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POLYNOMIALLY SUBNORMAL OPERATOR TUPLES

EDWIN FRANKS

SECTION 0

We begin with several definitions.

DEFINITION. ‘A commuting d-tuple of operators S is a d-tuple of bounded oper-
ators (S, ..., S¢) acting on a complex IHilbert space H such that

S8i8; =8;8 1<4,j<d.
Now let p be a polynomial in d variables » = (z1, ..., z4) written

(0.1) p(z) = Zaaz“

where a = (ay, ..., aq) is a multi-index, a, € C, and z* = 202§ ---2J is the usual
notation for a monomial. If § is a commuting d-tuple of operators then one can
unambiguously define p(5) where p is as in (0.1) by setting

p(S) = Z aaS”

where §% = 5725532 ... 874,
We are interested in studying the following type of commuting d-tuples of oper-
ators.

DEFINITION. A commuting d-tuple of subnormal operators S is a commuting
d-tuple of operators (5, ...,.52) such that S; is subnormal for 1 €1 < d.

DEFINITION. A subnormal d-tuple S is a commmuting d-tuple of subnormal
operators for which there exists a Hilbert space K containing H and a commuting
d-tuple N of commuting normal operators on KX such that
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(1)) NHCH 1<i<d, and

(i) Milx =8 1<igd

For a subnormal d-tuple S we shall call a d-tuple N and Hilbert space K as
above a joint normal extension. A natural question to ask is whether a commuting
d-tuple of subnormal operators always hias a joint normal extension. This question
was settled negatively by counterexamples constructed by Abrahamse and Lubin in
[1)[8] and [9]. Criteria for determining when a set of commuting subnormal operators
has a joint normal extension have been studied by a number of authors including {1],
(5], [7], [10] and [12]. Ito generalizes work of Halmos and Bram to give necessary and
sufficient conditions for a commutative semi-group of subnormal operators to extend
to a commutative semi-group of normal operators. Most other work has been for pairs
(S,T) of commuting subnormals. Such a pair has a joint normal extension if either
S or T is subnormal [5], if either S or T'is cyclic {12}, if cither S or T is an isometry
[11], and under various hypotheses regarding the spectra of S and T' [11], [1].

If S is a subnormal d-tuple acting on a complex Hilbert space H, N is a joint
normal extension of S, and p is a polynomial in d-variables then

p(S) = p(N)lx

Therefore since p(N) is normal p(S) is subnormal. Thus a necessary condition for a
d-tuple of commuting subnormal operators S to have a joint normal extension is that
p(S) be subnormal for all polynomials p id d variables. This leads to the following
definition.

DEFINITION. A polynomially subnormal d-tuple S is a d-tuple of commuting
subnormal operators with the property that p(S) is subnormal for all polynomials p
in d variables.

With this definition we state the following positive result which will be the main
result of this paper.

THEOREM 0.2. If S is a polynomial subnormal d-tuple then S is a subnormal
d-tuple.

Section 1 uses the work of Agler in Hypercontractions and Subnormality [4],
to show that Theorem 0.2 is equivalent to a concrete several variables approximation
theorem. Section 2 will contain the proof of the approximation theorem via an explicit
construction. The author wishes to thank Jim Agler for for suggesting the problem.



POLYNOMIALLY SUBNORMAL OPERATOR TUPLES 221

SECTION 1

To show that the operator theory question of the existence of a joint normal
extension for a polynomially subnormal d-tuple is equivalent to an approximation
theorem, Theorem 1.7, we shall pass from operator theory to function theory via the
hereditary functional calculus as developed in [3]. Accordingly we have the following
definition.

DEFINITION. A hereditary polynomial is a polynomial over C in two non-
commuting d-tuples of pairwise commuting variables z = (z;} and w = (w;) of the
form

n
(1.1) p(z,w) = Z agpuwP2®.
{(e,8)|=0

Here (o, ) is th ebi-multi-index ay,...,aq, B, ..., 82) and w? and z® are the usual
notations for nomomials, The set of hereditary polynomials will be denoted P4. If S
is a d-tuple of commuting operators and p € P, is as in (1.1) set

n

pS)= Y aws(ST)S°
(e Bi=0

((57) = 5" 53" .55 and 5% = 57r55° - 55¢) .

For p as in (1.1) p(@,7) = ¥ Gapw®2z?. Thus p(w,z)S = p(S)*.
We now recall two theorems from [4] (Theorem 3.1 and Theorem 3.2) about single
operators and subnormality.

THEOREM 1.2 [Sz. Nagy, Embry]. (1 — zw)™(S) > 0 for all n if and only if
S|l € 1 and § is subnormal.

THEOREM 1.3 [Agler]. S is subnormal with ||S|| < 1 if and only if p(S) 2 0
whenever p € Py and p(2,%) 2 0 for all z € D.

These two theorems give necessary and sufficient conditions for an operator to
be subnormal in terms of the positivity of two different sets of hereditary functions
of the operator. The set of functions in the second theorem is clearly larger than the
first, still the fact that both sets determine subnormality shows that in some sense
they are the same. Indeed these two theorems about operators enable one to prove
the following approximation theorem also from [4], (Theorem 3.4).

THEOREM 1.4 [Agler]. Let A% = {f € C(D~ x D~): f is analytic on D x D} with
the uniform topology. Let M = {f € A% f(2,%) > 0 for all z € D}, and let C be the
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convex hull of the set functions f in A? of the form

f(z,w) = p(@)(1 — zw)"p(2)
where n is a nonnegative integer and p is a polynomial in one variable. Then cc™ = M.

Clearly if (1 — zw)™(S) > 0 then h(z,w)(S) > 0 for any h € C. Thus with
attention to continuity one easily sees that Theorem 1.4 implies Theorem 1.2 given
Theorem 1.3. Using the Ilahn Banach Theorem and a Gelfand-Naimark-Segal type
of construction one can see the reverse implication as well,

Now, by doing barely more than adding indices, we will use these same arguments
to show that the question of a joint normal extension for polynomially subnormal
d-tuple is equivalent to an approximation theorem. We begin by letting S be a
commuting d-tuple of operators and setting

A=D?

the d-dimensional unit polydisc. We now state theorems analogous to Theorem 1.2
and Theorem 1.3.

THEOREM 1.5. (1-p(2)p(@))*(S) > 0 for alln and all polynomials in d-variables
such that p:A — D in and only if ||S:]] < 1 for 1 € i € d, and S is a polynomially
subnormal d-tuple.

THEOREM 1.6. S has a joint normal extension with ||S;]| € 1,1<i< d, ifand
only if p(S) > 0 whenever p € Py and p(z,Z) 2 0 forall z € A.

Theorem 1.5 is immediate from Theorem 1.2 since {1 — p(2)p(@))*(S) = (1 -
zw)*(p(S)). Theorem 1.6 is proved using Stinesprings Theorem in exactly the same
way as Theorem 1.3 is proven in [4].

The following theorem states the desired equivalence.

THEOREM 1.7. Let A% = {f € C(A~ x A~): f is analytic on & x A} with the
uniform topology. Let M = {f € A% f(2,%) > 0 for all z € A}, and let cc be the con-
vex hull of the set of functions f € A2 of the form f(z,w) = ¢(@)(1 - p(z)p(T))"¢(z)
where n is a nonnegative integer, p and q are polynomials in d variables, andp: A — D.
Then

=M

if and only if a polynomially subnormal d-tuple is a subnormal d-tuple.

Theorem 1.5 shows that if S is a polynomially subnormal d-tuple with }|S;}] < 1
1< i< dthen
h(z,w)(S) 20
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whenever h(z,w) € C. Therefore Theorem 1.6 shows that if C~ = M then a poly-
nomially subnormal d-tuple S is a subnormal d-tuple. Conversely if every polynomi-
ally subnormal d-tuple S is a subnormal d-tuple then by applying the Hahn Banach
Theorem and using a Gelfand-Naimark-Segal type of construction one can see that
€~ = M. Thus we have shown that Theroem 0.2 is equivalent to showing that
C~ = M, a fact which will be established in Section 2.

SECTION 2

In this section we shall prove the following approximation theorem.

THeoREM 2.1. For C and M as in Theorem 1.7

=M.

Note that it is immediate from the definition of € that €= C M. To see the
reverse inclusion we will construct a sequence of entire functions, {Gr(z, w)§2, in2d
variables which will have many properties in common with an approximate identity.
Gr(A=z,A—w) willbe in C~ for all & and all X in C%. For hin M, p < 1, dA(A) area
measure in C%, (i.e. the product of d area measures over C) and h,(z, w) = h(pz, pv)

the sequence
o0

/ ho(A, T)GR(A — 2, X - w)d AN
8 k=0
will be contained in C~ and converge to £i,. Thus h, will be in C~ and, since h, — h
asp— 1, MCC.

We begin the construction of {Gy} with some notation. Set

4 1/2
Il = (): lzﬂz) ,

and
" =[0,1]".

For t = (¢;) in I¢ and z € C? define a polynomial p{¢, z) by

d
(2.2) p(t,2) =)tz
=1
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For k > 1 set

/,3-k:>(*-w):’(t.Z)dtldg2 oedly

2.3 Gz, w) = —L— .
(2.3) r(z,w) g-f e=kp(t. Pt A )t di s - - dtgdA(X)
Ie

Note that the integrand in the numerator of (2.3) is bounded for ¢ in I¢ and (z, w)
in any compact subset of C*?, and the denominator is a positive number depending on
k. Thus an applicatin of Morera’s Theorem and Fubini’s Theorem shows that Gy, is
entire for all k. Also note the following facts which are imimediate from the definition
of {G}.

(2.4) Gr(),A) 2 0 for all k and all A in C°.

(2.5) Gi(X,2) = Gi(0()), 0(})) where o is a permutation of the variables.

(2-6) Gi(M\, NdA) = 1.
/

A less obvious fact about {Gi} we shall require is contained in the following

proposition.

ProPosITION 2.7.

klim Gr(A,X) =0, for all X in CH\{0}.
o

Proof. We begin by using the definition of p(2, z), (2.2), to make an estimate of
the denominator in (2.3), the expression which defines G;.

//e—kp(t,x)l’(':)‘)dtldtg - dtgd A(X)

A jé
~ksup |p(1,2)]?
(2.8) > / ] e dtydts - - - dtad A(N)
e P

= / /e—kdi(k'T‘jT)'a TdF1 )2(2d+l)dt1,dt2“' L dtgdA(N) = ﬁde-dak-d/(2d+1).
pImT A
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Next fix A € C?\{0}. By (2.5) we may assume that A; # 0. Set

d
g(t,N) =Y 430!
o

Al 2d+41
)"

By (2.2), (2.3) and the estimate in (2.8) one obtains that

and

Gr(M\A)
1
< p—de? pd/(24+1) / = FI AL +a(t D) Eanb " e gy dity - - - diy
1é-1 0
1
g m-ded p4/(24+1) e~ ™ o pe(ng(t, A)|2dtydts - -~ dta.
Jia-1 0

Making the change of variables ' = vk(t1]A[2¢+1 + Re(nq(t, 1)) in this latter integral
one obtains that

Gr(\X)

VE(IA |9 4 Re(n9(2,2))
< W—dedﬁkd/2d+1 / k—% l’\1|2d+1 . / e~ (i')2dt’ .. -dtd

Jé-1

VERe(ng(1,1))
o]
<1r‘ded2|/\1l_(2d+1)k(37d¥f'%) / et dt.
-0

Since the exponent of k in this last expression is negative, its limit in k is zero. This
completes the proof of Proposition 2.7.
Next fix b in M. For p < 1 and k > 1 set h,(z,w) = h(pz, pw), and

(2.9) hpi (2, w) = / ho(0 N)Gr(A = 2, X — w)dA(N).
N

Observe that h, € M and that h, — h as p — 1. To prove that i € C~ and hence
that M C C~ we shall show in Lemma 2.10 that k, € C~ forall k and all p < 1 and
that h,x — h, as k — oo in Lemma 2.12.

LEMMA 2.10. Ifk > 1, p < 1, and h, is as in (2.9) then

hp,k el .
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Proof. The uniform continuity of h,(X, A)Gr(A -z, X —w) shows that there exists
a sequence of Riemann sums of the integral in (2.9) which converges in (z,w) to h ;.
Thus h,x € C if hy(A, X)Gr(A — 2z,A = w) € C~ for all X in %A. The fact that
hy(A, X) > 0 and the uniform continuity of the integrand in (2.3) (which defines Gy)
shows that h,r € C~ if e=kp(t3-w)p(tA=2) g £- for all t in I%. Now,

_ n
e=EP(E3—w)p(tA=2) — |im (1 _ kp(t, A — w)p(t, A — Z)) .

1= O3 n

Hence e—FP(x-w)p(t,A=2) will be in C~ if

_ kp(t:"_\-i‘ W)p(t, A= Z)) Yo
n

(2.11) (1

for large n. Note that for n large enough

\/gp(t,)n—z)l < 1 for all z in A, and

that p(t;x — w) = p(t, A — W). Therefore by the definition’of C (2.11) holds. This
completes the proof of Lemma 2.10.

LEMMA 2.12. If b, is defined as in (2.9), then, k, 1 — h, in A%4.

Proof. Set
~ ho{z,w) for (z,w)in l(A x A)
(2.13) Bogzwy = L
0 for (z,w) € CZd\;(A x A)
and
(2.14) (2, w) = / Ro(h + 2, % + w)Ga(A, D)AAQ).
2ia

Clearly h, i € A%3. Using (2.13) and (2.9) one obtains that
(2.15) hya(z,w) = f (0 DIGHO = 2, % — w)dAQN).

2ia
For w = 7 the change of variables A’ = XAz applied to (2.15) shows that A, (2, w) =
= h, (2, w) whenever w = Z. Since {(z,w): (z,w) € ;(/_\ x A) and w = 7} is a set
of uniquennes for holomorphic functions in 2d variables, [6], one has that h, s = By

on %(A x A). Thus by = b, if

(2.16) hor — h,.
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To see (2.16) fix ¢ > 0 and choose & > 0 such that
b<z-1
and if (z,w) and (¢',w’) are in :—)(A x A) with ||(z,w) — (2/,w')|| < § then
[ho(z, w) — hyo(2',w')| < e.
Set

B = sup {lh,,(z,w)l: (z,w) € ;l)-(A X A)} .

(2.6), (2.13), and (2.14) show that for (z,w) € A x A

[ho(z, w) — by 1z, w)]

= f ho(z, 0)Ga(h, R)dA(N) — / fp(h + 2, X+ w)Gr (), DA
A 2:4
< [ e w) = RO+ 5T+ WG, DAR)
A< 5
+ / 9BGL (N, NA().
FISSEVEVISHY

By our choice of 6, the definition of A,, and (2.6) the first integral above is less than
€. Further using Proposition 2.7 one sees that the limit in % of the second integral is

0. Thus sz,;. - h, and the proof of Lemma 2.12 is complete, completing the proof of
Theorem 2.1.

REMARKS. These techniques can be modified to directly prove Theorem 3.1 of

[4] by simply setting
-1
Gi(z,w) = e~¥2v ( / e"‘"‘"dA(A)) :

D

More importantly we not ethat the hypotheses of Théorem 0.2 can be weakened
somewhat. In fact we need only know that p(S) is subnormal for polynomials of
degree 2d + 1. This fact can be seen by examining the proof that k,; € C~ Lemma
2.10. The number 2d + 1 is important because of its role in the behaviour of G} near
zero, specifically in the estimate in (2.8).
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