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SELFADJOINT COMMUTATORS AND INVARIANT SUBSPACES
ON THE TORUS

KEIJI IZUCHI and SHUICHI OHNO

1. INTRODUCTION

It is well known the Beurling characterization of invariant subspaces of L?(T)
on the unit circle T. It is very difficult to describe all invariant subspaces of L(T?)
on the torus T? completely. Here a nonzero closed subspace M of L?(T?) is called
invariant if
tMCM and wM C M,

where z = €'’ and w = e'¥. We denote by V, and V,, the multiplication operator
of an invariant subspace M by the functions z and w respectively. Let A be the
commutator of the operator V,, and the adjoint operator ¥V, on M;

A=V, V' -V'V, onM

Then
A* =1V, -VgV, onM.

A = 0 means that V,, and V* commute on M. In [3], Mandrekar showed that if M is an
invariant subspace with M C H? = H?(T?), then M = gH? for some inner function
g if and only if A = 0 on M. This is a nice characterization of Beurling type invariant
subspaces of H2. In [2, 6], Ghatage-Mandrekar and Nakazi gave a characterization of
general invariant subspaces M such that A = 0 on M (see Theorem A). In [6], Nakazi
conjectured that if A = A* on M then A =0 on M. The purpose of this paper is to
give a counterexample for this conjecture (in Section 2) and give a characterization
of invariant subspaces M such that A = A* and A # 0 on M.
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We use the following notations and definitions. Let £? = L%(T?) be the usual
Lebesgue space with respect to the normalized Lebesgue measure m on the torus
T2. We denote by M, the multiplication operator on I? by a bounded measurable

function h. For f,g € L%, the inner product is given by (f,¢) = ] fgdm, where
T2

g is the complex conjugate of ¢. If f = E an,kz"wk, the norm of f is given by
n,k=0 .

1/2
(=]
[Ifll = ( Z |an'k[2) . If {f,g) = 0, we write f L g. For two subspaces M and

n,k=0
N of L?, we write M L N if f | g for every f € M and ¢ € N. M & N means that

MLINadMo&N={f+g,fecM g N}. When N C M, M © N denotes the
orthogonal complement. For a subset F of L?, we denote by [F] the closed subspace
of L? generated by functions in F. We denote by ¥z a characteristic function of a
measurable subset E of T2

Let Z be the set of integers and Zy. = {n € Z;n > 0}. The Hardy space H? i
the space of functions f in L? such that

f f(z,w)F T dm =0 for (n, k) € 22\ (Z,)2.

T2

A function F in L? is called unimodular if |F| = 1 a.e. on T2. Moreover if F € H?
then F is called inner. Let H? = [|JZ"H%n e Z+] and L? = [z";n € Z] By the

same way, we can define H2 and L2. Then H? = Z@w“LZ a.nd HZ = Z ®2"L2.

=0
The following theorem gives a characterization of invariant subspaces M such

that A =0 on M (see [2, Theorem 2] and [6, Theorem 4]).

THEOREM A. Let M be an invariant subspace of L? such that A = 0 on M.
Then one and only one of the following ocurs:
(i) M = F(xg, H? ® xp,L?), where xg, € L2, xg,XE, = 0 a.e, and F.is
unimodular.
(i) M = F(xg,H2 ® x5,L?), where xg, € L2, xg,xg, = 0 a.e., and F is
unimodular, ,
(ili) M = FH?, where F is unimodular.

A closed subspace M is called doubly invariant if zM = wM = M, and in this
case we have that A =0 on M. The following is the main theorem of this paper.

THEOREM 1. Let M be an invariant subspace of L2. Then M satisfies both
conditions A = A* and A# 0 on M if and only if M has the following form

M=F ( (Z Dz w/\(zw)])) or M=F (H2 & (i eaw"['z')\(i'w)])) ,
n=0 n=0
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where F' is a unimodular function and A(¢) = ﬁ for some real number b with
0< b <1.

We note that [WA(2T)] = {¢WA(zW); ¢ is a complex number}. Theorems A and
1 give a characterization of invariant subspaces M such that A = A* on M. The
sufficiency of Theorem 1 gives a counterexample for Nazaki’s conjecture, and we
prove this in Section 2 (when F = 1). The proof of the necessity of Theorem 1 is
given in Section 4. In Section 3, we give some lemmas which are used in Section 4.

2. A COUNTEREXAMPLE

In this section, we prove the following.

THEOREM 2. Let

o0 o0
M=H?® (Z ezﬂ[m(zw)]) or M=H@® (Z ow" [EA(Ew)]) ,
n=0 n=0
1 .
where A(() = T-o for some real number b with 0 < |b] < 1. Then M satisfies

A=A and A#0on M.

Proof. Let b be a real number such that 0 < |8| < 1 and let

2¢) = bc Zb"(" for (€T;

N = [@A(z@)).

Then z"N L H? and #"N L 2*N for n # k with n,k € Z,. Hence the following
closed subspace M is well defined;

D
(1) M=H® (Z@z"N) .
n=0
It is easy to see that zM C M. By an easy calculation, we have
(2) w(z"WA(zW)) = 2" + bz" M WA(2W) € 2"H @ "IN C M
for every n € Z,, so that wM C M. Therefore M is an invariant subspace and

(3) Mo:M=[w kel ]JoN
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(4) :M=:H*® (i@z"N) .

Let P be the orthogonal projection of L? onto M. Then the adjoint operator V* has

the form V? f = P(Zf), f € M, because
(Vi £, h) = {f,Vzh) = (f, 2h) = (Zf, h} = (P(Zf), h)
for every f,h € M. Hence

(5) Vi(zf)=f for feM,;

(6) Ker V) = Mo :M.
By the same way, we have that

() Vof = P(@f) and Vy(uwf) =f for f € M;

(8) KerV, = M o wM.
By our definition of the operator A,

© A=V} = V) Ves

(10) A =V, V- V2V,

First we study the operator A on M. By (5),
(11) Vi=M; on:zM.
By (9) and (11),

(12) A=0 on2z2M.

By the form of M in (1), it is easy to see that A = 0 on [w*; k € Z4]

and (12), we have

(13) A=0 onH?@ (i eaz"N) .

n=1

. Hence by (4)
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On the other hand,

A@Nz®)) = ~V; Vi (@N(2D)) by (3), (6) and (9)
= =V} (1 + bzwA(27)) by (2)
= —bTWA(2T) by (3), (5) and (6).
Hence we get
(14) A=-bl#0 onN.

Next we study the operator A* on M. By (7),
(15) A*=0 onwH?

To study A* on M © wH?, we need to study P{(z"%) for » > 0 and P(z"%W2A(zW))
for n > 1. Since 2"% L H? and z"W L 2* N for k # n, by the form of M in (1) we see
that P(2"®W) coincides with the orthogonal projection of 2”@ onto 2" N = [2"@WA(2W)].
Since ||z"TA(2@)||2 = (1 — b2)~!, we have

(2w, 2" WA(2W))
Iz wA(zw)||?

P(2"w) = 2"TM2W) = (1 — b)"TA(zW) € 2" N.

By (10) and the above, we have

A*(z") = 2P(2"W) — P(z"1'W) =0
for every n € Z,. Hence by (15), we get
(16) A*=0 on H%

Since 2"W?A(#W), n>1,is orthogonal to H2 and 2* N for k#n—1, P(2"%*A(zW))
coincides with the orthogonal projection of 2"@w?A(2%) onto 2"~ N = ["~'WA(2T))].

Then ( ) (:7) 1 (23))
2"WN2W), 2" WA (2W)) g,
B e S

P("w\(2@)) =
so that easily we have that
17) P2 %2 A(2W)) = b2 'wA(2W).
By (10) and (17),

A*(2"WA(2W)) = 2P (2" @ A(2W)) — P(2" @M (2W)) =0 forn > 1.
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o0
Hence A*=0o0n Z ®2z" N. Therefore by (16), we get

n=1

(18) A*=0 onH’® (Z @z"N) :
n=1

At last, we study A* on N. By the forms of Nand M in (1), N L wM. Then by
(8), V! =0 on N, so that we have

A*(@A(20)) = —P(20°A(2W)) = —bwA(z D) by (17).
Hence
(19) A*=—=bI#0 onN.
As a consequence of (1), (13), (14), (18) and (19), we have that A = A* and A # 0

on M.
o0
By the same way, we can prove that A= A* and A#0on H% Z@w" ['EA(Ew)]) .

n=0
We note that the invariant subspace M given by (1) is singly generated. For by
(2), we have
w(BAzW)) = 1 + bzWA(2W).

This implies that the constant function 1 belongs to the invariant subspace generated
by WA(zw@). Hence H? and M are contained in the invariant subspace generated by
WA(zW) € M. Therefore M is a singly generated invariant subspace. L |

3. LEMMAS

To prove Theorem 1, we need some lemmas. The following is proved in [4,
Theorem 6] and [6, Proposition 2] essentially, but there are some differences in the
forms (see [4, 6] in detail).

LEMMA 1. Let M be an invariant subspace and S; = M © zM # {0}. Let S be
the largest closed subspace of Sy such that wS C S. Suppose that S # {0}. Then we
have the following:

(i) If wS # S, then there exists 2 unimodular function F' such that

M=F (H2® (g@z’w)) ;

where N is a closed subspace of H2 © H?, W¢ N, and S = Flu™;n € Z4].
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(ii) If wS = S, then S = ) and there exists a unimodular function F such that
M = F(xp, H ® xs,L%),

where xg, € L2, xg, # 0, and xg,xE, = 0 a.e.
By an easy computation, we have the following (see [6, Lemma 2)).

LEMMA 2. Let M be an invariant subspace and Sy = M © 2zM. Then A = 0 on
M if and only if wS; C 5;.

LEMMA 3. Let M and M; be invariant subspaces and M = F M, for a unimodular
function F. We denote by A and A; the operators VoV, = V'V, on M and M;
respectively. Then A = A* and A # 0 on M if and only if Ay = A% and A; # 0 on
M.

Proof. To avoid confusion, we use v, and v,, for the operators V; and V,, on M;.
Let U: M3 f-—~FfeM. Then

v =U"W,U and vy = U-v,U.

Hence
vi=UWU and ol =U-WVIU

Therefore we have our assertion easily.
The following lemma is proved in [5] essentially.

LEMMA 4. Let Sy be a nonzero closed subspace of L? and S, = [28,.1, wSp_1]
forn 2 2. If Sa L Sy forn # k, then Sy = FK, where F is a unimodular function
and K is a closed subspace of [(Zw)";n € Z]. Moreover suppose that wS; C z5;.
If w$y = 285 then K = xg[(Zw)";n € 7] for some xg € [(Fw)";n € ], and if
w8 # 25) then K = [(Zw)";n € Z,].

Since the statement of Lemma 4 is not written explicitly in (6], we give some

oD

comments. If 8, L S for n # k, then by our definition of §,, M = z @S5, becomes
n=1

an invariant subspace, and such an M is called a homogeneous invariant subspace in

[5]. Also by the condition S, .L Sk for n # k, there exists a unimodular function q
such that
Sl = qK H

where K is a closed subspace of [(Zw)®;n € Z] (see the proof of [5, Theorem 3].
Moreover suppose that wS; C 2Si, that is, ZwS; C S;. By considering { = Zw,
we can consider that K is an invariant subspace as a variable ¢. Hence by the
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Beurling theorem, if wS; = zS; then K = xg[(Zw)";n € Z], and if wS; # z5
then K = ¢i[(Zw)”;n € Z,] for some unimodular function ¢; (see the proof of [5,
Proposition 5]). Combining these facts, we can get Lemma 4.

4. PROOF OF THEOREM 1

In this section, we prove our theorem. Let M be an invariant subspace and let
P be the orthogonal projection of L? onto M. As Section 2, we have

) Vi f=PEf) and VI(zf) = f for feM;
(2) KerV)=8S1 =Mo:zM,;

(3) Vo f = P(Gf) and V)(wf)=/f for feM,
4) KerVy, = M o wM,

First suppose that

M=F (H2 ® (i ®2" [ﬁA(ziﬁ)])) , or M=F (H2 @ (i Suw" [’fz\(‘fw)])) ,

n=0

where F is unimodular and A({) = for some real number b with 0 < 8] < 1.

1
1-8¢
By Theorem 2 and Lemma 3, we have A= A* and A#0on M.

Next suppose that A = A* and A % 0 on M. If M is doubly invariant, then
A =0 on M. Hence M is not doubly invariant. Here we assume that M # zM. In

this case, we shall prove that

M=F (H2 @ (i eaz"[mA(zw)]))
n=0

for a unimodular function F and A({) = -1-%55 for some real number b with 0 < [b] <
< 1. Let
(5) 5 = Mo M # {0}.

Then we have the following Wold decomposition

(6) M= (i@zn51) ®Sy, Sp= ﬁ M.

n=0 k=0

There may happen the following three cases.
Case 1. wS; is contained in Sj.
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Case 2. wS; is contained in 25;.

Case 3. Both Cases 1 and 2 do not happen.
We study the above three cases separately.

Case 1. By Lemma 2, we have that A = 0 on M. Hence Case 1 does not happen.

Case 2. We shall also prove that Case 2 does not happen. Suppose that wS; C
C 28;. Here we define S, = [2S4-1,wSn—1] for n 2 2. Then we have z"S; = Sn,
and we can use Lemma 4. Hence there exists a unimodular function F such that

(7) 51 = FK,

where K is a closed subspace of [(Zw)*;n € Z], and if wS; = 25) then K has a form
(8) K =xgl(Fw)"n€l], xe€l(zw)*;inel],

and if wS) # z5) then K has a form

(9) K = |(Zw)";n € ).

First we study when wS; = 2z$1. Then by the form of M in (8), 51 L wM.
Hence by (7) and (8),
FXE cS, CcMowM,

go that by (4) we have V)(Fxg) = 0. Since Fxp € S1, by (2) V*(Fxg) = 0. Here
we have

A(Fxg) = =V,;'Vu(Fxg) = —P(ZwFxg) = -zwFxg € FK;

A*(FXE) = -VoV,(Fxg)= —P(ZWFXE) = —zwFyg € FK.

Since A = A*, we get FwFyg = 2WF x g, and then (Zw)?xg = xg. Therefore xg =0
a.e., so that by (7) and (8) we have $; = {0}. This contradicts (5).
Next we study when wS; # 251. Then by (6), (7) and (9),

M = F[Z*w™ k< n, nc 1)@ So.

Since F[Z*w"; k < n, n € Z,] L Sp and Sy is an invariant subspace, we have Sy L L?,
so that Sp = {0}. Hence

M = F[Zuw™ k< n, n€1,).

By the above form of M, F L wM and zF 1 wM, so that by (4) we have VjF =
= VaV;F =0 and A*F = 0. Since F € Sy, by (2) V;'F = 0. Hence we get AF =
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= —V?VyF = —P(ZwF) = —7ZwF. This contradicts AF = A*F. Therefore Case 2
does not happen.

Case 3. Suppose that wS) is not contained in S; and also wS; is not contained
in z8;. By (1), A=0o0n zM. Since A = A*, we have V,Vj = V;V; on 2M, so that

Vi Vg (29) = Vu'j(zzg) forg e M.

Since V(zg) € M, Vi(2*M) C zM. Then by (5), 51 L Vi (z?M), so that wS; L
22 M. Since 2Sp = So,

22M = (iﬂaz”fh) @ So.
n=2
Therefore we get
(10) wS; C 51 & z5;.
Let g € S;. Then we can write wg as
(11) wg =go+2zg1 for some go, g1 € 51.
By (3), A*(wg) = zg — zg = 0. Since A = A*, A(wg) = 0. Hence
(12) Vo Vi (wg) = V' Vu(wg) for every g € 5,
so that by (11) we have
VoV g0 = VWV (wg) — wgr = V; Vi (wg) — war = V' Vugo.

Since go € S1, by (2) Vi*go = 0, therefore we get V;'(wgo) = 0, so that wge € 5.
Then by (2) and (12), we have

V; (w?go) = V' Vu(wgo) = Vo V' (wgo) = 0.
Hence w?go € S1. By repeating the same argument, we can get
(13) wrgo €8, forevery k € L.

Let S be the largest closed subspace of Sy such that wS C S. The condition of
Case 3 implies that there exists ¢ € Sy such that go # 0 in the form of (11). Therefore
by (13), we have S # {0}. Here we can rewrite the condition of Case 3 as follows;

(14) S#£ {0} and § £ 5.
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The conditic;n S # {0} corresponds to the condition that w3} is not contained in 25,
and § # S; corresponds to that w$) is not contained in S;. By Lemma 1 (ii) and
(14), wS = S does not happen. By Lemma 1 (i), there exists a unimodular function
F and there exists a closed subspace N such that

(15) M=F (Iﬂ ® (f: éBz’"‘N)) ;

n=0
(16) NCHleH?%
S = Flu*;k € 2,];
Si©8=FN,;
(17) wEN.

Now we shall determine the form of N and M. By Lemma 3, we may assume
that F' = 1 in (15), so that for a while we consider that

(18) M=H*@® (f: eaz“N) ;

n=0
(19) S =[w*ik € Z4];
(20) $108=N#£{0} by (14).

Let f € N and f # 0. By (20), f € Si, and by (10)
(21) w.f=f0+zf1) fO:flESI-
By (19) and (20)
zfi€z8 =2(SON)Cx(H*® N)C H* @ zN.
By (13), we have f; € S. Then by (19) and (21) we have wN C H2 & zN. Therefore
by (18),
fee]
wMCH*® (Z eBz"N) .
n=1

Hence we get
N 1lwM.

By (4), this implies that ¥V} = 0 on N, so that
(22) A*=-VjV, onN.
Here we shall prove

(23) HEN
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for a function f € N of the form (21). Since f € N C S} and fp € 51, by (1) and (2)

(24) Af:VwV;f_V:wa="'V:(fo+zfl)=-f1-
By (22)3
(25) A = ~VVif = —P(3).

Since f € N C H2 © H?, we have ztif € HZ © H?. Then by (18},

(26) P(zwf) € i ®z"N.

n=0

Since A = A*, by (24) and (25) fi = P(z@f). By (19) and (20), 5; = N @ [w*;k €
Z,]). Therefore by (16) and {26),

fr = P(zwf) € (Z@z“N) ns; =N.

rs=0

Now we have that
(27) fo is a constant function, say fo = ap.

For, by (16) and (23) fo = wf—zfi 1 [w*; k > 1]. By (13) and (19), fo € [w*;k € Z,],
so that we get (27).
As a consequence of (21), (23), and (27), we have

f=aW+z0fi, fLE€EN
for every f € N. We can also write f} as
h=aU+:@f2, f2€N.

By repeating this argument, we have a representation of f and f; as follows;

(28) f= iu'z an(2w)* for every f € N;
n=0
(29) fi= ’tﬁz an(2T)" 1.
n=1

By (20) and the definition of S, wf ¢ Sy for some f € N. Then by (21),

(30) A=W aa(zW)""1 #£0 forsome f€N.

n=1
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Now we look at the above situation in a new light. By (23) and (24),
-A:N>3f—fieN

is a bounded linear operator on N. Then by (28) and (29),

(31) My(—A)Mg : wN 5> wf = a,(2B)" = Y _(z8)""' = wfr € wN.

n=0 n=1

Here putting ¢ = 2, we identify the space wN with the closed subspace H of H?(T)
such that

[=+4] oo
(32) H= {Z anl™T Y an(2T)" € N}.
n=0 n=0
We denote by U? the unilateral backward shift operator on & 2(T), that is,
Ugh=C(h(¢) — h(0)) for h € H*(T).
Then (31) and (32) say that

(33) My (A Mg =U; on¥H;

(34) UH CH.
Next we study the operator My, (V) V) My on wiN. Let
L=[(z@)";ne?].

By (28), we have

o0
(35) NCwL and WL L H?® (Z aaz“N) :

n=1

It is not difficult to see that M, P My is the orthogonal projection from L? onto wM.
By (18) and (35), My PMgy is the orthogonal projection from L onto wN. We
denote this projection by P’. Here we have

My, (V2V, Mg = (My PMz)M, My on wh.

Then for f € N of the form (28), we have

Mz]l'fw('wf) =M,f= i an(zTu")“+1 € L.

n=0
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Hence

n=0 n=0

By putting ¢ = 7%, we identify the space L with L?(T). We denote by Q the
orthogonal projection of L%(T) onto H. Then (36) says that
(37) My (VaV, Mz = QM, on H.
Since A = A*, by (22) we have —A = V_V; on N. Hence by (33) and (37), we get
(38) U =QM; onM.

By (34), either H = H*(T) or H has the following form
(39) H = HY(T) o oH*(T)

for some inner function . If H = H2(T) then (38) does not happen. Hence (39)
happens. By (17), (23), (30) and (32), M contains non-constant functions. Therefore
@(¢) is not a constant function, and also ¢({) # c¢{ for every constant ¢ with |c| = 1.
Let

©(¢) =D bnl™

n=0
Then we have U7 ¢ = C(e — bo) and Uz (Uie) = 4_'2(50 — bg — b1¢). Since Q(p) =0,
QM (U7 ¢) = Qe — bo) = —boQ(1).

By (39), Uy € H. Then by (38),

T (p — bo — b:0) = —boQ(1).

Since @ is the orthogonal projection onto H, by (39) it is not difficult to see that
Q1) = 1 — bop (see [7, p. 34]). Then we have Zz(qa — by = 51¢) = —bo(1 — boyp), s0
that

_ —bol? + b1¢ + bo
T 1 bl

(40)

Since ¢ is a non-costant inner function, we have |bg] < 1. If bg = 0, » = b1¢ and

|bif = 1. Since ¢(¢) # ¢, we get

0< bl <1
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Since ¢ is a non-constant inner function, by (40) the form of ¢ is given by either

N Sl
(41) p=ci

for some complex numbers a and ¢ with |¢] = land 0 < [a]| < 1, or

_ S lbol ¢+ (ko]
P =T T0001C T+ [0l

(42)

for a complex number ¢ with |¢| = 1. By compairing the coefficients of ¢? in nu-
merators of (40) and (42), we have ¢ = —by. Since |¢| = 1 and |bo| < 1, this is a
contradiction. Hence ¢ has a form in (41). Then

—bo¢? + b1{ + bo _cC—ﬂ
1-|bo2¢? ~ "1-3’

go that a = [bp| or @ = —|bo|. Therefore

¢-b
1—bC

p=c

for some real number b such that 0 < |bj < 1. Let

1

Then by (39), H = {dA(();d is a complex number}. Hence by (32), we have N =
= [WA(2W)]. Therefore by (18),

M=H@ (f: Qz”{'fu'z\(z'ii)]) .

n=0

Since we assumied that F' = 1 in (15), M has the desired form.
If we start from M # wM, we have

M=F (H2 ® (i GBw"['EA(Ew)]))

for a unimodular function F. This completes the proof. |
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