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ON THE K-THEORY OF THE NON-COMMUTATIVE CIRCLE

GABRIEL NAGY

In [2] we study a certain field of C*-algebras (7)ser, Where 7; us defined as the
universal unital C*-algebra generated by an element ¢ subject to 1—{{* = ¢(1=(*¢).
Of particular interest we considered the algebra 7_;- the Non-Commutative Circle.

This note, which should be considered as a continuation of [2], is devoted to the
computation of the K-groups of this C*-algebra. We show that the K-theory is the
same with the one of the disk, and as a consequence, the quantum disk deformation
gives a I{ K equivalence.

1. We recall first some notations and facts from [2]. The C*-algebra that we are
dealing with is the universal unital C*-algebra 7_; generated by two self-adjoint
elements 2 and y subject to the relation 22 4+ y? = 1.

Let us consider A to be the full C*-algebra C*(Z2 * Z3) of the infinite dihedral
group, that is the universal unital C*-algebra generated by two self-adjoint unitaries
u and v. The basic facts that we shall need are contained in the following.

PROPOSITION. The K -groups of the C*-algebra A are Ko(A) ~ 2% and K1(A) =
= 0. Moreover, the generators of K¢(A) as a free abelian group are [1], [p] and [q],

where p = %(1 —u)and g = %(1 - v).

Proof. Parts of this proof are standard (see [3], {4] or [5]). However, since some
notations will be used later, we have chosen to give all the details.

The statment follows essentialy from the results of Paschke (see [4]), plus the
fact that one has a group isomorphism between Z, *12 and ZxZ, where the action of
Z; on Z is given by the automorphism n + —n. Then we consider a *-isomorphism
®: A — C*(Z)xZ; which is given by ®(u) = ZV, &(v) = V, where Z is the canonical
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generator for C*(Z) and V is the unitary in C*(Z)xZ; that implements the above
action of Z, on Z and hence on C*(Z) (that is, VZV = Z~1 = Z*).

Since C*(Z) is isomorphic with C(T) - the algebra of continuous functions on the
unit circle - we can view ¢ as an isomorphism between A and C(T)»Z2. The action
of Z3 on C(T) is now implemented by the homeomorphism z — Z of T.

Following the method of Paschke, C(T)xZ, gets identified with the subalgebra
of M2(C(T)) consisting of those 2 by 2 matrices of the form

- )
h  fa
with fi(2) = fi(z) and g(z) + 9(Z) = h(z) + h(z) = O forall z € T, k = 1,2.
That is, using the Z3-grading of C(T) given by the above action, fi, fo € C(T)o and
g,h € C(T)1. But if we take T+ to be the upper semicircle, clearly all the functions

from C(T)i, k = 0,1 are uniquely determined by their restriction on T+. This allows
us to identify C(T)»Z, with the subalgebra B of M2(C(T)) consisting of all matrices

= (fl g )
h f
with g(1) = g(~1) = h(1) = h(—1) = 0. Taking now the homeomorphism ¢ : [0,1] —

— T+ given as p(s) = 2s — 1 + 2ivs — 52 we will identify A with the subalgebra D
of M5(C([0,1])) consisting of all matrices

(fl g )
a=
h  fa
with g, h € Co((O, 1)), that is g(0) = g(1) = h(0) = h(1) = 0.
Let us see now what the images of u and v are, under this identification. To do

this, first we explicity write down the embedding ¥ : C(T)xZ; — M3(C(T)). For
a=F+GV € C(T)xnd,, with F,G € C(T) we have

o) = (B +9) Br-0))
E((F+G) Eo(F-G)
where Ey : C(T) — C(T)e, k& = 0,1 are the projections Ep(F)(z) = %(F(z)+

+F(Z)), Ei(F)(z) = %(F(z) ~ F(Z)). Take Z € C(T) to be the function defined
by Z(z) = z. For the elements Z, V € C(T)xZ, we get

ReZ iImZ 1 0
¥(Z)= = .
(2) (iImZ ReZ )’ v(v) (0 ——1)
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The same formulas work if we view everything in B. Finally in D these elements

correspond (we keep the same notations) to

2(s) = (2:’% %f)’ Vis) = (; -?1)

But ¥(u) = ZV and ¥(v) = V, so the unitaries u,v € A correspond to

U(s) = (25;;—:% 'QiT). Vis) = ((1, _(.)1)

Finally, the projections 1,p,q € A correspond in D to

(2 0) o (e YYo= (3 1)

From now on we will work excusively with the algebra D, and we will find its

K-groups using the exact sequence
Ma(Co((0,1))) > D C*

given by

(f: g) Fo(£1(0), 1(1), £2(0), £2(1)).

The exact sequence of K-theory

Ko(Ma(Co((0,1)))) = Ko(D) == Ko(CY)
o ls
K1(C*) — Ki(D) o Kai(MA(Col(0,1)))
becomes .

0 — KoD) == ¢

T I

L
Let us first examine the map i. : Ki(M2(Co(0,1))) — K1(D) (the bottom right
arrow in the above diagrams). Of course we can view M2(Co(0, 1)) as the suspension

of M3(C), so the generator for K1(Ma(Co(0,1))) is the unitary matrix

vo= (5 %)
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But if we take this element in D, clearly we have a path (W;):¢[o,1) of unitaries given

by
1 0
W)= (o gorer )

that connects W with I. This shows that the map i. : K1(M2(Co(0,1))) — K:1(D)
is the null homomorphism. In particular we get K;(D) = 0. On the other hand we
obtain a short exact sequence of groups

KDY 10 51,

Take now in Z* = K(C*) the subgroup L generated by o = m.([I]), B = 7 ([P]), v =
= m.([Q]). Note that =(I) = (1,1,1,1), =(P) = (1,0,0,1), =(Q) = (0,0,1,1) and
this clearly proves that Z*/L =~ Z. But, of course L C im, = kerd and, on the other
hand Z%/Ker § ~ Imé = Z. This clearly enforces L = imw, and, since 7, is injective

this gives the desired characterization of Ko(D). |

2. We shall use the above informations about 4 making now the link with the
algebra 7_;.

ProposITION. Let A:7-; — C{[0,1]) ® A be the injective (cf [2]) *-homo-
morphism defined by A(z) = Vi®u, AMy) = Vi—i®v. Let J C T.1 be the
smallest closed two-sided ideal containing zy. Then:

(a) A(J) = Co((0,1))® A.
(b) T-1/J =~ C*, this isomorphism being given as z — (1,—1,0,0), y +—
— (0,0,1,-1).

Proof. To prove (a) take p any representation of C([0,1]) ® A which has
Kerp = Cp((0,1)) ® A. Then, clearly the representation p o A of 7_; vanishes at
zy, simply because A(zy) = vt — 2 @ uv € Cp((0,1)) ® A. This gives KerpoA D J,
which proves the “C” part of (a). To prove the other inculsion, take a total set in
Co((0,1)) ® A consisting of elements of the form t(1 — t)(v1)*(v1—1)' ® a where
a € A is a product of u’s and v’s with k = the number of u’s and ! = the number of
v’s. (To prove that this forms a total set simply use the Stone-Weierstrass theorem.).
But then it is clear that any such element is of the form A(z2y?b) where b is a product
of z’s and y’s written in exactly the same order and number as the u’s and v’s appear
in a. It is now obvious that z2y%b € J, so our total set is contained in A(J) which
concludes the proof of part (a).

To prove (b), let M be the quotient 7_;/J. Denote by X and Y the images of z
and y in M. Since in A we have XY = 0 we obtain that M is commutative. On the
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other hand, in M we have X3 = X(1 — Y?) = X which proves the existence of two
orthogonal projections P}: such that X = Pj{" — Px. Similarly Y = P} — Py and the
four projections that we have are mutually orthogonal. Because of X? +Y2 =1 we
get P}' + Py + P,‘l’ + Py = 1 we get that M is generated by these four projections,
hence its dimension is at most 4. But if we take w : 7., — C* the x-homomorphism
indicated in the statement, note that w(zy) = 0 so we get J C Kerw. So Ranw = C*
is a quatient of M which leaves only the possibility that Kerw = J. [ |

3. We are ready to prove now the main result

THEOREM. The K-groups of the algebra T_, are K1(7_1) = 0 and Ko(7-,) = Z.

Proof. Let us use the exact sequence J 'LT_l % C*. The exact sequence of

K-theory )
Ko(J) L5 Ko(T-)) == Ki(C?)

a[ 16
K\(CY) — Ki(T.) “ Ki(J)

reads

0 — Ko(T,) = 2°

I I

0 — Ki(T) — I°
J

What we have used here was the isomorphism J =~ Cp((0,1))® A which gives K.(J) =
= Kj-+(A). We examine now the map j. : K1(J) — K;(7-1). For this purpose we
use the above two Propositions. On one hand we know that X1(J) = Ko(A) = 23,
but we also know the generators of Ko(A). They are [1], [p] and [g]. If we replace
the generator [g] by -[g], the generators for K1(Co({0,1)) ® A will be the (classes of
the) unitary loops e?™t®1 e2mit®(1-u) = e7it@p E2xi(1-1)8¢ = ¢*(1-)8(1-v), But
if we look at the preimages of these elements through A we get that the generators
for K1(J) are the unitaries e27i#” | e™i=(==lsl) and e*¥(¥=l¥1). But it is then obvious
that if we view these elements in 7_; (that is when we apply j) those elements are
all of the form e** with A = A* € 7_; so all of them represent the zero element in
K1(7-1). This proves exactly that j. : K;(J) — K;1(7-1) is the null homomorphism.
This gives K1(7_1) = 0, plus a short exact sequence Ko(T_1) — Z* — Z3. This gives
us of course the isomorphism Ko(7-;) ~ Z. a
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4. We shall conclude these considerations with the description for the generator of
the Kq-group. This will be done by examining the comutator ideal € of 7_,, that is
the closed two sided ideal generated by zy — yz.

ProrosiTION. (a) The quotient 7_1/C is isomorphic to C(T), the isomorphism
being the one sending = any y to the functions Rez and Im z.
(b) The group Ko(7_,) is generated by [1].
(c) The K-groups of € are Ko(C) = Z, K,(C) =0.

Proof. (a) Take n: T_, — C(T) the *-homomorphism defined as in the state-
ment. Clearly n is surjective and Kern D C. But on the other hand if we take X
and Y the images of z and y in 7_, /C we get a unitary element Z = X + 1Y which
obviously generates the quotient algebra. This makes the algebra 7_; /C a quotient of
C(T) in an obvious way (Z — Z). The combination of those two facts gives clearly
the desired identification.

(b)(c) We shall consider again the sequence of K-groups, associated to the ex-
tension C — 7.1 -+ C(T). The corresponding exact sequence is

Ko€©) — 7 2 1

o] s

y 4 — 0 — K0

Using the fact that Z = Ko(C(T)) is generated by [1] it follows that the map
N0 : L = Ko(T_1) — Ko(C(T)) = Z is surjective. But this enforces n. to be an
isomorphism, and since 1,[1] = [1] we get statement (b). Finally this shows that 8
and é are isomorphisms, which proves statement (c). | |

REMARK. One can write a unitary matrix W € M3(7-,) which is a lifting for

Z 0
the unitary w = (0 7) € M3(C(T)) (this can be used, for instance, to describe

the generator of Ko(C) by means of the isomorphism §). This unitary is
0 (1- z*z+(z*z)2)~1,2 z 1-2"2
W = " 2y —1/2 : . - ?
(1= 22" + (22*)?) 0 1-z*z 2z
where z = z+1iy. Actually the unitary matrix W can be obtained, in a “section-wise”
fashion in all the algebras 7, in the following manner. Take

A )
9~ Ll .
1-¢¢ ¢
and note that U, is invertible. Then we simply take W, = U,(U,,‘U,,)‘”2 =
= (U,U;)~Y?U,.



ON THE K-THEORY OF THE NON-COMMUTATIVE CIRCLE 309

5. COMMENT. Since, for |[g| < 1 we have T; ~ T - the Toeplitz algebra - using
E-theory (see [1}), the quantum disk deformation ({2]) produces an element a €
KK(T.1,T). All the C*-algebras involved in our discussion are nuclear. Hence,
by the Universal Coefficient Theorem (cf [6]), the element « is a KK equivalence.
Since the ideal K of compact operators in T is also described as the commutator
ideal, the element a gives, after “restriction”, an element 8 € X K(C,K). Using the
commutative diagram

K.(€) — KuT-1) — K.(C(T)

I
KJ(K) — KJ(T) — K.(C(T))

we get that 3 is also a KK equivalence.
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