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FUNCTIONAL ANALYSIS OF SUBELLIPTIC OPERATORS
ON LIE GROUPS

AF.M. TER ELST and DEREK W. ROBINSON

1. INTRODUCTION

The theory of general subelliptic, or subcoercive, operators H associated with a
continuous representation of a Lie group G was developed in three previous papers
(7], [8], [1] and the aim of this paper is to establish that these operators have good
function-analytic properties. Specifically we examine operators H associated with the
left regular representation of G on the L,-spaces formed with respect to left, or right,
Haar measure. We then prove that for a large class of holomorphic functions f one
can use complex analysis to define f(H) and the resulting operators are bounded on
all the Ly-spaces with p € {1, co).

Holomorphic functional analysis of the type we consider has been developed for a
large class of operators, including generators of holomorphic semigroups, by McIntosh
and Yagi [14], [15], [18]. Their theory makes essential use of earlier work by Kato [11],
[12] and Lions [13] on fractional powers of operators and interpolation spaces. Subse-
quently, the general theory has been applied to elliptic partial differential operators
by Duong [5] and our analysis is comparable to the discussion in Duong’s Chapter 7.
The main tool is a version of the Calderon-Zygmund approach to singular integra-
tion. It is based on interpolation betweeen La-estimates and weak Li-estimates. In
our case, however, the required‘ Lo-estimates can be derived for an arbitrary unitary
representation. But first we describe the general framework for semigroup generators.
Basically we adopt McIntosh’s formalism modified in a manner suitable for applica-
tion to subelliptic operators. For an extension to operators of type w which are not
necessarily one-to-one we refer to [4].

tH

Let H be the generator of a holomorphic semigroup ¢+ S; = e~* on a Banach
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space X which is strongly, or weakly*, continuous. Suppose that S is holomorphic in
the sector A(6,) where 0 < 6, € /2 and

Alp) = { € C\ {0} : |arg 2| < ¢}

for all ¢ € (0,7]. Then if 8 € (0,0;) there exist M > 1 and w > 0 such that
1S:]] € Me“l*l for all z € C with |argz| < 8. Therefore replacing H by H + vI
with ¥ 2 0 suitably large we may assume that S is uniformly bounded uniformly
in the sector A(0), i.e., there is an M > 1 such that [|S;|| € M for all z € C with
larg z| € 0. It then follows that the resolvent (—~AJ 4+ H)~! is defined and satisfies
bounds [[(=A + H)=}!|| € M|A|~! for all non-zero A € C with |arg A| > 7/2 —0. For
example, if H is a positive self-adjoint operator on a Hilbert space then the semigroup
t— S; = e7* is holomorphic in the open right half-plane A(7/2) and ||S;]| < 1 for
all z € C with |arg z| < 7/2.
Next for 0 < ¢ € 7 let

F,={f:A(p) — C: f is bounded and holomorphic}.

Then F, is a Banach space with respect to the norm

fllo = sup{[f(2)] : z € A(p)}.

It is also convenient to introduce the subslpaces
Bp5 = {f € Fu: 1£(2)] < c|z|*(1 + |z[)~2° for some ¢ > 0 and all z € A(p)},

where § > 0, and to set

G, = | | By
>0

Then if f € §, with ¢ € (7/2 — 8, 7] one can define an operator f(H) by
(1) F(H) = (2ri)! / dA FO)(=AT + H)~!
Ty

where I'y is the contour determined by the function

teiX if £ € [0, 00}
—te™X ift € (—o0,0]’

ro ={

with 7/2 — 0 < x < ¢. The integral in (1)} is norm-convergent, independent of the
particular choice of contour and the operator f(H) is bounded.

If f € F, one can use a similar algorithm to define f{H) but the contour integral
in (1) is not necessarily norm-convergent and the resulting operator is not necessarily
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bounded. Therefore f(H) is defined by interpreting the integral in (1) in the strong,
or weak*, topology according to whether S is strongly, or weakly*, continuous. The
domain of f(H) is then taken to be the subspace of X on which the integral is
convergent. It follows that the operators f(H) constructed in this manner are closed.
Now we define H to have a bounded functional calculus over F,, if all the operators
{f(H) : f € F,} are bounded and if f — f(H) is continuous as a map from the
Banach space of holomorphic functions F,, into the Banach algebra £(X') of bounded
operators on A, i.e., if there is a ¢ > 0 such that

DI < ellflleo

for all f € F,,. For example, if H is again a positive self-adjoint operator on a Hilbert
space then it is readily established that H has a bounded functional calculus over F,
for any ¢ € (0, ]; the resulting operators f(H) coincide with the usual functional
definition

f(H) = / dEr(N) ()
0

in terms of the spectral family Ey; of H.

MclIntosh and Yagi [14], [15], [18] have given a variety of criteria for a generator
to have a bounded functional calculus and we will apply some of their results to
subelliptic operators. In this latter context the existence of the functional analysis is
a property of the representation of the Lie group to which the subelliptic operator is
associated. Throughout the sequel we adopt the notation of {16] modified as in [7] and
[1}. In Section 2 we first discuss the holomorphic functional analysis for subelliptic
operators associated with a general unitary representation. Then in Section 3 we
consider similar problems in the context of the left regular representation of the
group acting on the Lp-spaces. Finally, in Section 4, we apply our results to the
complex interpolation theory of the C™-subspaces of the unitary representations and
the regular representations.

2. UNITARY REPRESENTATIONS

Let (H,G,U) denote a (continuous) unitary representation of G on the Hilbert
space H and H = dU(C) the m-th order subelliptic operator corresponding to a
subcoercive form C and a fixed algebraic basis for the Lie algebra of G. It follows
from Theorem 3.3 of [8] that H is closed on the natural domain H., and it generates
a holomorphic semigroup S with a sector of holomorphy A(f,) which contains a
representation independent subsector A(0¢) with 8¢ € {0, 7/2]. The value of 8¢ is
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determined by the principal coefficients of H and if these coefficients are real and
symmetric then S is holomorphic in the open right half-plane, i.e., 8, = 0¢c = #/2.
Now if the real part of the zero-order coefficient co of H is sufficiently large the
semigroup S is contractive uniformly in a subsector A(f) of the universal sector A(6¢)
of holomorphy, i.e., [|S:|| € 1 for all z € A(#). This latter statement follows from
Theorem 3.3 of [8]. The fifth statement of this theorem establishes that for each § €
{0,0c) there is an w 2 0 such that ||S,|| € e“!?! for all z € A(#). Therefore replacing
H by H +vI with v > w/ cos 0 the corresponding semigroup is uniformly contractive,
and exponentially decreasing, in the subsector A(6). But with this normalization of
co it follows that H is accretive and since H is a generator it must then be maximal
aceretive. Moreover, H is one-to-one. This sufficies, however, to ensure that H has a
bounded functional caleulus over F,, for any ¢ € (7/2— 0, 7].

The last statement can be inferred from the results of Kato, McIntosh and Yagi.
First, if |H| = (H*H)'/? denotes the usual self-adjoint modulus then D(|H|) =
= D(H) = H;, and

2l = 1|

for all z € H],. Since H is maximal accretive and |H| is positive self-adjoint it follows
from [10] that for each ¥ € [0, 1] one has D(H?Y) = D(|H|") and there exists ¢y > 1
such that

T HIH 2] € I1H 2] < eal| 1H =]

for all z € D(H?"). Similar bounds follow by the same argument for the fractional
powers of the adjoint H* of H and then H has a bounded functional analysis over
F,, for each ¢ > /2 — 8¢, as an immediate consequence of the theorem in Section 8
of [14]. This result can be extended to F, with ¢ > 7/2 — 6, > 7/2 — 0¢ if one
replaces H by H + vI with a suitable v > 0. The argument is similar to the above.
If 6 € {0,0,) then S satisfies bounds ||S,]| € Me“!?! for all z € A(f). Hence after
replacing H by H + v, with v sufficiently large, the semigroup is uniformly bounded
in the sector A(6). But H + v is again one-to-one and for large enough v it remains
maximal accretive. Therefore the foregoing reasoning still applies.

One can, however, deduce much more from the criteria given by McIntosh and

Yagi.

THEOREM 2.1. Let H = dU(C) be an m-th order subelliptic operator associated
with the unitary representation (M,G,U). Further suppose that the holomorphic
semigroup S generated by H has holomorphy sector A(0,) and that the real part of
the zero-order coefficient of C is sufficiently large that S is uniformly bounded in the
sector A(8), where 0 € (0,0,), and contractive on Ry. Then one has the following.
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(1) The operator H has a bounded functional analysis over F, for each p €
€({n/2—0,7].
(ii) The imaginary powers {H" : t € R} form a strongly continuous group.
(iii) If ¢ € {w/2 — 0, 7] and f € B, then there exists ¢; > 0 such that

oo
| /d“'lllf(tf‘-’)wll2 < egllzl?
0

for allz € M.
(iv) If [H, K]y (= [K,M]1-) denotes the complex interpolation space between
H and the subspace K then

D(IIT) = [H1 H;im]')'/n = D((H*)‘Y)

for all v € (0,n) and n € N.

Proof. The main part of the proof is based on the theorem in Section 8 of [14]
but since the assumptions do not ensure that H is one-to-one this theorem is not
directly applicable. Hence we first make a reduction as in Theorem 3.8 of [4]. But
this reduction simplifies considerably in the Hilbert space context.

First, one defines a projection P by the strong limit

Pz = lim (I +nH) 'z
Lt 2eede ]

and then the range of P is the nullspace of H. Moreover, the range of I — P is the
closure of the range of H. Now the subspaces Hg = PH and H; = (I — P)H are
both invariant under S. The restriction of S to Hp is the identity and the restriction
S of S to M, is a holomorphic semigroup which is uniforinly bounded in the sector
A{6) and contractive on Ry. Let H; denote the generator of S(1). Then H, is the
restriction of H to H, and it is a one-to-one operator with dense domain on H;, by
Theorem 3.8 of [4].

Secondly, one can repeat this reduction with respect to the adjoint semigroup S*
and its generator H* and the corresponding projection is P*. Then ’)i'{ =(I-P"YH
is isomorphic to the dual of H; = (I — P)H, the restriction SMt of S* to H! is the
adjoint of S() and the generator 'H.'} of St is the adjoint of H;.

Now one can apply the theorem in Section 8 of [14] to H; on H; and its adjoint

on ’H{.
Since H, is densely-defined and closed it follows that D(H;) = D(|H1]) and
||Hyol| = || 1H: ||| for all ¢ € D(H,). But since S(*) is contractive on Ry its generator

H; is maximal accretive on ;. Hence it follows from the discussion at the beginning
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of the section that for each v € [0, 1] one has D(H]) = D(|Hy[") and there exists
¢y 2 1 such that
s N2l < N1HT 2l € eyl [Ha ]

for all z € D(H]). Similar bounds follow by the same argument for the fractional
powers of the adjoint 'H§ of H;. Then H; has a bounded functional analysis over F,,,
on H,, for each ¢ > n/2—#, as an immediate consequence of the theorem in Section 8.
of [14].

Next one has

M+ H) 'z =x"1Pz+ (M + H) Y(I- P)z
for each z € H. Therefore
H(H)z = F(0)Pz + f(H)(I - P)e

and

1 (H)z| < IO 1P|+ [ HDIIT = Pzl € el fllool=l-

Thus H has a bounded functional analysis over F,,, on H, for each ¢ > 7/2 — # and
Statement (i) is established.

Statement (ii) follows from applying Statement (i) to the functions z ~— z*.
Continuity of the group {H" : ¢ € R} is a consequence of the arguments in [14].

Statement (iii) for Hy on H; follows from McIntosh’s theorem. But if f € &,
then f(tH)z = f(tH,)(I — P)z and the analogous statement follows for H.

Finally, Statement (iv) follows from Theorem A of Yagi [18]. This theorem
applies directly to H + eI with ¢ > 0 but since both sets in the resulting identity are
independent of ¢ > 0 it then follows for H. ]

Statement (iii) of the theorem only concerns the restriction Hy of H to H; because
f € &, and hence f(tH)x = f(tH,)(I - P)z. Since H; is one-to-one the theorem in
Section 8 of [14], as reformulated in Theorem 2.4 of [4], then gives bounds

G = Pl < [ dte Aemel? < el - Pyei?
0

for some ¢; > 0 and all z € H. This is of interest when applied to the function
z + z1~7e~% where v € (0,1). Then one has

I = Phalf? < [ due @ H T Seel)? < el = P
0
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for some ¢ > 0 and all z € H, or, equivalently
(==]
el < [ e TS E)? < el
0

for all z € D(H?7). Now the real interpolation spaces (N, D(H)),, 2. defined by the
Peetre K-method have an equivalent norm

1/2

o0
= 1 felly = ol + ( [aereasan?
0

(see [2], Theoremn 3.4.2). ence D(II7?) = (H, D(H))y,2:1 = [H, D(H)]y when D(H?)
is equipped with the graph norm. This gives an extension of [6] Theorem 7.2.V.

The foregoing results apply directly to G acting by left translations L on the
Hilbert space La(G;dg). But if G is & subgroup of a second Lie group G they can
also be applied to the action L of G on L2(G)) = La2(G;dg). Alternatively, the
argument in the proof of Theorem 3.7 of [9] to obtain the Ly case from the Lo can be
used to deduce that D(|H|) = D(H) = L%;m (G1). Then, as a result of the Garding
inequality, D(|H|") = D(H") with equivalent norms if the real part of the zero-order
coefficient of C is large enough. The same reasoning applies to the dual operator.
Therefore we have following conclusion.

COROLLARY 2.2. Let H = dL(C) be an m-th order subelliptic operator asso-
ciated with the representation of the Lie subgroup G of the Lie group G, acting by
left translations L on L3(G1). If the real part of the zero-order coefficient of C is
sufficiently large then the conclusions of Theorem 2.1. are again valid.

3. Lp-SPACES

We continue to examine two Lie groups G and 3 with G a subgroup of Gy
and now consider the representation of G by left translations L on the Lp-spaces,
Ly(G1) and Lx(Gh), formed with respect to left, and right, Haar measure over Gr.
In addition we now assume that G is connected. Qur aim is to establish that each
m-th order subelliptic operator H = dL(C) asociated with L and a fixed algebraic
basis a3, ..., ag of rank r for the Lie algebra of G has a bounded functional calculus
on these spaces if p € {1, 00). The crucial case is when G = G but it is subsequently
useful to consider the more general situation G C G;. Since all analysis takes part
on the connected component of the identity of G we may as well assume that G is
connected.
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First note that the interpolating semigroup S generated by the closures H on the
various spaces has a representation independent subsector of holomorphy A(8¢), by
Theorem 2.5 of [8], and in particular S is holomorphic in this subsector on each of the
spaces. Therefore, replacing H by H + vI with v sufficiently large, one may assume
that S is uniformly bounded on each of the spaces uniformly in a subsector A(#) with
0 € (0,0c), i.e., one has bounds ||5,||,~, < M, \“SZHF_;.{\ M for all z € A(f) and
all p € [1, 00]. Now the main result we prove is the following.

THEOREM 3.1. Let H = dL(C) be an m-th order subelliptic operator associated
with left translations L by the group G acting on the spaces Ly(G), and L;{Gl) and
let 0 € (0,0¢). If p € (1, 00) then H is closed and there is a vy 2 0, independent of p,
such that the operators H + vI, v > vy, have a bounded functional analysis over F,
for each ¢ € {7 /2 — 8,7].

Proof. First remark that it is not at all obvious that the operator H are closed
but this is establish by [1] Theorem 2.3. .

The next step in the proof is to establish the result for all f € &, 5 with &
sufficiently large. Then the general result follows by approximation. The proof for
the special class of f is based on the L3(G})-result established in the previous section
and a weak L(Gi)-estimate which follows by the methods of singular integration
theory. This estimate is the most difficult part of the proof and it is established from
analysis of the kernel associated with f(H). Finally we deduce the L,-statement from
the L;-statement. The details of the proof are very similar to the arguments used in
[1] to prove Theorem 2.3.

It follows formally from the definition of f(H) that its action should be given by

F(H) = L(K;) = /G dg K1(9)L(g)

where the kernel K; is defined on G\ {e} by
@) Ky(9) = @ni)™ [ A FO)R-a(0)

and Ry denotes the kernel of the resolvent (Af + H)~!. We begin by examining
properties of I{; for f € &, and for this purpose it suffices to consider the operators
acting on the L;-spaces over (G, so for 2 moment we consider the case Gy = G.

If one replaces H by H + vI with v sufliciently large, one may assume that the
semigroup S satisfies the bounds ||S,M;_‘; < M for all z € A() and all p € [1,00]
where the norms are the operator norms on L,(G;dg). Then one has the resolvent
bounds

®3) (=2 +H) o> < M|A™
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for all non-zero A € C with |argz| > n/2 — @ and all p € [1,00]. In particular this
implies that the kernel R_) € L1(G;dg) because the Ly-norm is given by

R=allr = (=M + H)™H|eo—eo-

Therefore if f € @, with ¢ € (7/2 — 0, ] it follows that K is well-defined by (2)
and K; € Ly(G;dg). Then if v is large enough it follows from Corollary A.2 that
K; € L{(G;dg) where p > 0 is such that 4;(g) < e?9l' for all g € G with |- | the
modulus on G associated with the algebraic basis and A; the modular function on
G1. Hence K is the kernel of the operator f(H).

Secondly, following Duong [5], we argue that if f € &, 5 with & > 2D'/m then
Ky € Leo(G;dg). The proof of this observation begins by noting that (I + H)~% is
bounded on L, (G;dg) for all § > 0 and hence its kernel R, s € L1(G; dg) because

IR1,6ll2 = 1T +H)™*{loo—co-

But if § > D’/m then R; s € Loo(G; dg) by the resolvent estimates of Theorem A.l in
the appendix. Therefore if § > 2D'/m then (I + H)~%/? is bounded from La(G; dg)
to Loo(G; dg) and one has

I(Z + H)-6/2||" = ||Ry,572]l2 < (”Rm/z"l||R1,5/21|oo)1’2 < 0.

200

Next by a duality argument (I 4+ H)~%/2 is bounded from L,(G;dg) to L2(G;dg).
Now since f € P, 5 one may choose fi € Lo (G;dg) such that

f(z) = (1+2)7" fu(2).
But fi(H) is bounded on Ly(G;dg) by Corollary 2.2 and
F@) = (1 + B f, (@ + )72,
Therefore f(H) is bounded from L,(G;dg) to Le(G;dg). Consequently,
1K lloo = If(H)lI g < 00

and K; € Loo(G;dg).
Since Ky € L1(G;dg) N Lo (G; dg) it follows automatically that K; € Ly(G;dg)
and this is crucial for the pricipal estimate.

PRrRoPOSITION 3.2. There is an M > Q such that

u1({g € Gy : [(F(H)u)(g)l > v}) < M| Flloollullzy™
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for all f € Dy 5 withp € (1/2—0,7) and 6§ > 2D’ fm and for all u € L,(Gy; p1) where
#1 denotes the right Haar measure on Gj.

Proof. The action of the operator f(H) is determined by the kernel X; € LiNLq,
and we first decompose it into a local part and a global part. Let x : G — [0,1] be
a C*®-function with compact support in a bounded symmetric neighbourhood §2 of
the identity e of G and suppose that x = 1 in a second neighbourhood 29 C £2 of e.
Then one can decompose f(H) as a sum Ty + Ry where Ty = L(xK}). But it follows
from Corollary A.2 in the appendix that one has bounds

=D _paVmp o
1K (9)] < allflloo(lgl)=2 =" "lsl

where | |’ is the canonical modulus on G associated with the algebraic basis used in
the definition of the subelliptic operator H and the positive parameter ¢ is a linearly
increasing function of the scalar term v. Thus if v is sufficiently large K;(1 - x) €
L{(G) = Ly (G; e'°|9|'dg) with p > 0 so large that A;(g) < e?!9V' for all g € G where
A, is the modular function of ;. Since

1R lls < 15 (1 = I,

where the norms of I%; are now relative to L;aspaces over Gy, it follows that R;
is a bounded operator on L;(Gl) with norm bounds continuous in f, uniformly in
P € [1,00), i.e., one has estimates

1R llpp < el flloos

in particular this is the case if p = 1 and p = 2. Ilence to establish the weak-L+(Gy)
estimate on f(H) it suffices to establish an estimate of this type for Ty. This is
achieved in several steps by the reasoning used for an analogous problem in [1].

We begin by considering the action of T} on the L;-sgaces over G, l.e., we ef-
fectively assume that G = G;. Then the first step is to derive a local version of the
required estimate. Hence we introduce the operator Sy from Ly (£2%; i, to Ly (£2%; py)
by Syu = Tj(x'u) where x' : G — [0,1] is a C*°-function with support in 2 C G and
pr is the restriction to 22 of the right Haar measure on G. Then

(Syu)(g) = ]n dpr (BYks (g3 h)u(h)

where
ks (g; k) = x(gh™ ") Ky (gh~M)x'(R).
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Now the tactic is to deduce the local result as a corollary of Theorem I1.2.4 of [3]. This
requires verifying three properties of Sy and k;. First one needs Sy to be bounded
on Ly(£22; ). But this follows from Corollary 2.2 since

Spu=Ty(x'u) = FH) (X u) = Ry (X u).

Moreover, one has bounds ||S;|lz_5 < ¢||f|loo- Secondly, one requires that the kernel
ky € La(2° ® 2% pr ® py). But this is evident because K; € Loo and hence ky is
bounded. Finally, one needs an estimate on the variation of X in the second variable.
But for this it suffices to consider a particular 2.

LeMMA 3.3. Let n>0and 2= Bj.,, ={9€G:|g|' < 2-13}. Then there is
an M > 0, independent of the choice of f, such that

]n (o)l (93 = ky(gi )] < Ml

for all h, ho € 2 where $2(h; ho) = {g € B, : lohg*) > 2|hhg '}

Proof. The proof is a slight variation of the argument used to establish an
analogous property for the sequence of operators T; in the proof of Theorem 2.2 of
[1). In the estimates on the T; uniformity in j is essential and in the current context
the uniformity in f is crucial. Therefore we repeat some of the details in order to
display this uniformity.

First by right invariance of y, one has

[ aum@lbsoin) = byl < [ ()l (aho; ) ks(ghos o)
hiho) a(hiho)

for all h, ho € 2% where 23(h; ho) = {g € By, : |9’ > 2|hh; '} and where we also
denote by p, the restriction to By, of the right Hlaar measure on G. Now to bound
the integrand we choose an absolutely continuous path v : [0,1] — G from ho to k

with tangents in the directions a1,...,a4. Then

d' 1
ky(gih) = ky(gsho) = 3 / dt 7 (8) (Asky ) (g 7(2))

i=ly

where the A; are left derivatives with respect to the second variable. We fix ¥ such
that

1 d' 1/2
J (Z 7,-@)2) < (1+)lhoh™1
0

i=1
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where ¢ € (0,1). Then
lhov(t)™!I' < (1 + €) o™’

for all t € [0, 1]. Therefore

1/2

yz oo
ks (gho; h) — kz(gho; ho) / (Z%(t)) (ZI(Askf)(yho;-r(t))Iz) €
i=1

i=1
< 2d'|hoh ™| sup{[(Aiks)(gho;v()] s i € {1,...,d'}, t €[0,1]}
and our next aim is to bound the last factor. But
(Aikr)(g; h) = (Bix)(gh™") K  (gh=1)x'(h) + x(gh™")(B: XK Ygh™ )X’ (h)+

+x(gh™ ) Ky (gh™")(Aix")(h)

where B; denotes the right derivative in the direction a;. It follows, however, from

the estimates on R given in the appendix that
|11 (ghoh™)] < allflleo(lghoh™"[)~"".
Since
lghar ()™ 1" 2 lol' = lhov(t)™'I' 2 lgl' = (1 + €)lhah™"]" 2 271 (1 - €))gl’
for g € £22(h; hg) one then has an estimate

1K (ghov()~1)] < @l flloo (l91')~2"

for all g € £22(h; ho) if € is small enough. Next to handle the right derivative of K

we note by Lemma 4.3 of [8] one has

(Bip)(9) = (L(a N AL()e)9) = Y cip(a)(APp)(g)

BeJ (d")
181#0

where the real-valued functions ¢; g satisfy the bounds |c; s(g)| < M(|g|")!PI-1els)’.
But the resolvent bounds in the appendix give bounds

(AP K5 )(9)] < Bl flloo (1g]') =P +14D

and hence one has

|(Bi K 1) (ghov(8)™)| < V[l flloo (lghav(t) ™ 1)~ +D < 8| flloo(lg]") ="+



FUNCTIONAL ANALYSIS OF SUBELLIPTIC OPERATORS ON LIE GROUPS 289
for all g € 2a(h; hg). Combination of these various estimates then gives
o - 1]
I(Aiks)gho; YOI < all Fllos (lg]")~P*D

and, consequently,
[k (gho; B) = ks (gho; ho)t < &I Flleo lhoh™"{'(|g]")~(P"+1)

for all g € 2:4(h; he).
Finally, setting g = [hoh~!|’, one has

[ dne(ollkstait) - kstaihol <
iko
<Alflmsip [ dn(adsllal)y @ < Miiflo

]
"2uglalig2n
where M > 0 is a finite constant independent of f. The last estimate is established
as in [1]. |

The operator Sy, defined with 2 = B,_, p acts on the spaces Ly(By; pr)- There-
fore one can now apply Theorem 11.2.4 of [3] to S; and deduce that it satisfies a
weak- L+ estimate. But since the Iz-bound on §; and the bounds of Lemma 3.3 are
uniform for f with ||f]|co € 1 it follows that the resulting L;-estimate is also uniform,
i.e., one has an M > 0 such that

#e({g € G |(Spu)()f > 71 < M| Alolluligy™

for all f € &, 5 with ¢ € (r/2 = 0,7] and § > 2D'/m for all u € L1(By,; pr)-

At this stage one can remove the assumption that G = G; by the reasoning of
[1] The basic idea is that Gy ~ G x R4 locally and the right llaar measure p; on
Gy corresponds to Lhe product of g, and Lebesgue measure on R% -4, Repetition of
the arguments of {1] then give the local weak-L1(G)) estimates

wm({e € G IEXK)u) @) > 1)) < el flloollullgr™

for all f € B, 5 with ¢ € {x/2~0,7] and § > 2D’ /m and for all u € L1(Gy; p1) with
support in a ball of radius 411 centred on the identity if n is sinall enough. Then,
however, one can use right invariance to extend the bounds to all u € Ly(G1, p1) with
support in a ball of radius 41y centred at an arbitrary point & € G;. Moreover, the
bounds are uniform in h. Finally, the bounds can be extended to global bounds by
use of Lemma 2.4 of [1]. One then has

#1({g € Gi; [(Tru)(9)l > 11) < ellfllosllullpy™
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forall f € P, s withp € (#/2-8, 7} and § > 2D’/_m and for all u € L;(G1; p#1). These
bounds combined with the earlier Li-bounds on R; immediately yield the bounds of
Proposition 3.2. |

Now we can complete the proof of Theorem 3.1.
If v is sufficiently large f(H + vI) is defined and satisfies & bound

W (H +vDll_5 < clifllo

on Lz(Gy) for ail f € F,, with ¢ independent of f, by Corollary 2.2. If, however,
f € &, with § > 2D'/m then f(H + vI) satisfies the weak-L~(G)) estimate of
Proposition 3.2. Therefore f(H + vI) is bounded cn L;(G;) for all p € {1,2] and
f € &, 5 with § > 2D'/m by interpolation and in addition one has bounds

F(H + vDllz_z < clifloo-

This result then extends to all f € F, by McIntosh’s convergence theorem, [14]
Section 5. Since similar arguments apply to the formal adjoint H' of H the desired
boundedness properties of f(H + 1) on LyGh) for p € (2,00} follow by duality.

Finally boundedness on the L,(G))-spaces follows from boundedness on the
L;(G;)aspaoes as follow; Since Ai”’ A;A;”" = A; — p~1b;] we consider the m-th
order subcoercive form C by

c= Y. Y ea(=p)Mbr.

a€dm(d') y€Im{d")
(B.7)ELb(ax)

Let H = dL{C) and = dL(é). Arguing as in the proof of Lemma 2.1 of [1] one
obtains that
AYPOI + H)"Yp = (M + B)14MPp

for all ¢ € C(Gy). Moreover, the previous results apply to H. So if f € Fy, 5 and
¢ € CZ(G1) one obtains
IFCH)elly = 1817 £(H)ells = ILF(E)AY Pl <
< cll flleo 141 ll = el Flloo -

By McIntosh’s convergence theorem and density the theorem follows. [
Now one easily obtains two of the three other conclusions of Theorem 2.1.

COROLLARY 3.4. Let H = dL(C) be an m-th order subelliptic operator associ-
ated with the left translations L by the group G acting on the spaces Ly,(G1) where
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p € (1,00). If the real part of the zero-order coeficient of C' is sufficiently large then
one has the following.

(i) The imaginary powers {H'* : t € R} form a strongly continuous group.

(i) D(H") = [Lp, L} amlv/n = D((H*)") for all y € {0,n) and n €N.
Similar statements are valid on the L;(Gi)-spaces.

Proof. Statement (i) follows from Theorem 3.1 by the same argument as in
Section § of [14].

In Theorem 2.3 of [1] the equality Lj,.,,,,, = D(H*) lias been proved for alln € N if
the real part of the zero-order coefficient of C has a sufliciently large value, depending
on n. Then by Theorem 1.15.3 of [17] and Statement (i) on has

(4) D(HV) = [LP’ D(Hn)]'r/ﬂ = [LP! L;J;nm]’rfﬂ = D((H*)‘)‘)
for all ¥ € (0,n) and n € N. The proof on the L--spaces is similar. u

The interpolation properties (4) immediately gives the following comparison of -
domains for different subcoercive operators.

CoOROLLARY 3.5. Let Cy and Cp be subcoercive forms of order my and my, both
of step r. If H; = dAL(C;) are the operators on Ly(G1) with p € (1,00) associated
with the algebraic basis of rank r of the Lie algebra of the subgroup G C G then

D((v1 + H)H™) = D((vI + Hz)''™)

for allt € [0, 00). Similar identities are valid on the L;(Gl)—spaces.

4. INTERPOLATION OF C™.SUBSPACES

The complex interpolation properties of subcoercive operators give some interest-
ing results for interpolation between the C"-subspaces associated with a general set
ai,...,aq of elements of the Lie algebra g of G. It is no longer necessary to assume
that a1,...,aqs is an algebraic basis.

One can again derive results for unitary representations or the regular represen-
tations on the L,-spaces with p € {1,00). First recall that (¥, K)y 4,x denotes the
real interpolation spaces defined by the Peetre /{-method.

PropPOSITION 4.1, Let (H,G,U) be a unitary representation of the connected
Lie group G and H!, the C"-subspaces associated with a family a1, ..., aa of elements
of the Lie algebra g of G. Then

Hy, = [H;, Hie-5)10-4)-
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for j, k,1 € Ng with 7 < k <1 and with the convention Hy = H.
More generally

(M5, M) (r=y1a-irzik = (MG Mid(v=i)10-5)

for v € {(3,1).

Proof. We may assume that a;,...,aq are linearly independent.

Let G’ denote the connected subgroup of G with Lie algebra g’ generated by the
subbasis ay,...,as and let H be the sublaplacian associated with the subbasis. Now

we can apply Theorem 2.1 to the representation (H,G’,U’), where U’ = U|G’, and
to the subcoercive operator H. Then if v is large enough the operator (¢v/+ H) has a
bounded functional calculus. Therefore (vI + H)™* is uniformly bounded if s € [-1,1}
and by Theorem 1.15.3 of [17] one has

[D((vI + H)®), D((vI+ H)"))s = D((vI + H) A-0+79))

for0 <6<y <ooand 0 <0< 1. But W, = D((vI + H)*/?) by [8], Theorem 3.3.
Therefore
i = D((vI+ H)*?) =
= D((wI + HY?), D((vI + ) Nw-sysa-5) = (M Hile-ipia-)

for j <k < l. Moreover, if j < ¥ < { then
(5, M) amspsa-iyme = (L Hiypraze = D(WT + HY?) =

= D((vI + HY'), D((vI + H)'®y-jypa-iy = (15, Hiler-s)10-5)
where the first two identifications follow from [6] Theorem 3.2 and Lemma 7.1.

The proposition establishes that the real interpolation space with ¢ = 2 play a
distinguished role for unitary representations. It is unclear whether there are analo-
gous identifications for all the complex interpolation spaces associated with the C"-
-structure of the regular representations. Nevertheless the first conclusion of Propo-
sition 4.1 can be extended to these representations acting on the L,-, or L;;, spaces
over G, with p € (1, 00), by a similar argument based on Theorem 3.1.

CoROLLARY 4.2. Letay,...,aq be elements of the Lie algebra g of the connected

Lie group G and L/

pin(G), L;,;_n (G) the corresponding C™-subspaces. Then

Ly (G) = [Ly5(G), Lya(Gik-iys -4

ifj <k <!andpé€ (1,00). Similar identities are valid on the L;(G)—spaces.
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It is possible that complex interpolation results similar to the first statement
of Proposition 4.1, or to the statement of Corollary 4.2, are valid for general rep-
resentations but the above proof which relies on special regularity properties of the
unitary representations and the regular representations does not shed any light on

this question.

A. RESOLVENT ESTIMATES

Let S be the semigroup generated by the closure of the m-th order subelliptic
operator H = dU(C) determined by the subcoercive form C = (¢a)ags..(a) With
coefficients ¢, € C. Then for ¥ € C with the real part Rewv sufficiently large the
fractional powers (11 + H)~% of the resolvent are defined for all § > 0 by the Laplace
transforms

(5) (VI-{-F)_J = I‘(&)“I/dte—uiid—lst‘
[}

Since S satisfies bounds ||S;|] < Me** for some M > 1,somew € Rand all t > 0 it
follows that the resolvents are indeed defined and satisfy norm bounds

(v I+ H)™*|| < e(Rev —w)~*
whenever Rev > w. More generally if a € J(d') with |a] < mé one has the bounds
(6) |A*(wI + H)~*|| € e(Rev — w)~(mé=lallim

on the left derivatives of the resolvents.

It follows from the definition of subcoercivity [7] that to each subcoercive form
C there corresponds an angle 8¢ € {0, 7/2), determined by the principal coefficients
of C, such that each of the forms e’C = (ei"ca)aum(d:), ¢ € (0,0c¢), is subcoercive.
Hence the closures of the operators e H = dU(e!°C), # € {0,8c), generate contin-
uous semigroups S? which give a holomorphic extension of S to the sector A(fc) =
= {z € C: |argz| < ¢} by the identification Seie; = S? for t > 0. If 8 € (0,0¢), the
holomorphic extension automatically satisfies bounds ||S,|| < Me“l*! for all z € A(6)
with M > 1 and w € R independent of 2, but dependent on #. Consequently, the
fractional powers (v + H)~? of the resolvent are defined for all v € C such that
Re(e'¥v) > w for some ¢ € (—8,06) by

(vI+ 7{—)'6 = (ei“’ul + ei"ﬁ)'%i&“’ =
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o0
= r(s)"lei%e / dteme* gs-1gY.
0
Now set

I'p;w) = Ii{p;w) U - (p;w)

where I'y denote the half-planes
Ty (p;w) = {2 € C : Re(ze®%) > w}.

Then" the resolvents and their fractional powers are defined by the above method for
all v € A(8;w) where

Abw)y= | I'(pw).

pElo,8]

Moreover, one has bounds, analogous to (6),
(M |A%(vI + H)~4|| € ep(v; A)~(mé=labim

for all ¥ € A(0;w) where p(v; 4) denotes the distance of ¥ to the boundary of A.

Next remark that the semigroup S has a kernel K which has a holomorphic exten-
sion to the sector A(f¢) and which satisfies “Gaussian bounds” uniformly throughout
each of the subsectors A() with 8 € {0,0¢c). Specifically for each o € J(d') there
exist a,b > 0 and w € R such that

(8) [(A%K,)(g)| < alz|~ (2" Hoimewlzlo=b((gl")™ 5]y (m=

for all 2 € A(f) and g € G. Consequently the operators (v + H)~? have kernels R, s
determined by the semigroup kernel X and the appropriate Laplace transform, e.g.,

(9) Ry s(g) = I(6)™} / dte="'t5-1K,(g)
a

for Rev > w. But as one lias bounds on the derivatives of K one can derive bounds
on the corresponding derivatives of the R, s for all v € A(0,w). One finds

oo
(10) I(AaRu,o)(g)I < a/dte_’”t"l'{'ﬁe—"((lgl')"‘_l)'/(""”
0

for all ¢ € G and v € A(f;w) where 8 = (mé — D' — |a|)/m and p = p(v; A).
Estimating as in the proof of Theorem II1.6.7 in [16] these bounds can be reformulated
as follows.
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THEOREM A.l. For each a € J(d') and 0 € (0,0¢) there exist a,b > 0 and
w € R, such that

(11) (A% Ry, 5)(9)] € ap®"Hel=mDm Fyy (ot g )embo sl
for all g € G\ {e} and all v € A(0;w) where p = p(v; 4) and

g=(D'+k=mb) §f P 4 k> mé
Frs()=19 1+logtz~! if D' +k=mé
1 i D'+ k < mb

with logty =logy ify 2 1 and logty = 0 if y < 1.

Proof. Before beginning the proof we briefly comment on the structure of the
bounds (11). First the factor p(P'+lal=m8)/m j5 4 reflection of the behaviour given in
the norm bounds (6) of the dependence of the resolvent derivatives on p. The remain-
ing terms depend only on the rescaled distance g — pY/™|gl’. Secondly, the factor
Fklg(pll ™|g|’) gives the small distance behaviour and this depends on the relative size
of the local dimension, the order of the operator, etc. Thirdly, the exponential factor
e=t''"ldl" gictates the large distance behaviour and this is dimension independent.

The proof consists of estimating the bounds (10) and there are three distinct
cases to consider, 8 < 0, 8 > 0 and 8 = 0. We examine them in this order.

Case 1. # < 0. A change of integration variable in (10) gives

(12 (A Ry s)(0)| < allghy™ [ dee 14261
0

where
£(t) = p(lgl’y™t + be=1/m=1),

In particular one has the estimate
(A% Ry 5)(9)] € d'(Jgl")~(PHel=mD)
for all ¢ € G with

[es]
—-1/(m=1
a’ =a/dtt'1+pe'“ fm=2
[}

independent of ¥ = A(0;w). This establishes the required estimate for pmgl' € 1.
Next we consider the case p'/™|g|’ > 1. Since f has a unique minimum at
the point t = ((m — 1)p(]g|')™/b)~(™=1/™ the integral in (12) can be estimated in
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two parts, I¢ the integral over (0,%o] and I, the integral over [to,00) where o =
= (p"/™g|")=(™=1). One has

oo
I, € /dtt—1+ﬁe-ﬁ(|9|')m‘
ta

and
to
I¢ g_/dtt'”ﬂe'“-”(m-”-
0
Therefore
o0
I,  e=?Usl)™to / e+ =g fe (e o,
to

But if n is any integer greater than ~(m — 1)73 then one has bounds
(o ™)l < mite=nere ol

for each £ > 0. Moreover, p([g]')™to = p}/™|g|". Consequently, by choosing & = 2-!,

one obtain bounds
—n=1_1f t
Is < ae? 7 el

forall g € G.
Next consider I¢. A change of integration variable t — ¢t~(™~1) gives

[e ]
I < (m- 1)/dtt7e‘°‘
1 3

where ¢; = t5 /(™) = p™g|' and v = n - 1)(1 - B) — m > —1. Suppose 7 > 0.
If n is any integer greater than 7, then t¥ < t” € nle~"e for all t > ¢, > 1 and
€ > 0. Hence setting ¢ = b/2 one obtains bounds
[2=]
I £2"(m - l)n!b"‘/dt eH/2 ¢ gem¥'P ol
ty
for suitable a,b’ > 0. Secondly, suppose v € (—1,0). Then

o =]
I < (m— 1)/dt e = (m - 1)b~ e,
ty

Thus one again obtains bounds

M Mm ]
Ic < ae b Mgl
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Since similar bounds were already established for p'/™|g < 1 this completes the

discussion of Case 1.

Case 2. # > 0. Since pt = b((|g|")"tg )Y~V if t = pm=1)fmigl p=(m=1)Im we
set tg = p~(m=1)/M|g|’ and consider the integral in (10) in two parts, I the integral
over (0,10} and I..the integral aver [tq,c0}. Then

to
I ety / dt 1= 1+8e—0t
0

o0
g et fdtt'”f’e"”.
4]

But the latter integral is finite for p > 0, because g > 0, and by a change of variables

s = pt one obtains bounds
Ic < ap(D‘+‘lal—m6)lme-bp""‘I9I'

as desired.
Alternatively

o0 o
I < /dtt"l’“ae“"‘ < e"”"ﬂ"’fdtt-l*'/’e—?"“
to 0

and the bounds follow from another change of variables.

Case 3. B = 0. Now (10) gives
o o]
[(A%R,.5)(9)| < @ / dtg-1e-I®
i}

where f(t) = pt + b((Jg|")™t~*)/(m—1), Therefore, integrating by parts, one has
o0

(A% Ru5)(9)] < a / dtlogif'(1)e~!® =
0

oo o«
=a f dt log(pt) f'(t)e™®) = ato f dt log(ptot) f'(tat)e™ ("),
0 o]

with to = p/™=1|g|’. Now we divide the integral into a first part over the interval
(0,1] and a second part over [1,00). Then

1
I < to [ dtlog(ptar) ' tot)e (e TIa 7,
0
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and a change of variable ¢ — ¢~(m-1) gives
o
I¢ L to(m — 1)/dt t'mlog(ptot"('"“”)f’(tnr(m-l))e—bp“""Igl't_
1

But f/(tot=(™=1) = p(1 — b(m — 1)~1™), so |f'(tot~¢™~1)| £ ¢pt™ for some ¢ > 0,

uniformly in ¢ 2> 1. Therefore one has an estimate
=] oQ
I¢ € a1lptolog(pto)| _/dt emb /ol 4 Ctho_/dt e—bpl/mlglltl‘)gt
1 1

and this immediately yields a bound
Ic < ea(1+ [log(pH/™|g|"))e=¥#" ™.

Next consider

o0 oo
Iy =to [ dtlog(ptat)'(tot)e™ /) < to [ dtlog(ptat)(tot)e™ =
1 1

[++}
=to f dtlog(ptot) f'(tot)e=2¢""lel't,
1

But now f'(igt) = p(1 — b(m — 1}~1¢=™/(m=1)), Therefore one has estimates

o9 o0
I5 < Cllﬂiolog(ﬂto)I/dt et ol +CthO/dte-bpum'ylltlogt <
1 1

[+ =]
< ¢ Jlog(pto) e~ ™91t 4 copto [ dilogre=bet/™lsl't,
11108 # p £
1

Moreover
logt = log(ptot) — log(pto) < ptot — 1 —log(pto) <

< ettt 4 1+ [log pto]
for all € > 0. Hence choosing ¢ sufficiently small one obtains a bound
I, < es(1+ [log(pt/™[g[))e=2 """
Therefore combining these estimates one finds bounds

(13) I(AGRV,G)(G)I < G(l + Ilog(plfmiglr)_lI)e_bpllmlgl;
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for all g € G. Finally if z < 1 then logz~! = logtz~1 but'if z > 1 then
14 [logz™| =14 logzr L z e le”

for all € > 0. Therefore by redefining the values of ¢ and b the bounds (13) can be
reexpressed in the desired form. [

The zero-order coeficient ¢ of C contributes a multiplicative factor ¢ +— e~ to
the semigroup S. Therefore the values of a and b in the kernel estimates (8) can be
assumed to be independent of ¢y and w can be taken as a linearly decreasing function
of Recp. Thus if Re ¢y is sufficiently large the parameter w is negative and the kernel
K is exponentially decreasing. Moreover, A(0;w) = I'(0;w). Now if f is bounded
and holomorphic in the sector A(p) with ¢ € {7/2 — 8, 7] one can define the kernel
K; on G\ {e} by

(14) K;(g) = (21)! /P v ()R-, (9)

where R, = R, denotes the kernel of the resolvent (vI + H)~! and the contour I'y
is determined by the function

telx if [0, 00)
—te™X ift € {~00,0],’

Iy(t) = {

with x € {(7/2 — 0,¢). The bounds of the theorem then give bounds on K; and its
derivatives.

CoROLLARY A.2. Let a € J(d'), 8 € {0,0¢) and ¢ € (x/2,7]. If the real
part of the zero-order coefficient ¢ of C is sufficiently large then there exist a,b> 0
independent of ¢y and a ¢ > 0 linearly-dependent on Re ¢o such that

(47 K/ )(9)] < all flloo (lgl) (P +lobemte ™15l

for all f € I, and all g € G\ {e}.

Proof. By elementary geometry one obtains bounds p = p(v, 4) > |w| + 7|y
for v € I, with 7 > 0. In particular p/™ 2 2-1(|w|!/™ + 71/™|y[1/™) and pt/™ >
> /™ y|}/™, Now there are three cases to consider corresponding to the three cases
of the theorem.

If D' + || > m then the theorem gives bounds

(47 R,)(9)] < aljglt)~(@"Hal=m)o=b 1o/ lol =4kt "ol
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with ¥ = 2-1671/™ and b" = 2-1b. Therefore
’ [=<]

D' _uwlfm y m_ =1V ™ el
(A% 7)(9)] < 2all oo (lgl) =P HeDe ol 1o j du(Jg['yme=¥ 11" "1
0

and the desired bounds follow immediately. The other two cases D' + |a| = m and

D' + |a| < m are very similar and we omit the details. a
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