparable conclusion was reached
in [5], Theorem 5.1.I1L. (The last result extends to general subcoercive operators
although the proof is not explicitly given in [5].) In the present paper we prove that
the differential structure for the left regular representation on the L,-spaces with
respect to the left-, or right-, Haar measure on the Lie group G coincides with the
differential structure of each subcoercive operator if p € (1, co0}.

It is perhaps worthwhile mentioning in this context that the analytic structure
of a continuous representation coincides with the analytic structure for each strongly
elliptic operator, [17] Theorem II.3.1, but there are subcoercive cperators for which
these structures differ, even in the case of a unitary representation, [5] Example 8.2.
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The comparison of the differential structures is related to the Lie group version
of the boundedness of the Riesz transforms. If H is the sublaplacian associated
with the left derivatives Ai,...,As then we establish that the operators Xa{v) =
= M,(vI+ H)™"/?, with M, an n-th order monomial in the A;, are bounded on the

1/2 are the analogoes

Lp-spaces, p € {1,00), whenever v > 0. The operators A;H™
of the Riesz transforms and correspond to the X; in the limiting case v = 0. It
should be stressed that one cannot expect the X,(0) to be bounded for all groups,
all sublaplacians and all n. Gaudry, Qian and Sjégren [9] kave shown that for the
(az + b)-group, which is a non-unimodular group of exponential growth, there is
an algebraic subbasis such that the operators A;H ~1/2 are bounded on L,, p €
€ {1,00}, but the A;A;H~! are not bounded on any of the L,-spaces. Nevertheless,
boundedness js restored if H is replaced by »I + H with v > 0. The parameter v
introduces an exponential decrease in the kernels of the operators X, (v) and hence
boundedness of these operators becomes a local problem, albeit a problem which has
to be handled uniformly over the group. Seemingly stronger results can be obtained
if one considers special classes of groups. Lohoué [13] established boundedness of the
Riesz transforms for non-amenable unimodular groups and an algebraic basis of left
derivatives but since the non-amenability is simply used to deduce an exponential
decrease of the operator kernel his results follow from our arguments, even for non-
unimodular groups. Folland, [8] Corollary 4.13, established boundedness of the Riesz
transforms for stratified groups with H the canonical sublaplacian but this is a simple
corollary of our results and a rescaling which removes the factor v. Other results in this
direction have been given by Saloff-Coste [18] who proved boundedness of first-order
transforms A; H~1/2 on polynomial groups and by Anker, {1}, who established a similar
result on noncompact symmetric spaces obtained by the quotient of a semisimple
group G by a maximal compact subgroup K. We emphasize that all our results hold
for general Lie groups, which need not be unimodular.

In the sequel we adopt the general notation used in [17] and [6] but now we
consider two connected Lie groups G and Gy with G € Gy and the continuous rep-
resentation U of G is identified with the left translations L acting on the spaces
Ly(G1;dg) and L,(G1;dg) where dg and d§ denote the left and right Haar measure,
respectively. We use the abbreviated notation Ly(G;) and Ls(G1) and let 4 denote
the modular function over Gy. In fact, the group G need not be connected since all
analysis takes part on the connected component of the identity of G.

Let a;,...,aq be elements of the Lie algebra g of G and let A;, for all i €
€ {1,...,d'}, denote the infinitesimal generator of the one-parameter group ¢ +—
— L{exp(ta;)) from R into L,(G;) or Ls(G1). It will be clear from the context on
which space the 4; act. We also denote by A;p the pointwise left derivative in the
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direction a; of a function ¢ : G — C. The constant {A4;4)(e) is denoted by b;. We
use multi-index notation for products of the generators 4 or for products of the b;.
For n € Ny let

Ja(d) = 0{1,.“,:1'}’&.
k=0

If @ = (31,...,4) € {1,...,d'}¥, we define jaf = k, A% = A;;.. . A;, and b* =
= b ...bi,. Let J(d') = U Ja(d"). Then for each n € Ny we denote the subspace

N D(A%) in Lp(Gl) or Ls(Gh), by Lpa(Gh), or Lj.,(G1), respectively. We
aEJ . (d")
define a norm and a seminorm on Lj,.,(G1) by setting

“‘P”;,n = sup )”AQSDHPI Nj;;n((P) = [51|1p ”AO(‘PHP:
! o|=n

o€l
for each ¢ € Lpn(Gi), and || - “pn’ pm

L}, (G1) = ﬂ Lyn(G1) and L} (G1) = ﬂ 5:n(G1). We also adopt the corre-

sponding notatmn X ¢ and X[, for the subspaces (1 D(4%) and ()} D(A%)

aeJn(d) acJ(d’)
associated with the generators of a continuous representation of G in a Banach space
X.

In the absence of a statement to the contrary we assume that aq,...,a4 is an

are defined analogously on Ly (G1). Let

algebraic basis for g, i.e., a finite sequence of linearly independent elements of g
which generate g. Thus there is an integer r such that a,...,aa together with all
commutators (ada;,)...(ada;,_,)(ai,), 4 =1,...,d, where n < r, span the vector
space g. The smallest integer r with this property is referred to as the rank of the
subbasis and a vector space basis is defined to have rank one. Moreover, the algebraic
basis determines in a canonical fashion (see, [17] Section IV.4c) a modulus function
g+~ |g|’ on the group. This function in turn determines a unique local dimension D’
such that the ball B, = {g € G : |g|’ < p} has measure |Bj|, with respect to Haar
measure on G, satisfying bounds ¢;p”" < |B}] < cap?’ for all p € (0,1).

An m-th order form is a function C : Jy(d') — C such that C(a) # 0 for some
@ € Jm(d') with || = m. The principal part P of C is the form with P(a) = C(a)
if |a| = m and P(@) = 0 if |«| < m. The formal adjoint C! of C is the function
Ct : Jm(d’') — C defined by Cl(a) = (—1)12!C(e) where @, = (in,. . .,41) whenever
a = (i1,...,in). We consider the operator

dL(C) = Y caA”

aEJm{d)

with domain L., (H) or Lj...(H).
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Next we want to introduce the concept of subcoercive form of step s, with s € N.
Let g(d’, s) denote the nilpotent Lie algebra with d' generators which is free of step
s, i.e., the quotient of the free Lie algebra with d’ generators @i,...,ds by the ideal
generated by the commutators of order at least s + 1. Further let G = G(d,s)
be the connected simply connected Lie group with Lie algebra g(d’,s) and Lg left
translations on Ls(G;dg), where dg denotes left Haar measure on . We say that C
is an m-th order subcoercive form (of step s) if m is even and there exists p > 0 such
that :

Re(dLg(P)o, p) 2 p(Ngmpa(9))*

for all ¢ € Ly.co(G;dg). The largest such u is called the ellipticity constant of C.

The main result of this paper is that if C is a subcoercive form of order m and
step r, where = is the rank of the algebraic basis of the Lie algebra g of the group G,
and if H = dL(C), with L acting on Lp(G1), then

(1) L} o (G1) = D((vI + H)M™),

with equivalent norms, for all n € N, all large v and all p € {1,00). A similar
identification is valid on the Ls({G;)-spaces.

Finally note that if vy € R is such that voJ + H generates a bounded semigroup
and if (1) is valid for some ¥ > v then it is automatically valid for all v > vg. This
follows because D{{(vI + H)™™) is independent of the value of v for all v > vq, by
(17] Lemma I1.3.2. Moreover, the identity (1) for one v > v, implies the L,(G1)-
boundedness of the operators M, (vI+ H )“"/ ™ with M,, an n-th order monomial in
the subelliptic derivatives A4;, for all v > vp. But the analysis of the (az + b)-group
in [9] gives an example of a second-order operator which generates a contraction
semigroup for which (1) is valid for n = 1 and v > 0 but My(vI+ H)™! is not
bounded for the critical value v = 0. Therefore the boundedness properties are more
- delicate.

2. REGULARITY OF THE LEFT REGULAR REPRESENTATION

In this section we prove that domains of the fractional powers of subcoercive
operators associated with left translations of the group G acting on the L,(G1)-spaces,
P € {1,00), of the larger group G; coincide with the corresponding C™-vectors. We
begin by observing that it suffices to establish this coincidence for the left differential
operators on the space Ls(Gh).

First let C be a subcoercive form of order m and for p € {1, 00) define the m-th
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order forms Cyp by

Cyp = Z z co(£p) =B

Q€T (d') yET(d')
(B,7)€Lb(a)
where Lb(a) is the set of all (8,7) € Jm(d')? such that 8 is a multi-index obtained
from o by omission of some indices and 7 is the multi-index formed by the omitted
indices, i.e., the (8,v) occurring are the pairs of multi-indices in the Leibniz formula
for the multi-derivative A® of a product. Then the principal parts of Ci equal the
principal part of C, so Cy, are also subcoercive. In addition the map C — Cp is
invertible and C = (Cp)_p. Since A~HPA;AYP = A; + p~' 4] it follows that

dL(C,) A~ YPp = A~YPAL(C)p

for all p € C®(G1). Thus if H = dL(C) and H, = dL{Cy) on Ly(G1) one formally
has the relation
H, = A™YPH AP

and this is the key to the first result.

LEMMA 2.1. Let C be a subcoercive form of order m and step v, and H = dL(C)
and Hy, = dL(Cp) the corresponding operators associated with left translations L by
the group G acting on the spaces Lp,(G1) and Ls(G1) with p € {1,00). Further let
n € N. The following conditions are equivalent.

I. The spaces L}, ,(G1) and D((vI + H,)™™) are equal, with equivalent norms,
for some large v > 0.

II. The spaces Lj,,(G1) and D((vI + H)"™) are equal, with equivalent norms,
for some large v > 0.

Proof. We only prove I=>II since the proof of the other implication is almost
identical but the map C — C, is replaced by its inverse. Moreover, we assume that
the real part of the zero-order coefficient of C is large and then we may take v = 0.
We begin by proving that D('ﬁn/m) is continuously embedded in Lg.,.(G1).

Let S and K denote the semigroup and kernel corresponding to H acting on
L,(G,) and S? and K? the pair corresponding to H,. Arguing as in the proof of
Corollary 3.5 of [7] it follows that K;(g) = A~Y?(g)K?(g) for allt >0 and g € G.
So Syp = AVPSP A=1Pyp for all t > 0 and ¢ € CP(Gy). Since

[+ ¢]
7" = cfdtt‘l“”/m(l - 5)p
(4
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for all ¢ € D*(H) (see, for example, [11]), where
\
oo
-1 _ /dtt—l—n/m(I - e—t)n,
0

with a similar expression for F:/ ™ it follows that

Allp'ff:/mA'llpgp = “H‘"/m‘p

for all ¢ € C°(G1)
Finally, by assumption, one has bounds [|¢||},, < cllﬁ:'l "ol for ¢ € C2(Gy)
and hence

lellhon < 'na-”%an,m < cc'|m"""‘a-1/wnp <
< e aHPE ), = cE o,

for some ¢ > 0 and all ¢ € C®(G1). Since CP(Gh) is dense Lj .(G1) by [16]
Theorem 1.3, it is a core for F'™ and it follows that D(F”/m) is continuously
embedded in Lj.,(G1).

Similarly it follows that L;;n(Gl) is continuously embedded in D(ﬁﬂ/m) sinee
LY 0o (G1) and hence C*(G)) is dense in L}, (G1) by [7] Lemma 2.4. |

COROLLARY 2.2. Let p € (1,00). The following are equivalent.

I. For any subcoercive form C of order m and step r, for all n € N, all large
v > 0 and with H = dL(C) the operator in L, the spaces L., and D((vI + H)"/™)
are equal with equivalent norms.

II. For any subcoercive form C of order m and step r, for all n € N, all large
v > 0 and with H = dL(C) the operator in L; the spaces L;,, and D((vI + H)M™)
are equal with equivalent norms.

The problem is now reduced to the examination of the left differential operators
on the L;(G))-spaces. These operators automatically commute with right translations
and as the measure is right-invariant this is useful for obtaining uniform estimates.

TueoreM 2.3. Let H = dL(C) be an m-th order subcoercive operator associated
with left translations L by the group G acting on the spaces Ls(G;). If p € {1,00)
and n € N then D{(vI + H)*™) = L., (Gh) for all large v > 0 and the spaces have
equivalent norms. In particular, the operator H is closed.

Similar statements are valid on the L,(G1)-spaces.

Proof. The proof is in several steps.
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First we aim to establish that D((vI+H)"/™) = R({vI+H)~"/™) is continuously
embedded in L5 . (G1) and this requires proving that A*(v] +H)~"™), with |a] = n,
is defined as a bounded operator on L;(G1). This is achieved by establishing that the
operator and its adjoint are bounded on Ls{G,) and are also bounded from L;(G}) to
weak-L;(G1). Then the desired result is obtained by interpolation and duality. But
the L3(G1)-bounds follows from [6], Theorem 6.3 .II, and the main onus of the proof
is the derivation of the L;(G1)-bounds.

The approach to the L;(G1)-bounds begins by observing that

WI+H) ™™o = L(Rynjm)p

for an appropriate kernel R, n/m over G where

1) = [ s 9)200)

e

with dg left Haar measure over G. But if & € J,(d'), |ef = n, then AR, n/m is
not locally integrable and the L;(G)-integral is logarithmically divergent at the iden-
tity. Therefore the idea is to use singular integration theory to prove the bound from
L;(G;) to weak-L;(G1). Now a straightforward adaptation of the singular integra-
tion methods would begin by approximating AR, ,;m with a sequence of functions
obtained by excision of a decreasing family of neighbourhoods of the identity. Thus
the convolution formally corresponding to the action of A®(vI + H)~"™/™ would be
replaced by a principal value integral. But the problem with this approach is that it
appears difficult to obtain suitable L;((7,)-bounds for the sequence of approximating
operators. Therefore we adopt a different type of approximation.

Fix N eN, N > D' and for large » > 0 and all j € N with 7 > 2 consider the
operators

X; = NGI+H) NI+ H) ™,

Then A®X; “approaches” A*(vI+ H)™™/™ as j tends to infinity. Therefore if the
A®X; are bounded, uniformly in 4, on Ls(G4) one deduces that (vI+ H)™"/™ maps
into the domain of A* and the A*(vI+H)~"/™ are bounded or Ls(G;). The uniform
bounds on the A*X; are obtained by following the above outline. In particular the
bounds from L;(G1) to weak-L;(G1) use singular integration theory and as a prereg-
uisite it is necessary to have uniform L;(G)-bounds on the approximate sequence.
First cobserve that if j € N and a € J.(d") one can write A°X; = A*(vI +
+H)~ /™o iN(j14+H)~N. But by Corollary 2.2 and [6] Theorem 6.3.11 the operators
A*(vI + H)~™/™ are bounded on L;(G;). First they are bounded on L3(G;) by
[6] Theorem 6.3.11 because the representation of G by left translations is unitary.
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Then they are bounded on L;(G1) by Corollary 2.2. Moreover, since H generates a
holomorphic semigroup, the operators jV¥(jI + H)™" are bounded, uniformly for all
large j, on L3(G1). Thus the operators A*X; are bounded on L;(G,), uniformly for
all large ;.

Secondly, remark that if § € N then

NG+ E) N = SN IR )
and (vI + H)™™™p = L(R, n/m)p, where
oo
Rin(e) = I [ att¥-1ek,(g)
0
with an analogous expression for R, 5,/m. Using the convolution property of the kernel
K, one then obtains
NGI+E)N @I+ H) M7 = Lks)e

where k; : G\ {e} — C is defined by

ki(g) = | dt £;(¥)Ku(g)

0/ ,

and

@) 0= W=D fm) [ desh e apimoie o),

We need some estimates for f;(t).

LEMMA 2.4. There exists an a > Q such that
(@) < at*mA(jtyrem

uniformly for allt > 0, v > 0, j € N with j > 2v and u € [0, N].

Proof. A substitution z = ty in (2) gives

(3) .

£ =3V = )17 (afmy =tV Im [ gy Nty - gyrimetgmri-s g

1]
1

SV = DI (n/m) 0 m= e () [ay g i (1~ g)rimeiem T,
g
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Now define the function g : [0,00) — R by

1

g(z) = N /dny_l(l - y)"/""‘le"z_l“.

0

We shall prove that g is bounded. In order to evaluate g we estimate the integral in
two parts: over (0,271) and over {27!, 1). The first can be estimated as follows

21 g=1
/ dy INyN—l(l _ y)n/m—le—Z_lwy < max(Ql—-m’m’ 1) / dyzNyN—le—Z_lzy —
0 0

4=z

= 2¥ max(2!~"/™, 1) / dtt¥ et < 2V Nlmax(2!-"/™,1).
0

Alternatively,

1
/ dy:bNyN—l(l _ y)n/m—le—-z"‘xy < eNe=47'z dy(1 - y)n/m—l -
2-t 9-1

= mn—-12-—n/m$Ne—4“z‘

So there exists an a > 0, depending only on N, such that
fg(t) < atn/m—le—yt

uniformly for all j € N and ¢ > 0 with j > 2v. This proves the case g = 0.
The case u = N follows from (3):

1
£i(t) S (V= DIT T (n/m)~ e/ m =T (i)Y f dyyV=i(1 - g/
0

The general case can be obtained by interpolation. |

By the “Gaussian” bounds on K; and its derivatives one deduces that k; is
infinitely differentiable on G\ {e}. Moreover, using Lemma 2.4 with z = 0 and with
Reco large enough, then it follows by the argument in Theorem II1.6.7 of [17] that
for all @ € Jn(d') and B € J(d') there exist a,b > 0 such that

(4) (AP A%k;)(9)| < a(lg])~2 ~18le=2v*™1al
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uniformly for all g € G\ {e} and j € N. Alternatively, using Lemma 2.4 with = N,
the inequality N > D' and the argument in Theorem III.6.7 of [17], one deduces for
large Recy that for all j € N, j > 2v, one has bounds

) |(A%k;)(g)] € ejed ™ol

uniformly for o € J,(d') and g € G\ {e}. So k; € L.,(G;e?9!'dg) N Leo (G dg) for
each 7 € N with j > 2v, if v is large enough, where p > 0 is such that A(g) < erlol’
for all g € G.

Next note that A*X;p = L(A%k;)p for all o € Ju(d'). So each operator A*X;
is continuous on each of the L;(G1)-spaces. In order to prove that the A*X; are
uniformly continuous if p € (1, 00) we have to consider two cases, p< 2 and p 2 2.

~Case 1: pe (1,2].
Let x € C°(BY%) with x(g) = 1forallg € B} and 0 € x < 1. Then

(6) A%Xjp = L(xA%k;)e + L({1 — x)A%k;)p.

But
sup / dgl(1 - x)(@)(A%k;)(g)[e?9’ < oo
I G

if v is large enough. Because of the bounds (4) the operators ¢ — L{{1 — x)(A%k;))¢
are bounded on all the Ls(G)-spaces, p € [1, 00}, uniformly for j € N with j > 2v.
In particular, this is the case for p= 1l and p= 2.

Next we prove a local weak-L;(G1) estimate for A®Xj;, which is uniform in j.
Because of the equality (6) it is sufficient to establish a local weak-L;(G;) estimate
for the operator ¢ — L(xA%k;)¢ which is uniform in j. We obtain this estimate by
application of Theorem II1.2.4 of [3] but since L(xA%k;) acts by convolution with
respect to the subgroup G of G some care has to be taken in applying the result.

Let a3, ...,a4,...,aq be a vector space basis for the Lie algebra g of G obtained
by completing the algebraic basis a;,...,aq4. Further let ay,...,a4,...,84, be a
vector space basis for the Lie algebra g, of G, obtained by completing the basis of G.
Now G and (' x R%1~9 are locally isomorphic. More precisely, define ¢ : G xR4:79 —
— Gy by

di(g’ Ed«l»l yeee :Ed;) =g exp(£d+1ad+1) o ‘eXp(Edl ad:)'
Next let U C G and ¥V C R4 be open bounded neighbourhoods of the identity and

the origin. One may choose I/ and V such that @ restricted to I/ x V is an analytic
diffeomorphism from U x V onto an open neighbourhood 2 of the identity of G;. If
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U and V are small enough there exist 6, M > 0 and a C* function ¢ : U x V — [§, M]
such that

n/ 43 olg) = U/ dé V] a€ 0(8(0,£)0(0,£)

for all p € C.(2). We may assume that U = B} and V = {—4,4)"~%. One can
then introduce x1 € C®(§2) such that if x2 = x1 o @ then x2 = x3 ® x4 for some
xa € C®(B4) and x4 € CP([~2,2])%7%) and, moreover, 0 < x4 € 1 and x2(g,€) =1
for all (g,€) € B} x [—1,1]%~9, Then for all ¢ € Ls(G1) one has

(LAk)0u (80, €) = [ AhOAB)BNER ) (9(0,6)) =

G

= [ dhcasi)ah™ Peaa(€)( 84, )
J :
for (g, £)-almost everywhere in U x V and for all large ;.
In order to prove suitable weak L;-bounds we first restrict ourselves to the case

G = G;. Define T : Ls(By) — Ls(B}) by

Te)s) = [ ahGea ) ok~ xable(h)
B,

for all € N with j 2> 2v. Then 7} has the form

(Tio)a) = [ duins (o, k()

where x;(g, k) = (xA%k;)(gh~)xa(h) and p denotes the restriction to B of the right
Haar measure on G. Alternatively

Tip = (A°X;)(xap) — L((1 — x)A%k; )x3%)

for all ¢ € Ly(Bj; ). Since we have already established that A*X; is bounded on

L2(G; dg), uniformly in j, and since [[xa¢|l; < [l¢l]; it follows from the observation

of the previous paragraph that sup {{7}]|5_,5 < co. This is the first condition of [3] for
i

the 7; and it is uniform in the j.
Secondly, «; has support in Bj x Bj, and in fact ; € Ly(Bj x By; p ® p). This
follows because A%k; € Loo(G;dg) by (5). Finally, for the third and most difficult

condition, it suffices to prove that

sup sup [ dullwslo,h) = ws(o,ho)| < oo
i hho€B,
$2(h,ho)
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where 2(h, ho) = {g € By : d(g, ho) > 4d(h, ho)} and d is the subelliptic distance on
G, defined by d(g, ) = |hg~!)'. Then by right invariance
sup sup [ du(o)lay(9,h) = ky(a, o)l <

j h,hg€B,
e “0(h,ho)

<sup sup / du(g)|ws(gho, h) — x;{gho, ha)l,
J hhe€B|
02,(h,ho)
where 21(h,ho) = {g € B : |9’ > 4|hhy’|'} and pu also denotes the restriction to
B} of the right Haar measure on G. For a; € g let X; be the corresponding right

invariant vector field on G. So
— d
Kiw)g) = groexltadg)|

for all ¥ € C°(G). Now let h,hg € G and choose an absolutely continuous path
w :[0,1] = G from kg to h with tangential coordinates in the directions X; , Le.,

r
W) = > wilt)X;

=1

w(z)’
such that

1 ; 1/2
/ dt (iw.—(t)z) < 2d(h, ho).

i=1
Then
1
I3 (gho, k) — £j(gho, ho)| < ] dt
a
Now if p € C°(G), k € G and %(g) = (kg™?), then

%ﬁj(gho,w(i))' .

d’
%Mw(t)) = > _wi(t)(Lke(t) ) A L((ke(t) ™)) (ko(t) ™).

s=1
By [6], Lemma 7.3, there exist functions ¢;5 : G — R, where i € {1,...,d'} and
B € Jy(d’), and constants M1, ¢ > 0 such that

Lig VAL = Y, cple)d?
ged (d')
18I0

with [¢; 5(g)| < Mi(Jg/')P!-1e?lsl' forallge G, i € {1,...,d'} and B € J,.(d'), |B| #
#0. So

.
SHeD) =Y Y wil)eslkult) YA R kult) ).
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Moreover, for all t € [0,1] and g € £2,(h, ho) one has
lghow()™H|' 2 lgl' — d(ho,w(t)) > lgl' — 2d(ho, B) > 27 |g"

Combining these two observations with the bounds (4) one obtains for all g € £21(h, ho)
d : . s
[ aha, )| <€ k)] [0 oo ) Fora) ()
. i=1

+3 > |wi®)] leiplghow(®)™H)] - {(AP (xA%k)) (ghow(t) )] - Ixa(w(®))] €
i=1 geJ (d")
{810

a' d'
< (Z wa(t)l) (a2”'(lyl’)“”'2||55xalloo+
i=1

i=1

+ 3 Y Ml el a2 gy P | Al lixslleo | <
BET (d") (v.8)ELD(B)
|8l#0

df
< Ma(lgl') P 1Y Jwil?)]-
=1

Hence
5 (gho, B)) = (gho, ho))| < (d)!/*Mad(ho, h)(IgI) 2",
But if ¢ = sup t—D’!B“, s = d(h, ho) and N, € Ny is such that 9Ny =1 < s-1 < 9N,

t€{0,3]
then we obtain

N‘
fdgs(|gy)—n—1<2 / a3 s(lg)~P'~" <

By\B,, =08, g \Bho s
N, ,
s ' J
< 265(2_n+2)_D -—1(2—n+3)D — 9D _268(2N‘+1 -1y K 9D’
n=0

Hence
43 |x;(gho, b)) — x5 (gho, ho))| < 27 e(d')/* Ms,
21(h,ho)
which is the third condition of Theorem I11.2.4 of [3], uniform in j.
Now we can use this latter theorem to deduce that there exists Ms > 0, inde-

pendent of 7, such that

#({g € By : [(T30)(9)] > 7)) < May™ el
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for all ¢ € L;(B4;dg) N La(Bj;dg) and v > 0.
Next we drop the restriction that G = 1 and extend the last bounds to G;. Let
g2 denote the product measure of s and the Lebesgue measure on R%~%. Then with

¢*(9) = ¢(9(9,€)) one has
H2({(9,€) € U x V : |((L(xA%k;))(x39))(8(9,))| > 71}) =
= pa({(9,6) €U x V : xa(O)(T3°)(9) > 1}) €

< / dé p({g € By : [(T3°)(9)l > 7)) < M3 / df/dﬁ le*(@)ly~! <
[-4,4]1 ¢ [-44)-¢ B

< M3s™! / dé/dﬁlw(ﬁ(g,ﬁ))lf(y,ﬁ)v"l = Msd™*||elly ™"

[—4,4)41~¢ B

for all ¢ € L1($2; d3). In particular, if ¢ € L1(Gy; p1) N La(Gy; p1), where we now use
41 to denote the right Haar measure on G,, with suppy C £’ = ¢(Bj x [-1,1]%:~9),
then there exists ¢ > 0 such that

m({g € G1: (L(xA%k;)e) () > 1) < elleflir™

with ¢ independent of j.
Next for j € N, j 2 2v define P; : L;{G1) — L;(G1) by

Pjp = L(xA%kj)p.
Obviously each P; is continuous by the estimates (5). It follows that

m{g € G1 : |(Pio)(g)l > 7}) € ev Ml

for all ¢ € L1(82'; 1) N L2(82'; 1) and ¥ > 0.
Moreover, for all k € G; and ¢ € L1(G1; p1), one has

R(k)L(xA%k;)p = L(xA%k;)R(k)ep,
where R denotes right translations. Therefore

(7) p1({g € G1: [(Pip)(g)l > 7}) < eliellir™?

for all § €N, 7 > 0 and all ¢ € L1(G1; 1) such that supp ¢ C 2k for some k € G;.
It then follows by a finite covering argument that a similar estimate is valid for all
¢ € L1($2; j#1) and for each bounded open neighbourhood £2 of e. So if G; is compact
it follows that the P; satisfy a global weak-L; estimate. However, we need a global
bound also if G, is not compact.
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Next we establish that the operators P; satisfy a global weak-L; estimate if G
is not compact by use of the following covering lemma, [2] Lemma 3.2.7 (see also [15]
page 66).

LEMMA 2.5. Suppose Gp is not compact and let B, denote the ball {g, €
€ G1;|g1] < €} relative to a fixed modulus on G1. Given £ > 0, there is a sequence
41,92, - - ., of points in G such that

o0
Gi= U B g;
i=1

and the additional two properties are valid.

I. There is an N; € N such that each g € G1 lies in at most Ny balls B, g;.

II. Given § > 0 there is an No € N such that each g € (1 lies in at most N, of
the balls Beys9i.

Proof. The existence of a covering sequence with the first property has been
established by Pier (see [15] page 66). The second property is established as follows.

Fix g € G and let T denote the set of indices i such that B,g; C B2, 4s9. Further
let m; denote the y;-measure of the set of A € Bacys such that A lies in exactly j of
the balls B.g; with i € Z. Then

N,
> m(Beg) =) im;
i€T ji=1
since any point of By.1s is contained in at most Ny of the balls B.g;. But
Ny
> m; < pa(Baess):
Jj=1

Therefore if k denotes the number of indices in Z then

kpy(Be) =Y p1(Begi) < Nip1(Bzess)
i€z

and k has the g-independent bound
k < Nipa(Baes)/pa(Be).

Finally suppose that h € G lies in ! balls B.ysg; then Be.g; C Bac4+sh for each such
ball. Hence one may choose

Noy = Nypi(Boeys)/pa(Be)
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independent of the choice of g. |

Now apply the lemma with an £ > 0 such that B, C £’ and é > 0 such that
®(B4 x [-1,1]%~%) C B.4s. Choose a partition of the unity (y;); relative to the

o0
cover Gq = | Begi, ie., supps C Begi. Then for all § € N with j > 2v and

i=1 -

o0
¢ € L1(Gy; 1) one has p = Za,b;ga in L1 {G1; p1). Then by the continuity of F;

Pro= 3 Pihie) = 3 RGP R i)

Moreover, supp R(g:)(ip) C Be and supp R(g; ") P; R(g:}(¥:) C Bess9i,s0each g €
€ G lies in the support of at most N functions R(g; 1)Pj]’%(g;)(zb,-go). Therefore we
obtain by (7) that

m{g € Gr: [(Pi)()] >} <

< Y m({g € Gy : I(R(97 )P R(9:)(%e))(9)| > 7N5'}) <

i=1
o0

<Dy Nalldiells = ey Nallels

i=1
Thus the operators P; satisfy a global weak-L; estimate for any Lie group Gy, uni-
formly in j. Hence the operators A®X; also satisfy a global weak-L; estimate, uni-
formly in j. By interpolation one deduces that the operators A®X; are uniformly
bounded on the Ls(G1)-spaces, with p € {1,2] and a € Jn(d’).
Next we prove by induction that

D((vI + F)M™) C L},4(Cy)

for all k¥ € {0,...,n} and that the inclusion is continuous. The case k = 0 is trivial.
Let & € Ja_1(d'), i € {1,...,d'} and suppose that D{(vI + H)*/™) is continuously
embedded in Ljjo)(G1). Then there exists a ¢ > 0 such that ||g||},, < cll(vI +
+H)™y||5 for all p € D((vI+H)™™). Let p € (1,2] and ¢ € Ls(G1). Then for all
J € N with j > 2v one obtains the estimate
|4 (I +H)™p = AN GI+H) N (I + H) ™™gl <
@I+ ™I+ )y e — NG+ H) NI+ ) M) =
= oI = NGI+H) N )elly-

Therefore

Jim A%NGI+H) N @I+ H) e = AT+ )M
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in the L;(G;)-sense. Now let M > 0 be such that ||A*Xj||p—; < M foralljEN, j 2
> 2, 1 <p<2and a € Jo(d'). Then for all ¥ € D(A?) C Li(G1), where ¢ is the

conjugate to p, one obtains:
(A%, A%+ H)™mg)| = lim [(ATY, AN GI+H) N (w1 + H) ") =
= Jim (4, 4 4% X;0) < Mlwllllels-

Hence A®(vI+H)""/™p & D((A7") = D(As) and || 4 A*(w I+ H) =" plls < Mllells.

Case 2. p € [2,00).
Foralla € J,_1(d), i € {1,...,d'}, 1€ Nwith 7 2 2v, ¢ € Ls(G,) and ¥ €
€ D(A}) C Li(G,), where g is the conjugate to p, one has

(A7, A°X;p) = (¥, AiA®X ) = (4, L(AiA%k;)p) = (L{(AiA%k;))¥, 0),
where 77(9) = 7(g~!). Now ¢ € (1,2] since p € [2, 00). Because
I(L((AsA%k;))9lls = (A A% X;) Iz < A A% X |51 112

it follows that the operators 3 — L{(A;A%k;)")9 are bounded on L;(Gy) uniformly
in j. Moreover, if Recp is large, then for all # € J(d') one has bounds

((APTAA%E;) ) (9)] < a(|gl')=2 ~18le=2v"™lal"

because of the inequalities (4). Therefore, arguing as above, it follows that the op-
erators (A;A®X;)* are uniformly bounded on L(G;). Finally by repetition of the
foregoing induction argument one deduces that D((vI 4 H)"/™) is continuously em-
bedded in Ly (G)) for all p € [2, 00).

The fiext step in the proof consists of establishing the converse inclusion,
Ly . (G1) € D((vI + H)»™).

First suppose that n € {1,...,m — 1}. We may assume that the real part of
the zero-order coefficient of C is sufficiently large that H has a bounded inverse. Let
Cs : Jm(d') — C be the form defined by

Cl - Z Z Cab."

a€Im(d') yETm(d)
(8,7)ELb(a)

and let HT dL(Cl) So (v, Hp) = (H{v,¢) for all smooth enough ¢ and 3. Next,
for all @ € Ju(d') let &' € Jpm-n(d’) and a" € Ju(d') be such that & = (a’, &”). By
the first part of the proof of this theorem there exists ¢ > 0 such that

1llgm—n < (BN 7 gllg
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for all ¥ € C(G1). Then for all , ¥ € C(G)) one obtains

[, @) = |np, =Py E ™| =

= D ead(a ) (ED T Imy, 4 ) =
x€Jdm (d) '

- Z Ca(—l)la’[ E b-y((Aﬂ-(E)—(m—n)/m‘b’Aau.}?_n/m‘p}
*€Jm(d) (8,7)ELb{a’)

Se 3 deed X BT el

a€Tn(¢)  (Br)ELi(a’)

<

Hence [[¢|ls < ¢ ﬂlﬁ-"/m‘/)“;;n for all ¢ € C(G,) for some ¢/ > 0 and, by density,
for all p € Ly(Gy). So [H™™ells < eliglls,, for all € DE™™). Since L, (G1)
and hence D(T{-"/m) is dense in L., (G1), see [7] Lemma 2.4, it follows that L (G1)
is continuously embedded in D(Fﬂlm).

Finally we consider the case n > m. Write n = Nm + k with N € N and
k€ {0,...,m — 1}. There exists ¢ > 0 such that H-ﬁwmwﬂg < cllolls, for all

® € C(Gy). Then

7! el
1B " ells = I " HY ¢ll5 < cllHY ol

for all ¢ € C2°(G1). But HY is an operator of order Nm. So
/ |

I olls < el nm = €llellyn
forall o € C°(G1). Again, since C°(Gh) is dense in L}, ,(Gh) it follows that L, (G1)
is continuously embedded in D(Tfn, ™). This completes the proof of the theorem. B

One can immediately deduce from the theorem a characterization of the C™-
-elements associated with a finite sequence a1, ..., as of elements of g. Let g’ be the
Lie subalgebra of g generated by ay,...,ay. If G’ is the connected subgroup of G
with Lie algebra g’ one can apply the theorem with G and G; replaced by G’ and G,
respectively.

COROLLARY 2.6. Let ay,...,as be elements of the Lie algebra g of a connected
Lie group G and L, (G), L;.,(G) the corresponding C™-subspaces. Then

&
L, n(G) = (| D(A2)
i=1

1=

for all p € (1,00) and n € N. Similar identities are valid for the L5 (G)-spaces.
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Proof. We may assume that a1,..:,ds are linearly independent. Let Cs, be
' &
the form such that dL(Can) = (=1)* Y A?". Let ¢ € [} D(A?) C Lp(G). Let
£=1 i=1
dl
c1 =Y |[APllp + [¢llp. Then for all ¥ € L (G)
f==]

[((QU (Can) + D¢, )] =

d' i
(-1 (ZAf"dw) (6,9 =

i=1

dl
S (Are, AT) + (%, 9)

i=1

<ell¥llyn.

By Theorem 2.3, with G and G, replaced by ' and G, respectively, there exists
¢2 > 0 such that

[1#llgn < e2ll(AL(Can) + 1) 9l

for all ¥ € L}, (G). Since (dL(Can) + I)*/? maps L (G) onto L., (G) it follows
that

[((AL(Can) + D24, )| < creallllq

for all ¥ € L{,.,(G) and, by continuity, for all % € D((dL{Can) + I)}/?). So ¢ €

€ D((dL(C2n) + D)*'2)*) = D((dL(Can) + I)*/2) = L}, (G) by Theorem 2.3 again.
The proof for L}, (G) is nearly the same but a minor complications occurs be-

cause of the modular function. This can be handled as before. |

The theorem and the corollary can be combined to give a variety of other state-

ments. For example, if
dl
B=- 34
30

is the sublaplacian formed from the left derivatives associated with the general sub-
basis a1, ...,aq then
dl
D((vI+ H)"*)= (") D(A})
i=1
on each Ly-space with p € (1, 00), for all v 2 0. In particular, if &' = 1, and one sets
A; = A and v =0, then

D(IA[*) = D(A™)

for all n € N where the modulus of 4 is defined by |A| = (—A%)1/2.
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The situation on the Lg-spaces is slightly more complicated. But one finds that

df
D((vI+ H)*?) = ) D(A})
=1
& 1/2
on each L;-space with p € (1,00), for all v > b%/p? where b= | Z:(A;A)(e)2
i=1
The foregoing argument with G and G’ can'be used to extend earlier results on
unitary representations. One has the direct analogue of the foregoing corollary and

theorem.

CoROLLARY 2.7. Let (H,G,U) be a unitary representation, ¢y, ...,aq elements
of the Lie algebra ¢ of the Lie group G and A; = dU(a;) the corresponding generators.
Further let H!, denote the C"-subspaces associated with Ay, ..., Ag and set

d’ d'
H=- Z Cij Ai Aj +ZC;A,-
ij=1 i=1
where ¢;;, ¢; € C and the real part 271(C + C*) of the matrix C = (¢;j) Is strictly
positive-definite.

Then
d’

Hy =) D(4}) = D((vI + H)™?)

s=1

foralln €N and v = 0.

The corollary is a direct consequence of {6], Theorem 6.3, applied to the unitary
representation (H,G’,U’) where G’ is defined as above and U’ = U|g:. More general
statements are possible in terms of higher-order subelliptic operators.

For general representations one has the following extension of [6] Corollary 6.2.
If ay,...,aq is a basis for the Lie algebra this result reproduces Theorem 1.1 of [10].

COROLLARY 2.8. Let (¥, G, U) be a strongly continuous, or weakly*-continuous,
representation of G on a Banach space X, a1, ...,aq elements of the Lie algebra g of
the Lie group G and A; = dU(a;) the corresponding generators. Then

dl
Xl = D™ (4).
$=1

Next we consider homogeneous spaces for which the subgroup is compact.

THEOREM 2.9. Let K be a compact subgroup of a unimodular connected group
G1 and let p be a left invariant measure on the homogeneous space G/K. Let G he
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a subgroup of Gy. Let p € (1,00) and let U be the left regular representation of G in
X = Lp(G1/K;u). Hay,... ap is an algebraic basis of the Lie algebra g of G and
C : Jm(d") — C a subcoercive form of order m and step r then for H = dU(C) one
has

D((vI+H)M™)y = X,

for each n € N and all large v, with equivalent norms.

Proof. Consider the corresponding problem in L,(Gy;dg). If X; is the operator
on L,(Gy,dg) as in the proof of Theorem 2.3 and X Jl’ is the corresponding convolution
operator on X = L,(G1/K; pt), then the A% X; satisfy a weak L;-estimate uniformly
in j, so since K is compact it immediately follows that also the A"‘X;- satisfy a
weak Lj-estimate on the homogeneous space, uniformly in j. Since U is a unitary
representation if p = 2, the theorem is valid for p = 2 by [6] Theorem 6.3.11. Hence
by interpolation and a similar approximation to that used in the proof of Theorem
2.3 the result follows for p € (1,2]. But the same argument also works for (A*X ; )
and hence the result for p & [2, oo} follows by duality.

3. CONCLUSION

The characterization of the differential structure given by Theorem 2.3 is related
to the Lie group version of the boundedness of the Riesz transforms. If H is the
sublaplacian formed from the left derivatives A;,...,As then we have established
that D(H"/2) = L/, and one has bounds

4%0llp < comull(wI + HY ),

for all o with |a| = n, all ¢ € L}, with p € (1,00) and all » > 0. The limit case
v = 0 corresponds to the Riesz transform problem. Our results do extend to v =0
for certain classes of groups, e.g., compact groups.

If G is compact and ¢ is a constant function then ¢ € L, and since A% =0 =

= Hy the required estimates are obvious. Next let Py = / dg L(g)¢ be the projec-

tion of ¢ on the space of constant functions. Then on thecz;subspa,ce (I =P)L, of Ly
the operator A has a bounded inverse as a direct consequence of spectral properties
(see [17] Proposition 1.7.1). Therefore it follows straightforwardly from (8) that one
has bounds

(9) [|A%llp < cp.n”Hnni"”P
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for all @ with |a| = n and all ¢ € L}, with p € {1, 00). Therefore these estimates are
valid on L,.

If G is non-compact the boundedness of the Riesz transforms is much more
delicate and the example of Gaudry, Qian and Sjogren [9] shows that (9) may be
valid with n = 1 but false for n = 2.
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