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ON THE TYPE OF SECOND QUANTIZATION FACTORS

FRANCA FIGLIOLINI and DANIELE GUIDO

INTRODUCTION

Among ITPFI factors, there is a class of algebras which motivated in part the
investigation of Araki and Woods in [6]: the so-called second quantization algebras.
These are the von-Neumann algebras on the Fock space ™ ( is a separable complex
Hilbert space) generated by the Weyl unitaries with test functions in a closed, real
linear subspace of H. Second quantization algebras corresponding to local subspaces
(these are the subspaces corresponding to bounded regions of R* in the free scalar
field, see e.g. [3]) are known to be injective type III; factors. Hence, it is natural to
ask which type of factors one gets dealing with generic second quantization algebras.

The main result of Section 2 is that all the Powers factors and also some examples
of Il factors appear as second quantization algebras.

In Sections 3 and 4 we identify the class of second quantization algebras with the
Grassmannian of the linear subspaces of H, and therefore we can study the continuity
properties of the map which associates with any point in the Grassmannian the type of
the second quantization algebra over it. We study also the possibility of approximating
in norm topology the factors in a given equivalence class with factors in other classes,
and in particular we prove that the class of III; factors is the only class of isomorphic
factors which is dense in the space of second quantization factors.

1. BACKGROUND

In this section we present the main definitions and known theorems on second

quantization algebras.



230 FRANCA FIGLIOLINI and DANIELE GUIDO

Let H be a complex separable Hilbert space. The symmetric Fock space over it
is
(=]
o= Qe
n=0
where H®'" ig the subspace of the n-th tensor product of H which is pointwise
invariant under the natural action of the permutation group.

H

The set of coherent vectors in e” consists of the vectors

h®n

oo
o=@
n=0

This set turns out to be total in ¥ (see e.g. [15] p.32).
There are two important classes of operators acting on ¢

oo
et = @ A®"
=0

where A is a densely defined, closed operator on H, and

-~

«I

.

Second quantization operators

Weyl unitaries, which are the range of the map
h— W)
from H to the unitaries on ¢’ defined by

W(h)e® = exp (-i.nhn?) et heH

W(h)W (k) = exp (-—%Im(h, k)) W(h+k) hkeX

The vector e? is called vacuum and the relations in the last equality are called Canon-
ical Commutation Relations. Via the preceding equalities W(h) becomes a well de-
fined, isometric and invertible (with inverse W(—h)) operator on the dense set spanned
by coherent vectors, and hence it extends to a unitary on e”. Weyl unitaties gener-
ate the so-called second quantization algebras. With each closed real linear subspace
K C H (in the following we shall write X <g H), a von-Neumann algebra R(K) is
associated, defined by
R(K) = {W(h), heK}"

If K is standard, i.e. K + iK is dense in M, and K NiK = {0}, a closed, densely
defined, antilinear operator s is defined on K such that

s K+iK = K+iK
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h+ik —h—~iK.

We recall now some known properties of the second quantization algebras and
their modular operators.

THEOREM 1.1. [13] A second quantization algebra R(K) is in standard form
w.r.t. the vacuum if and only if K Is standard. In this case S = e*, 4 = ¢°, and
J =&, where S is the Tomita operator of (R(K),e°) and § = J A%, s = j6% are the
polar decompositions of S and s, respectively.

THEOREM 1.2. ([1] Theorem 1) The map K — R(K) is an isomorphism of
complemented nets, where the complementation of an algebra is its commutant and
the complementation of a real subspace K is the simplectic complement K' = {h €
€ H :Im(h, k) = 0}.

Due to the previous theorem we shall call factor subspace a real subspace K for
which K N K’ = {0}.

The following three theorems were originally stated in a different way, in partic-
ular they preceded the Tomita-Takesaki theory. The reformulation in terms of the
modular operators is a consequence of Proposition 3.2.

THEOREM 1.3.

(i) Second quantization factors are ITPFI factors.

(ii) Second quantization factors are type 1 if and only if |[o,1] is a trace class op-
erator, where 6jjo,1] is the restriction of the modular operator to the spectral subspace
relative to the interval [0, 1].

(iii) Second quantization factors which are not type I are type IIL.

Point i) was proved by Araki [1] for the completely diagonalizable case. The
extension to the general case is due to Dell’Antonio ([9] Proposition 4) and follows
from the Hilbert-Schmidt perturbation invariance stated in the next theorem. We
shall describe ITPFI decomposition of second quantization factors later in this section.
The second statement is a direct reformulation of Thorem 4 in [1] via Proposition 3.2.
The third statement was proven by Araki in [2].

THEOREM 1.4. [9] Let K and K be two standard factor subspaces with modular
operators §; and &,, respectively, and define the operators oy, vy as

46;

o= e,
(8 = 1I)?

i=1,2.

Since 1 ¢ o(é;) (see comment after Theorem 1.6), «; is well defined.
If (a1)¥ is unitarily equivalent to the sum of () plus a Hilbert-Schmidt oper-
ator, then R(K) and R(K3) are isomorphic von-Neumann algebras.
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This result was proved by Dell’Antonio in terms of the operator a introduced
in [1]. The equivalence with the above described functional calculus of é is shown in
Proposition 3.2. As a matter of fact, even though the argument in [9] is correct, the
original statement ([9] Prop.3) is not completely correct (cf. Remark 2.6 and also [6}],
p.127).

TueoreM 1.5. [1] [6] [7] Let K be a standard factor subspace and é its modular
operator. Then R(K) is completely determined up to isomorphism by the spectral
properties of §, and

Oess (6) C S(R(If))

Theorem 2 in [1] and Proposition 3.2 imply that the isomorphism class of R(K),
and therefore the Connes invariant, depends only on the spectral measure and mul-
tiplicity of §. The fact that (an appropriate function of) the points in the essential
spectrum of a give rise to points in re, Is mentioned in [6], and Connes [7] proved
the equality of roo with S (up to 0 and 1). We shall give a proof of the inclusion
Tess(6) C S(R(K)) in Proposition 2.9.

Finally, we mention a theorem which, even though it is not used in the following
analysis, motivated in part the study of the subject.

THEOREM 1.6. For the free Bose field, the second quantization algebras corre-
sponding to the local subspaces, i.e. the algebras R(Q) associated to open double
cones in the Minkowski space, are type IIl; factors.

The proof of this theorem has a long history. Factor property was proven in
[3]. It was conjectured in [6] that o(c) for local subspaces contains continuous parts,
which implies the corresponding second quantization factors to be the R factor, i.e.
the unique injective factor of type III, after Connes and Haagerup [8,16]. The first
complete proof appeared in [19], where the result in [17] for the massless case is ex-
tended to massive theories using a result in [12]. We have also a two-lines proof of this
result: Dell’Antonio, in order to prove that local algebras associated to double cones
are type 111, observed that for these algebras « is an unbounded operator, and there-
fore it is not trace class [9]. As a matter of fact, this means, via Proposition 3.2, that
1 € gess(8) (this fact follows also from the formulas in [14]), and then Proposition 4.5
implies the factor to be III;.

We give now an argument for the ITPFI decomposition of second quantization
factors that will be used later. It turns out to be the reformulation in terms of the
modular operators of the original argument in [1].

Let us restrict our attention for a while to standard factor subspaces K with
completely diagonalizable §. We remark that the factor property amounts to the fact
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that 1 & o,(6). In fact
KnNK' ={keH :sk=k=s%k}={ke K:6k=Ek}

If {Zn}nen is an orthonormal system of eigenvectors for 8ljo,1) then {jz,}nen is an
orthonormal system of eigenvectors for 8)(1,00) and {Zn,jZn}nen is a basis for H.
Now, if M, is the two-dimensional complex subspace generated by x, and jz,, Ha
reduces 6, 7, and s. Thus

o {0

0
H=CPHa K= @K,,, REK) =€ R(Kn),
n=1 n=1 n=1
where we posed K, = K N'Hy, 2, represents the vacuum vector in ¢*r, and the last
equality is a consequence of the tensor product decomposition of a second quantization
algabra when its subspace is a direct sum of complex orthogonal components (see e.g.
[15, 6]).

Since K, is two-dimensional, R(K,) is type I, and therefore the preceding for-
mula gives the desired decomposition. Due to Theorem 1.4 and Weyl-von-Neumann
Theorem [21], each second quantization factor is isomorphic to a second quantization
factor with completely diagonal 6. The Ililbert-Schmidt perturbation in Theorem 1.4
can be cliosen in such a way that the spectrum of § is globally preserved and each point
(different from 0 or 1) in 0ess(8) is an eigenvalue with infinite multiplicity. Non di-
agonal cases can be described also as continuous direct products of type I factors [5].

REMARK 1.7. The infinite tensor product decomposition extends to general real
linear subspaces of H. If K <g H, let us define (cf. [1])

Ho = K NiK, Hoo = (K +iK):, My ={k:6k =1k}, Hr =(Ho®Heo ®Hr)".

Then K =Ho @ Hr @ Hr® Hoo and K = Ky @ Kr & K1 ® 0, where
(i) Ko = Ho, therefore R(Ko) = R(Ho) = B(e'®) is a type Io factor,

(ii) Kr p CL K NHp is a standard factor subspace of Hp,

(iii) K ] K n H; is a j-invariant standard subspace of H;, i.e. R(K) is a
continuous maximal abelian subalgebra of B(e?!).

By this decomposition, R(K) is the tensor product of its center R(Ky) with the
ITPFI factor R(Kp) @ R(KF).
We observe also that, if K is a non standard factor, § and « are defined on Hp,
but Remark 3.3 shows that it is very natural to extend o to Ho & Hr posing @ = 0
on Hg.
In this way the “if” part of the statement ii) in Theorem 1.3 becomes a consequence
of Theorem 1.4 and of point 1) of this remark.
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2. THE TYPE OF SECOND QUANTIZATION FACTORS

In this section we shall show that III, factors appear as second quantization
factors for each A € [0,1].

We remark that all the constructions of second quantization factors of a given
type described in this and in the following sections are based on a prescribed behavior
of the spectrum of §. We want to stress that the construction of subspaces K whose
& fulfills the required properties is always possible. More precisely, the following
proposition holds.

ProposiTION 2.1. Let {)\,} be a sequence with values in [0, 1] (or, more gener-
ally, let pu be a measure with support in [0, 1] and n(z) a measurable function defined
on [0, 1} with values in NU{oo}.) Then there exists a standard subspace K such that
the sequence of cigenvalues with multiplicity of §|{0, 1] coincides with {A.} (or, more
generally, the spectral measure and multiplicity of §|[0, 1] coincide, respectively, with
g and n).

Proof. We consider the measurable vector bundle on [0, 1] whose fiber on z € [0, 1]
is the space C*(*) where by C(®) we mean the Hilbert space {#(N), and then we
identify H with the direct sum of two copies of the Hilbert space L2(dp, C"(”)) of
square integrable sections,

H = L*(dp, C*9) @ L3(dyu, C*®)).

Then we consider the space K = {k) @ k2 : CM _szki = ka}, where C is the com-
plex conjugation on all the fibers and M sz is the multiplication operator by Nz
on L?(dy,C™#)). Tt is easy to see that the modular operator § associated with X
coincides with M, @& M-, and therefore the thesis follows. a

A result of Stérmer [20] shows that the Connes invariant of the weak closure of
an asymptotically abelian C*-algebra (see [10]) in the representation of an invariant
factorial state coincides with the spectrum of the modular operator 4 associated with
this state.

We shall prove that, if the modular operator § of a standard factor subspace K
satisfies 0(§) = 0es5(8), then second quantization C*-algebra over K is asymptoti-
cally abelian w.r.t. a vacuum preserving action of Z. By Stormers’s theorem we get

S(R(K)) = o(4).

THEOREM 2.2. Let K be a standard factor subspace such that §x is completely
diagonalizable and dim(},) = oo for each A in the point spectrum of é, where Hx
is the eigenspace relative to A. Then there exists a vacuum preserving, unitarily
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implemented action of Z on the Fock space for which the C*-algebra generated by
{W(h): h € K} is asymptotically abelian.

Proof. Since any eigenvalue of & has infinite multiplicity, we may identify H with

"H, ® L*(Z) in such a way that K is identified with K, ®& L%(Z) and the eigenvalues
of the modular opeartor 6; of the inclusion K <g N have multiplicity 1. Note that
s = 51 ® I, and the analogous identifications for & and j hold. Now let us define
U= J®T, where T is the shift on L2(Z). Since U commutes with s it preserves K,
and eV implements an automorphism of R(K). Moreover, any second quantization
operator preserves the vacuum. Now, if k =k ® f and h = h; ® g are vectors in K,

: 2] — . : 1] —
nILngO(I:, Utk) = (hy, k1) ﬂango(g,T H=0
and this property extends to all pairs of vectors in K by linearity and density. Then

n=+00 O

W Ry, " W(k)eY | = W (8), WU = 2

sin (%Im(h, U"k))

and, again by linearity and density, we get the asymptotic abelianness of the generated
C*-algebra w.r.t. the action n € Z — ad(eV"). [ |

DEFINITION 2.3. Let X be a non-empty subset of Ry.. Then g(X) will denote the
closure in R of the multiplicative subgroup of R, generated by X — {0} if X # {0},
and the set {0,1} if X = {0}.

Now we have to prove the following.

CoROLLARY 2.4. If K is a standard factor subspace of H with 0(8) = ew($),
then '
S(R(K)) = 9(0esa(8))-

As a consequence,
i) R(K) is a III; factor if g(0ess(6)) = Ry
1) R(K) is a Il factor if g(cess(8)) = g({A}), X € (0,1).

Proof. Since 0(8) = 0ess(6), we can find Ky such that o(8y) = 0ess{81) = 0(8), 6
is completely diagonalizable each eigenvalue having infinite multiplicity, and R{K) =~
~ R(K;) (Theorem 1.4). Therefore we can apply Theorem 2.2, and Stormer’s the-
orem gives the equality S(R(K)) = o(4). The remaining part of the theorem is a
consequence of the equality g(¢(6)) = o(A) which is proven in the following Lemma.

[ |

LEMMA 2.5. If K is a standard subspace of H then

9(c(8)) = o(4).
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n i

Proof. o(A®™) = o(A)F = { TIx: e a(A)} and o(A® B) = (o(A) U o(B))~
f=1

for any closed self-adjoint A, B on H. Hence, a(e?) is the closure of the multiplicative

hull of o(A4). Since the spectrum of § is closed w.r.t. the operation of taking the inverse

via the relation §; = j6~!, we get the desired equality. [ |

REMARK 2.6. The previous lemma and theorem 1.5 imply that
g(aess(é)) C S(R(I{)) C g(o‘(é))

As a consequence, when o(8) and 0.¢(8) coincide, the Connes invariant is completely
determined, as Corollary 2.4 shows.

The general problem is therefore to understand when the non-essential spectrum
modifies the Connes invariant.

For instance, Theorem1.4 shows that a subsequence of eigenvalues of § which converges
rapidly enough to a point A € (0, 1) can be substituted by the eigenvalue A with infinite
multiplicity.

More generally, when the non-essential part of the spectrum of § can be eliminated by
a Hilbert-Schmidt perturbation as described in Theorem 1.4, the results of Corollary
2.4 still hold. Under this hypothesis, we have the following case:

iii) R(JK) is type Ioo if g(0ess(8)) = {0,1}.

In fact 1 € 0ess(8) 1s equivalent to the unboundedness of o, and therefore Hilbert-
Schmidt perturbations cannot eliminate the non-essential parts of the spectrum of §
around 1. Hence, we have ¢ess(6) = 0. Then the hypothesis corresponds to te(8([0, 1] <
< 400 and, therefore, iii) follows from 1.3 ii).

On the other hand, Theorem 1.3 implies that if é|jo 1} is a compact, non trace class
operator we get a type III factor, and we shall show that in this hypothesis it is
possible to get Illg factors (Theorem 2.10) and, more generally, III, factors for each
A € [0,1] (Propositions 4.10 and 4.11). The relevance of the non-essential spectrum
of & is illustrated also by Proposition 4.5 and 4.6.

In the following, we shall exhibit explicit examples of IIly second quantization
factors for which the Connes invariant will be calculated making use of the Araki-
Wood formula for the asymptotic ratio set ro, [6)-

It is well known that ry, is an invariant of the factor [6], and it coincides with
the Connes invariant possibly up to 0 or 1 {7].

If M is a type I factor with a cyclic and separating vector 2, the sequence of
eigenvalues with multiplicity of the trace class operator associated with the vector
state §2 is denoted by sp(f2, M). It turns out to be the sequence of the eigenvalues
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lower or equal to one of the modular operator 4, up to a normalization constant. If

'nn
M=) M,
néeEN

is an ITPFI factor, sp(£2, M) will denote the double-indexed sequence

{'\nj '€ N, {/\nj}jGN = Sp(ﬂﬂ, -Aln)}n,jeN-

It is easy to show the following

PROPOSITION 2.7. If M = R(K) is a second quantization factor with completely
diagonalizable § and {)\,} is the sequence with multiplicity of the eigenvalues of 8|o,1,
then

sp(e®, R(K)) = {Dnj = (1 = ANt 1 j,n €N}

DEFINITION 2.8. Let (M, £2) be an ITPFI factor, {Ajr} = sp(2,M). The
asymptotic ratio set ro(£2, M) consits of the numbers z € Ry for which there exists
a sequence of triples {I,, Ky, ¥}, where I, is a finite subset of N, K, C N/~ and
@n : Kn — NI» with the following properties:

(i) InNI, =0, n#m
. def
(i) Mk € Kn, AK)E [ Ajaj #0

Jeln
(ili) @n is injective and g, (Kn) N K, = @

(iv) D D Ak) =+

neENkeK,
- M (k)| _
(v) Jim mexlo - =355 | =0
We note that for the particular case of the second quantization factors, making

use of Proposition 2.6, the condition 2.8v is equivalent to the following (when z # 0)

(v) Jim max llogz — ; log Aj(pn(k); — kj)| =0
J n

As a first consequence of the Araki-Wood formula, we shall prove the following

Proposition (cf. Theorem 1.5).

PROPOSITION 2.9. Let K be a factor subspace of H. If X € 0ess(6) then A €
€ S(R(K)).

Proof. Due to Remark 1.7 we can restrict to the standard case. If A is equal to
0 or 1 the result is trivial. Otherwise, we may choose an appropriate Hilbert-Schmidt
perturbation such that § becomes completely diagonalizable, A becomes an eigenvalue
with infinite multiplicity, and the isomorphism class of R(K) does not change (see
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Theorem 1.4). Now let A,, be the subsequence of the spectral sequence of §](g,1) with
value A. Recalling Proposition 2.6 and Definition 2.7 we set

I, = {np}
K, = {1}
pp(1) =2

Then i), ii) and iii) are satisfied,

SN MK =50 2,) =D (1-N =+

PENKEK, peEN PEN
and
Jim_ max log X — jezf log X;(pn(k); = k;)| = lim [logX — logAn,| =0,
therefore the result follows. [ |

We conclude this section with the announced examples of IIIy second quantization

factors.

TuEOREM 2.10. Let A € (0,1), p € N and {nr}ren a sequence of positive
integers such that
k]lr"(:o Ink IP = Ov
where |m|, is the p-adic modulus' of m. If a(é|[n,1)) = {A™*, k € N}, the eigenvalue
[==]
A*x has finite multiplicity di. and de\’”‘ = +o0, then R(K) is a type III; factor.
k=0
Proof. By Lemma 2.5 we have S(R(K)) C g(A™* : k 2 1). Since ro, depends
asimptotically on the sequence of the eigenvalues of § and any eigenvalue has finite

multiplicity,

S(R(K)) € ) g™ 1k 2 ko).
koEN

By hypothesis,
Ym e N kg € N: p™ divides ny, k£ 2 ko

therefore

SR(K)) € () 9(¥")={0,1}.

meN

! The p-adic modulus of an integer m is p~¢, where p? is the greatest integer power of p
that divides m.
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Since o
tr(8lio,1)) = D duA™ = +oo,
k=0
Theorem 1.3 implies that R{K) is a type IIly factor. |

We shall not prove further results about second quantization IIlo factors. We
note only that it is possible to prove that second quantization factors are ITPFI; and
that the examples in Theorem 2.10 give rise to non-isomorphic factors for different A
and p.

3. THE GRASSMANNIAN OF THE REAL SUBSPACES

We collect in this section some observations on the Grassmannian G of the real
closed subspaces of , which will be useful in the following section.

A detailed analysis on the relationships among some canonical operators asso-
ciated with a real linear subspace will follow. On the one hand we think that the
“angular” interpretation of those operators is interesting in itself. On the other hand,
Proposition 3.2 justifies the formulation of theorems 1.3, 1.4, and Corollary 3.4 will
be used in Section 4 to prove the density results.

Since second quantization algebras are labelled by closed real subspaces of H, it
is natural to associate the set of these algebras with the Grassmannian G of such sub-
spaces. From now on, we shall identify G with the closed subset of B(Hg) consisting
of the real projections acting on the real Ililbert space Hg = {H, Re(:,-)}, hence G
becomes a metric space with the distance

dist(P,Q) = ||P — Q]

where P and @ are real projections.
We observe that ¢ decomposes into countably many connected components:

G= @ gn,oo & @ Gno,n @Gw,oo
neN neN

where Gy, consists of the subspaces of (real) dimension n and (real) codimension m.

Decomposing an clement I of G o or G n, 1 € N, according to the decompo-
sition in Remark 1.7, it is easy to see that the subspace Kp is finite dimensional, and
therefore R(K) is always of the form:

{a) Type I factor

(b) A continuous abelian von-Neumann algebra

{¢) The tensor product of case (a) and case (b).
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In particular, all the factors in G, co OF oo,n are isomorphic to the infinite in-
jective type I factor. On the contrary, since all the points of Go,00 are equivalent as
real projections, the type of a second quantization factor in Goo 0o depends crucially
on the complex structure on H.

If P and @ are two projections on a real Ililbert space with range M, N, re-
spectively, the angle between M and N is defined (cf. [4]) as the symmetric positive
operator fps v acting on A such that

cosfy N = |QP]

M
T
sl < 5-

Since H has also a complex Hilbert space structure, we can associate with a real
projection P with range K the angle between K and ik, i.e. the operator

0= arccoslPiP[' .
K

Moreover, if K is a standard factor subspace, a unique, closed, injective operator
i (see [1]) from K to the orthogonal K+ is defined by the property

. h+eh)€iK, heK.

We begin to study the relations among 8, @ = ¢" and the modular operator é
in the easiest non trivial case, i.e. when H is two-dimensional.

If K is a standard factor subspace of C2, then K has real dimensions 2, and
hence it is possible to choose two real orthonormal vectors y*,y~ in K with

cosl q—srlm(y"‘, ¥y ) >0,
and it is easy to see that

|PiP|| = cos0]

K

K

Now the vectors

0 -1

zt = (Zcos 5) (y* —iy™)
o\ !

z= = (ZSin §) {(y* +iy™)

form a complex orthonormal basis in #, with respect to which Tomita operators

satisfy

0
._(c 0)(0 1) 5= tan--i 0
7Z\o c/\1 o - 0 cot"’-(Z
2
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where C is the complex conjugation.
With similar computations we can show that

a=tanf. 1

K

Or it = (;—r— ) I n

Now we shall see that the relations established in the two-dimensional case hold

and

in full generality.

We observe that a symmetric operator defined on a standard K can be extended
by complex linearity to a densely defined operator on H, but this extension is not
self-adjoint in general. Yet, for the operators we are studying, the following property
holds:

ProrosiTioN 3.1. Let K be a standard factor subspace. Then the previously
defined operators a,0 and Oy g+ extend to self-adjoint operators on H. In this case,
spectral measure and multiplicity are preserved.

The proposition above allows us to use the same symbols for these operators and
their complex linear extensions. Now we can state the following

ProrosITION 3.2. Let K be a standard factor subspace. Then the following
relations hold:

Proof of Propositions 3.1 and 3.2. The complex extensions of the symmetnc
operator @ is self-adjoint if and only if ¢ verifies

Im(z,0y) = Im(0z,y) =z,y€ K.

But
Im(z,0y) = —Re(z,i0y) = —Re(z, PiPfy) =z,y€ K.

Then self-adjointness follows from the fact that 6 commutes with PiP because 0 is a
functional calculus of |PiP| and PiP commutes with its transpose —PiP.



242 FRANCA FIGLIOLINI and DANIELE GUIDO

Now let E be a spectral projection relative to the complex linear 6. Since the complex
linear @ is self-adjoint and preserves K, it commutes with s,s*, j and 8, and therefore
it commutes with the real projections on X, iK and K’. Then E has the same
commutation properties, its restriction to X is a spectral projection for the real
linear # and commutes with the real o and 0 k+. Hence, we need only to prove the
propositions on the fiber of the direct integral decomposition of A over the spectrum
of (the complex linear) #. On such a space a and the angular operators are constant,
while 7 and 6 have a matricial form like in the two-dimensional case. Then the thesis

follows from the C? example. n

REMARK 3.3. We note that 0 is a well-defined complex linear operator on (X +
+iK)~ in the general case. Therefore, if K is a factor, i.e. T is not an eigenvalue
of 8, Proposition 3.2 extends « to (K +iK)~. In particular, & turns out to be 0 on
KnikK.

As we said, Propositions 3.1 and 3.2 allowed us to state Theorems 1.3 and 1.4 in
terms of modular operators. On the other hand, a Corollary on the continuity of the
map K — é immediately follows.

COROLLARY 3.4. Let {K,}%, be a sequence of standard factor subspaces with
projections P, such that all the modular conjugations jn and all the spectral projec-
tions Xjp,1)(6n) coincide, j, = j and Xo,1}(6n) = E. Then the following are equivalent:

() lim P, = Py
=0

(ii) lim E§, = Eé.

ot OO

4. TOPOLOGY ON THE GRASSMANNIAN, CLOSED AND DENSE SETS

In this section we study the topological properties of the classification of second
quantization factors, i.e. we restrict our attention to the open submanifold Gr C
Geo,00 Which consists of factor subspaces?. To this end, we consider a map ¢ on Gr
which assigns to each subspace K a number in [0, 1]. This number summarizes all the
information contained in the essential spectrum of & which contributes to identify the
Connes invariant (if X is not standard, we always mean § relative to the inclusion
K, <g HF in the decomposition of Remark 1.7).

More precisely, ¢ will allow us to include the results of Proposition 2.9 and 4.5,
and the fact that this is all the contribution given by the essential spectrum, in the
statement (a) of Theorem 4.2.

2 We note that Gp is not dense in Goo,c0, in fact the set {K <p H : 1 ¢ gess{6) and 11is
an eigenvalue with multiplicity one} is an open set of non-factors.
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Then, recalling Definition 2.3, let ¥ : Gr — [0,1] be the function defined as
follows:
XA if g(0ess(8)) = g(A) A € (0,1) and 1 & Tess(6)
(4.1) PYEK) = 0 if 0ees(6) =0
1 if g(desg(é)) = ﬁ+ orlé€ aess(ﬂ‘

Let us introduce in {0,1] the partial ordering given by
0<a=<1 a€0,1]

a<babe(0,1), a=b*, neN

and note that if a,b € (0,1), 6 < b g(a) C g(b).
Now we may state the main theorem of this section:

THEOREM 4.2.

(a) ¥~1()) contains I11,, factors if and only if A X p

(b) »=1({p € [0,1] : p X A}) is closed in G € [0,1]

(c) The sets %~ ({sr: A < pp < 1}), A € [0, 1) and the set of III; factors are dense
inGp.

(d) The set of type I factors® is a dense subset of ¢~1(0).

As an immediate Corollary we get

COROLLARY 4.3. The class 111, second quantization factors is the only class of

isomorphic factors which is dense in Gr.

Remark 4.4. Theorem 1.5 shows that the non III; factors should be looked for
when 0eqs(8) is contained in g(}) for some A € (0,1), and therefore § is completely
diagonalizable. In this case the Connes spectrum is completely determined by the
sequence A of the eigenvalues of §|[0,1]. The definition of the Araki-Wood invariant
shows that it is “superadditive” w.r.t. A, i.e. if A; is the sequence associated to a
subspace K; and the sequence associated to K is UA.- then

S(R(K) > | JS(R(K,))-

3 The idea of the density of type I factors in the class of second quantization factors
is linked to the split property of an inclusion of local algebras, and more precisely to
the posibility of constructing a family {Fn, n € Z} of type I factors interpolating the
inclusion A C B, such that A = nFn, B = UF" [11]. The corresponding family
of projections in the one particle space has no limit points in norm topology, because
the distance of any couple of included projections is 1. Nevertheless, things change in
strong topology, and in fact we think that in this case the outlined argument could be
used to prove the density of the class of type I factors.
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In the following propositions we shall explicitly calculate the Connes invariant
for given sequences A. These results will allow us to prove part a) of Theorem 4.2.

PROPOSITION 4.5. Let A = {\,} be the sequence of the eigenvalues of §|[0,1]
associated with a factor subspace K. If A converges to 1, then S(R(K)) =R;. As a
consequence, any second quantization factor for which 1 € d.55(8) is I1I;.

Proof. First note that the second part of the Proposition is a consequence of the
log =
log An

first part, Theorem 1.4, and Remark 1.7. Now choose & € (0, 1) and set p, =
where [-] is the integer part. Then

logz
logz
n

lOgA S ]logAﬂ\)l_’.Ol

|log z — pnlog An| = |log An|

and therefore AL~ — z. According to the definition 2.8, set
In = {n}

Kn= |J {kpn+1,...,(k+1)pa}

k even

on - MEK, -m+p,.

Properties (i), (ii) and (iii) of 2.8 are obviously satisfied. Note that

Z A(k) = Z (=2 )AEt = (1= 2,) Z i,\ﬁ,,.,+j;1 _

kEK, k€EKq k even j=1

1= 1—)E» 1 1
— — kpn n_o_ [ - .
(=) 2, X3 1= 1= 1+  1+s

k even

As a consequence,

3 5 k) = 400,

nENEEK,

Finally,

A(ea (k)
Ak)

lim max
n—oo k€K,

z - = lim max |z — A*| = 0.

n—oo keK,

By the arbitrariness of z, we have S(R(X)) = R,. n

PROPOSITION 4.6. Let A = {A,} be the sequence of the eigenvalues of 8|1
associated with a factor subspace K. If A converges to A € (0, 1) and

Ir>0: Zexp (—;) =400
n=1 ﬂA_Anl
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then S(R(K)) = Ry
_Proof. By means of small perturbations, reordering, and taking subsequences,
we can always restrict to the case
Aan = A, 0< Aznqa T A
Then pose
en =log A —log Aan_1
I, = {2n - 1,20},

and note that properties 2.8 i, ii are automatically satisfied.
Choose 2 > 1 and consider the function
\

n—=o0keK, .
j€ln

I(z) = lim max [logz — Z log A;j (¢n (k); —k,-)j :

In order to fulfill condition 2.8 v/ and since

I(:c) = nllongo ﬂa}%dlogz - ((pn(k)gn_l -— kg,,..l)log AZn—l -‘- (‘Pn(k)2n -_ kgn) log )ﬁl =

Jim max | og z—(n (k)2n—1 ~kzn—1+@n(k)2n —kzn) log A+(2n (K)2n-1 —kan—1)enl,

we look for functions ¢, satisfying

a) ‘Pn(k)2n—1 —kon-1+ ‘Pn(k)Zn —kon=0
1 VkeK,.
b) en(k)zn-1 = kon-1 = { og:c]

€n

In fact in this case, since ¢, — 0,

=0.

n

log «
1 -
og [ . €

n

I(z) = nlirrolo

If we pose p, = [Ic::g:c

], and we define
n

K, =N x J, where J, = {mp, +j:m > 0even, 1 <j<pn}
‘Pn(jl,j2) = (.71 + Pn,J2 "pn):

conditions a) and b) are fulfilied.

Observe also that

ea(Kn)={n€N:n>ps} x{mpa+j:m>00dd, 1<j<pn},
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therefore ¢n(Kn) N Ky = @, i.e. property 2.8 iii is satisfied.
In order to check condition 2.8 iv, observe that

TR = 3 (1= danon)(1 =AM =

kEKa ki €N
ka€dy
o AP“

= (1= Aza-1)(1 = ) (Z 5 ) S5 30 Namtaatict | o T
k=1 m=0j=1 AP
Since the following relations hold for large n,
1 A= Xan—
o B g linl
En A

and AP — 0, we get

ST S ME)=+4ooe Y Am=toos ) exp) (Aloguogm) oo

nENEEK, neN neN

o<
( = Anl) &

n=1

Finally, since

2o () <

condition 2.8 iv is satisfied for each z in (0,exp(r{AlogA|~!)], which implies
S(R(K)) =R, [ |

ProrosiTION 4.7. Let A = {;11—} be the sequence of the eigenvalues of &|f 1)
associated with a factor subspace K. Ther S(R(K)) = R,.

Proof. First we set
In= {km mn}

K, = {(1:2)}
‘Pﬂ((ls 2)) = (2! 1)

which implies conditions 2.8 ii, iii. Then we observe that

My

T — —

7

= llm

Jim_ max log 2 _,§ log Aj{(pa(K); — k)| =

therefore, setting m,, = [k,z] and choosing k, — oo, condition 2.8 v is satisfied. Now
we prove that, if z > 2, it is possible to construct k, such that conditions 2.8 i, iv are
satisfied.
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def

We shall look for k. € J, ={2n — 1,2n}. Since k;, is increasing and z 2 2,

ki # k;
i when i # j
m; #mj
therefore, if
(*) {kpn:neN}N{m, :n €N} =0,

we get condition 2.8 i.

But the set {m, : n € N} is contained in {[nz] : n € N} and, since z > 2,
the set {[nz] : n € N} N J, contains at most one element. Therefore condition () is
fulfilled if we choose k, # {[nz]: n € N}.

Finally observe that

keZK” Ak) = (1 - —-) (1 - ml") ;1;;

hence, by the definition of k,, and m,,

DD DRI DE RS

nENkKEK, neEN
i.e. € S(R(K)). By the arbitrariness of z we get the thesis. |

PROPOSITION 4.8. For each A € (0, 1) there exists a factor subspace K such that
Oess(8) = 0 and S(R(K)) = g(A).

. " 1 .
Proof. We prove this Proposition for A = 3 Examples for a generic A can be
obtained with slight modifications.
In particular, we show that if A = {2-[°8271} is the sequence of the eigenvalues of

5|[0, 1] associated with a factor subspace K, then S(R(K)) =g (%)

Let us define the two sequences

- [log,(3n—2)] _
G =nt 3 (4 )
b, = a, + 4(l°84(3n=2)]
and set
I, = {aa,bn}
K, = {(1,2)}
e((1,2)) = (2,1).
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that I N I, = @ if n # m. Moreover,
[log; an] = 2{log,(3n — 2)]

flogy bn] = 2[log,(3n — 2)) + 1
Z ,\(k) - (1 _ 2-—[]03, a"])(l _ 2—[]05, 6,1)2-[10& ba)
k€EKn

hence, in particular,
’\(‘Pn(k)) =9
Atk) )

Therefore, to show that 2 € S(R(K)), we have to verify only condition 2.8 iv. But

I IRIOE z 9=[llog; ba] o

nENKEK, neEN
3 1 1
oy 27 ordBn=2l-1 5 2 B — = +00.
fprd 2 by 3n-2
On the other hand, S(R(K)) C ¢(c(8)) = ¢ (%) and, therefore, S(R(K)) = g (%)
|

Proof of the Theorem 4.2, part a. Let K be a subspace giving rise to a III,, factor
and such that ¥(K) = A. We want to prove that A < .

If A =0 or pu =1 the resuli is obvious.

If X €(0,1) then g(A) € S(R(K)) and therefore g(A) C g(g), i.e. A £ p.

If A = 1 Theorem 1.5 and Proposition 4.5 imply-that R(X) is III;.

On the other hand, let A < u. We have to exhibit K such that R(K) is III, and
$(K) = A.

If A =1 then g = 1 and we may choose K as in 4.5.

If A€ (0,1) and p = A Corollary 2.4ii gives the desired subspace.

If A€ (0,1) and p = 1 we take the example in Proposition 4.6.

If A€ (0,1) and A < p < 1, we consider a sequence A, — 0 like the one which
generates a III, factor in Proposition 4.8 and choose a subspace K such that «(§|[0, 1})
consits exactly of the sequence A, and of the point A with infinite multiplicity, which
implies $(I) = A. Then p € S(R(X)) and o(8) C g(p) by construction and, therefore
R(K) is 111,,.

If A = 0, Theorem 2.10 gives III, factors, Proposition 4.7 gives III; factors, and
Proposition 4.8 gives III factors for each A in (0, 1). [ ]

Proof of Theorem 4.2, part b. The result is obvious if A = 1.
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If A € [0, 1), we have to show that, given a sequence of subspaces Ky in Gp with
limK, = K, $(X,) < X implies $(K) < A, i.e. Oess(bn) C 9(A) — {1} for each n
implies oess(8) C g(A) — {1}. Now a theorem in [18], p. 208 shows that, if A, B are
self-adjoint elements in a C*-algebra then

o(A+ B) C o(A) + [-[|BIl, +BIl

therefore, if A, — A are self-adjoint elements in a C*-algebra with o(4,) C 2 for
each n € N and 2 is a closed set, it follows that

o(A) Co(An) + [-llA= Anll, +lI4 = Al ()n €N,

and therefore o(4) C £2.

Finally let 7 : B(H) — B(H)/K(H) be the projection on the Kalkin algebra and
consider the sequence A, = 7(8,|f0,1))- By Corollary 3.4 A, — A = 7(b|[o,7), and,
by hypothesis,

0(An) = ess(Snlio1) C 9(A) = {1} () eN.
Therefore
' aess(él[ﬂ,li) = U(A) C !]()‘) - {l}
Since oess(6) is symmetric w.r.t. the inverse operation we get the thesis. [

The remaining parts of Theorem 4.2 are obvious consequences of the following

three Propositions.
PROPOSITION 4.9. The set ¢~ ({g: A < 1 < 1}) is dense in Gr for all A € (0, 1).
PROPOSITION 4.10. The set of III; factors is dense in Gp.

PROPOSITION 4.11. Type I factors are dense in %~(0) and for each A € [0, 1]
there exists a dense subset of ¥~ (0) which consits of only I1I, factors.

Proof of 4.9. We choose A € (0,1) and a standard factor X and then we consider

the functions "
Ja :R-i-""{;IlSkgnz}

ko

— o — <k <

fn($)={n ifk—l<nzgkandzn
tn ife>n

and the functions g, : (0,1) — {A% : 1 < k < n?}

gn(z) = ySn(logyz)
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We note that gx(z) — z uuif:ormly
Now the operator gn(8ljo,1)) has a finite spectrum, hence there exists an eigenvalue
Ao 132 with infinite mulhphmty Then we choose a decomposition of the eigenspace

H), in a direct sum with infinite dimensional direct summands,
Hag ~Ha ®Hy

and define the sequence d, of operators on the spectral subspace Hg 1) of § relative
to the interval [0, 1],
gﬂ(6|[g 1]) on H
dn=1{ AR on 'Ha
A‘qn_ I on M.
Observe that the following properties hold:
(a) dn — 8][0,1) uniformly
(b) 9(0(dn)) — g(Tess(dn)) = g(A+).
Finally, we consider the sequence of operators

5 dn on 'H[o,q
"7\ Jdzti on Mgy

and the sequence of spaces K, {k € H :jé,'{%k = k}, and note that, since j6,j = 67!,
Corollary 3.4 and (a) implies that K,, — I, while (b) implies (X, ) = A*. ]

Proof of 4.10. We want to approximate any factor subspace K with III, factors.
To this aim we choose A € 0ess(6][0,1)) and consider the spectral subspace H(q, s,]

relative to the interval [an,b,] where

a, = max (O,)\ - l)
n
. 1

b,, = min (1,,\+ -) .
n

Since Ha, 5,] is infinite dimensional, we may identify it with L?([a,,b,]) and then
we define the operator M, as the multiplication operator by the function = on the
interval [ap, b,).

Then let us define

L= My onHig, 5,1
"= on Hf]&,.,b..]nﬂlﬂ.ll

Finally, define 6, and K, as in previous Proposition and observe that d, — é|pp 1
and ¢(6,) D [an,bn], i.e. {R(Kpn)}nen is a sequence of III; factors approximating
R(K). ]
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Proof of 4.11. Let K be a factor subspace such that ges(8) = {0}, Ag is the
sequence of eigenvalues (with multiplicity) of |[,1), and i the corresponding sequence
of eigenvectors.

Then we take a sequence A}, — 0 giving rise to a III factor (as in Theorem 2.10
for A = 0, Proposition 4.8 for A € (0,1) and Proposition 4.7 for A = 1), or a type I
factor (A, summable as in Theorem 1.3 ii).

Finally we define d,, on Hg,yj

d e ifkgn
nek = tex ifk>n

and the proof goes on as in the preceding Propositions. n
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