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STRONG MORITA EQUIVALENCE FOR THE
QUASI-ROTATION C*-ALGEBRAS

SAMUEL G. WALTERS

INTRODUCTION,

Let p(z) = aA(2), z € T?, where A € GL(2,Z) and a € T?, be an affine
transformation of the 2-torus T2. It is called a quasi-rotation if A # I, and ¢ has
an eigenvalue A # 1 and an invertible function f € C(T?) such that fo ¢ = Af.
Such a transformation has a unique {(up to conjugacy) primitive eigenvalue which is
denoted by X4(a). Denote by B(a, A) the associated crossed product C*-algebra of
the continuous functions on T2, C(T?), by . These algebras were classified up to
isomorphism for two cases:

270 of @ has

(1) when the primitive eigenvalue (or “rotation” angle) X4(a) = e
irrational angle 0, and

(2) when @ is rational, in the orientation reversing case (det (A) = —1).

A complete invariant for B(a, A) consists of the primitive eigenvalue X 4(a) of ¢
(which comes from the range trace on its [{g-group), the determinant of A(= +1),
and the order m(A) of the torsion part of its K;-group (see [18] and [19]). It turns
out that m(A) (along with det(A4)) classifies the conjugacy classes of all such A’s in
GL(2,2).

In the present paper the author’s aim is to study the strong Morita equivalence
of these algebras. Recall that Rieffel studied this problem for the irrational rotation
algebras Ay in [13]. He proved that their Morita equivalence is determined by the
action of the group GL(2,Z). For irrational numbers 8,8, A3 and Ay are strongly
Morita equivalent if and only if

all +b

¢
0 T e0+d

b
for some (a ) € GL(2,Z).
c d



328 SAMUEL G. WALTERS

Here, GL(2,Z) “acts” on the reals by linear fractional transformations

(a b 9"a9+b
c d)  c+d

whenever it is defined. For rational angles 8, Rieffel showed that Ay is strongly Morita
equivalent to the C*-algebra of continuous functions on the 2-torus {16, Theorem 3.1}.
Two essential ingredients which he used to show one direction of the former result is
the computation of the tracial range on the Ko-group and the fact that the tracial
ranges of strongly Morita equivalent algebras are scalar multiplies of each other (this
holds when all tracial states on the algebra induce the same map on the Kp-group).
Implicit use of these two facts will be made in the following treatment as well as the
computation of the tracial range or the algebras B(a, A) done in [18] and [19].

The determination of the strong Morita equivalence of the algebras B(a, A) for
the orientation preserving case (det(A) = 1) has been done by the (independent) work
of Ji [7, Theorem 4.11] and Packer [10, Theorem 4.1] on the classification of the crossed
products of C(T?) by the Anzai transformations g r(z,y) = (€22, 2%y), k # 0,
and using the elementary fact that an affine orientation preserving quasi-rotation
¢(2) = aA(z) is topologically conjugate to @ x, where e2™? = X 1(a) and k = m(4)
(19, Lemma 2.1]. Letting Hg . = C(T?) Xy , L, and letting ~ denote strong Morita
equivalence, Ji and Packer showed, for irrational numbers 8, 6', that Hy; ~ He 3o if
and only if |k| = |k’| and 0,8’ are in the same GL(2, Z)-orbit. Further, Ji[7, Theorem
4.12] showed that for all rational numbers ¢ one has Hg ~ Hg k. Thus one obtains:

(1) For the orientation preserving irrational affine quasi-rotations, B(a, 4) ~
~ B(a', A’} if and only if m(A) = m(4’') and 0,0’ are in the same GL(2, Z)-orbit,
where 2™ = X 4(a), 2% = X 4.(a'); and

(2) for the orientation preserving rational affine quasi-rotations, B(a,A) ~
~ Ho m(a}-

The author sought to investigate what would happen in the orientation reversing
case, whether the orientation-reversing feature showed itself somehow in the classi-
fication of the strong Morita equivalence classes. In {19, Lemma 2.4] it was shown
that there are only two orientation reversing affine quasi-rotations of T2 up to topo-
logical conjugacy. The basic ones being given by ¢(z,y) = (e?™%z,7) and ¥(z,y) =
= (e?"®g, z7). Throughout, we shall let By = C(T?) X+ Z and Cp = C(T?) xy- Z
denote their respective crossed product algebras, and our attention in this paper will
focus entirely upon the determination of their strong Morita equivalence classes for
rational @ (Sections 2 and 3) and non-quadratic 0 (Section 4). Some partial results
in the quadratic case are later given for the algebras Bj.

Recall that a real number 8 is said to be non-quadratic if it does not satisfy a
(non-trivial) quadratic equation with integer coefficients.
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The tracial range on the Ko-group of By (and Cp) is Z + 0Z. So if 4,8 are
irrational and if By and By are strongly Morita equivalent then Z + 6’Z is a multiple
of Z+ 6Z, and hence §' in the orbit of 0 under the action of the group GL(2,Z) (as
alluded to above). However, as will be shown, the converse does not hold. In fact,
the Morita equivalence will be shown to be determined by the subgroup GL.(2,Z) of
GL(2,Z) consisting of the matrices with even (2, 1)-entry. More precisely, the aim of
this paper will be to prove the following.

THEOREM.

(1) By ~ By for all X €GL.(2,2Z) and all # € R, whenever X0 is defined.
(2) Co ~ Cxy for all X €GL,.(2,2) and all 0 € R, whenever X is defined.
(3) For 0 = p/q, where p, g are positive relatively prime integers, one has:

Ba~{BO if ¢ is odd c N{CD if ¢ is odd

Byse ifq is even Ciy2 ifq is even.

(4) By;2 and By are not strongly Morita equivalent; ditto C; /2 and Co.
(5) For the orientation reversing rational afline quasi-rotations with primitive eigen-
value X 4 (a) = e?"(/9)  where p, q are relatively prime positive integers, one has

By  ifqis odd and m{4) = 2,
Byse if g is even and m(A) = 2,
Co if ¢ is odd and m(A4) = 1,
Cij2 if q is even and m(A) = 1.

B(a, A) ~

(6) For the non-quadratic numbers 6,0' one has: By ~ By if and only if ¢ = X8 for
some X € GL.(2,Z).

(7) For the non-quadratic numbers 0,0, one has: Cy ~ Cy if and only if & = X6 for
some X € GL.(2,2).

(8) Partial result: (6) holds for all quadratic irrationals @ and 0’ satisfying a0% + 50 +
+y = 0, where o, § and 7 are integers with ged(e, §,7) = 1 and @ is even.

The orientation reversing nature of the underlying transformations reveals itself
in two ways. Through their associated rational quasi-rotation algebras By and Cy
which are not all strongly Morita equivalent (as in the case for the rational rotation
C*-algebras Ay and the rational Anzai C*-algebras Hy ;). Furthermore, unlike the
rotation C*-algebras Ay for which Ag ~ Ay (for all 6 # 0), this does not hold for
0 = 2, as Byy; and By = By are not strongly Morita equivalent by (4). It is also
revealed through the fact that the strong Morita equivalence classes of By and Cg, for
(at least) non-quadratic 0, is governed by the action of the subgroup GL.(2,2).

On the slightly more abstract level, use is made of the well-known fact from
vector bundle theory which says that from every vector bundle of dimension > 2 over
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a (compact and connected) CW-complex X of dimension < 3, one can split off a trivial
line subbundle as a direct summand. From this it will follow that C(X) is the only
unital integral C*-algebra which is strongly Morita equivalent to C{X) (Theorem 2.7).
This, in turn, will imply that no rotation algebra (rational or irrational) is strongly
Morita equivalent to any non-commutative unital integral C*-algebra (which answers
a question raised in [18, Remnark p. 60]), and also that 5 and By, are not strongly
Morita equivalent. Another, less ad hoc, proof of the latter is given in Section 3 which
works for Cp and €y s.

From the above theorem it follows that for the orientation reversing non-quadratic
affine quasi-rotations on the 2-torus, one has: B(a, A) ~ B(a’, A’) if and only if 4, ¢
are in the same GL.(2, Z)-orbit and m(A) = m(A") (Section 4).

A summary of the classifications in the various cases is shown by the following
table:

Classifications for B(e,4)

Isomorphism Strong Morita Equivalence
Orientation P . Rational: unknown Rational: (7]
rientation Preserving |
U8 Irrational: (18] or [19] Irrational: {7] or [10]

Rational: {18] or [19] Rational: present paper

Orientation Reversing Irrational: [18] or [19]
rrationadi. Qr

Irrational: present paper
for non-quadratics

Assertions (1), (2), and (3) of the above theorem are proved (in Section 2) by ap-
plying Phil Green’s Theorem [14] and a certain lemma on GL(2, Z) proved in Section 1
below. In fact, application of Green’s result shows that crossed products of certain
rotations on the Klein bottle arise naturally from consideration of the orientation
reversing quasi-rotations on the torus, which in itself yields some information above
the former (cf. Corollaries 2.4 and 4.6 below). Assertion (5) will then follow from
these and the fact that there are only two orientation reversing affine quasi-rotations
up to topological conjugacy. To prove (4) we use the fact that every irreducible rep-
resentation of the algebras B);5, By, Ciy9 and Cp is finite-dimensional, and thereby
compute their primitive spectra using [8]. Once they are found one invokes the result
of Rieffel in [15] that the primitive spectrum is topologically invariant under strong
Morita equivalence. For instance, it is shown that Prim(By), as a topological mani-
fold, has boundary, whereas Prim(By2) is the direct product of the Klein bottle and
a circle, which has no boundary.

In proving (6) and (7) one considers the elementary invariant, denoted by #(.A),
consisting of the strong Morita equivalence classes of the simple quotients of A. Since
By and €y are non-simple C*-algebras, this invariant is particularly convenient for
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their study and shows that their simple quotients consist of certain irrational rotation
algebras, the classification of which is used to obtain {6) and (7). For instance,
it is shown, for # non-quadratic, that By has exactly two simple quotients, 4; and
Mjy(Azg), so that §(B5) has cardinality 2 (this number is invariant under strong Morita
equivalence); cf. Section 4. Also, §(Cs) has cardinality 3.

The author wishes to thank Edmond Granirer for supporting this research
through NSERC grant # A-3016. Ile also wishes to thank George Skandalis for
suggesting an index argument to prove Lemma 1.2 below. The author wishes to give
special thanks to the referee for making several helpful suggestions, and for his correc-
tions in an earlier draft. Finally, he thanks Afton Cayford for inspiring and teaching
him TEX by which this paper was originally written. The paper was also supported
by the author’s NSERC grant number OGP0121594.

1. LEMMAS RELATED TO GL(2,Z) AND GL.(2,Z).

01 11 10 .
U—(l 0),V—-(O 1),R—(1 1)—UVU.

It is known that GL(2,Z) = (U, V), where (U, V') denotes the subgroup generated by
U, V (see Kurosh [9], Appendix B). Recall that SL = SL(2,Z) is the subgroup of
GL(2,Z) of matrices of determinant 1. We shall let SL. denote the subgroup of SL
consisting of matrices with even (2, 1)-entry.

Let

LEmMa 1.1 SL(2,Z) = (R, V).

Proof. Any A € SL can be written as
A=zUmMym™ “Uﬂnvmk’

where n; = 0,1. As the determinant of A4 is 1, there is an even number of U’s in this
expression for A. One argues inductively as follows. Let us require that the expression
for A is written in reduced form. If n; = 1 then ny; = 1, and since UV™ U = R™

one obtains
A= RMymagntsyms | ey me

If ny = 0 the same argument applies to the remainder U?2V™2 UP V™, In this

way we can express A in terms of powers of R and V. [ ]

Let H = (R%,V) C SL.(2,Z). We claim that #{ = SL. (the author is indebted
to George Skandalis for suggesting an index argument to achieve this). To do this we
need the following,.
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LEMMA 1.2 We have the (disjoint) coset decomposition
SL(2,2) = H + HR + HRV.

Hence the index is [SL(2,Z) : H] = 3, and H = SL.(2, Z).

Proof. It is easy to verify the formula

RVR !=VRW!
from which we obtain
RV™ = (VR-"V-hHR.
It is also easy to check that —I € #, where [ is the identity matrix. Thus,
~I=UVAUVUV YV = R"*VR™*V e K.
From this we also have the formula
—V-IR? = R™%V.
Fix
A= RMY™ . RPe-t YRl Rrvy e,

and write it as A = XR" V™ where X = RMV™ ,  RP*=1V/™-1_ We now use in-
duction and assume that X is in the coset decomposition in the statment of the lemma
and then show that A is also in the coset decomposition. For simplicity write A =
= XR"W™,

Case 1: X € H. If nis even then A € M, done. If n is odd, then A= XR*V™ €
€ HR*V™ = HRV™. If mis even, A € H{VR-™V~1)R = HR, by above formula.
If m is odd, say m = 25 + 1, then

AENHRVPV = H(VR®V~IR)V = HRV.

Case 2: X € HR. Here, A € HR*H'V™ and this reduces to case 1 again.

Case 3: X € HRV. Suppose first that n is even, say n = 2s. Then R" = R* =
= (=I)*(VR~2V)?, hence using the above formulas and that (—7)* € H we have

AE€HRVRW™ = HRV(-I}(VR™2V)*V™ = HRV(VR2V)(VR2v)*~ly™ =
=HRV?R™V(VR™2V)* - WV™ = H(VR 2V )RR V(VRIV) - lv™ =
=HRV(VR2V)*~lVv™ = . = HRV™L
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and this reduces to case 1.
Now suppose that n is odd, n = 2s 4 1. Then

A€EHRVR'V™ = HR(VR*)RV™ = HR(RV-*R™'V)RV™ =
=HRWRV™ = HR™(RV-IR™'V)V™ = HR™'V™+! = HRY™H!

and again this reduces to case 1.
To see that the decomposition is disjoint we observe that R, RV, RVR ' ¢ H
since they have odd (2, 1)-entry.
For the final assertion note that as we have H C SL.(2,Z) € SL(2,Z) and the
index [SL(2,2) : K] = 3 is prime, thus H = SL.(2,2). L
-1
i Let S = ( 0 g
H = (R%,S,V), so that X C H C GL.(2,Z). The previous lemma gives us the
following extension:

i) Since U = SRV~! we get GL(2,Z) = (R,S,V). Let

LEnMA 1.3. We have the (disjoint) coset decomposition
GL(2,Z) = H+HR+ HRV.

Hence [GL(2,Z) : H] = 3 and H = GL.(2,2).

Proof. As we argued in the proof of the previous lemma, the coset decompostion
is disjoint and that 7 = GL.(2,Z) follows in the same way from the fact that the
index is 3.

Pick A € GL(2,Z). If det(A) = 1, then A € SL(2,Z) and by Lemma 1.2 we’re
done. If det(A) = —1, then SA € SL(2,Z) and we're done again. n

LEMMA 1.4. Let 0 = p/2q < 1, where p, 2q are positive relatively prime integers.
Then 3X;,..., X, € {S,R™2} C GL.(2,Z) such that X;...X,0 is defined for 1
€ignand X;... X,0=1/2.

Proof. If p = ¢, then p = ¢ = 1 so # = 1/2 and there is nothing to do. Assume
therefore that p # q.

First observe that 0 can be reduced so that p < ¢q. For suppose ¢ < p, then
q<p<2q. Then S6¢ = 1—(p/29) = p’'/2q where p’ = 2¢ —p, 0 < p’ < ¢, as desired.

Thus assume p < q. Now we show that if p > 1 then 3X;,..., Xm € {S,R™2}

such that
- PY_ M
%o e (2) = 2

where 0 < p; < p, 0 < 1 < ¢ and py < ¢y, where each successive operation is defined.
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To see this let R~2 act r times on 0 = p/2q, where r is the positive integer such
that rp < ¢ < (r + 1)p. Thus

R—zr(£)=( 1 0)12_1’_
2 =2 1/2¢ 2’

where 0 < q; = ¢ = rp < p. Now since ¢; < p we can apply S as in above observation
to reduce p/2q; as follows:

o (1) -5(8) -
2q 2 2q

where p) =20, = p< q1, 0<p1 < pand 0 < q; < q, as desired.
Proceeding in this way, inductively, we eventually get

1
SR-2m SR~ (_”_) =Pm _
2q 2qm 2qm ’

where pm = 1 < ¢gm. Now letting R~2 act g, — 1 times on 1/2¢,, we obtain
o 1 1
“2gm-1){ ) = o
R (2‘1m ) 2’

The reason of course we should be careful to ensure that each of the operations is

defined is because, for instance, 1272 is not defined at 1/2. By, contrast, for § = p/q,
where ¢ is odd, the operation X@ is always defined for X € GL.(2,Z). This case is
easier and we have:

LEMMA 1.5. Let 0 = p/q, where p, q are positive relatively prime integers and ¢
is odd. Then 3X € GL.(2,Z) such that X6 = 0.

Proof. Since q is odd and q, 2p are relatively prime, there are integers m, n such

that gm 4 2pn = 1. Then
X = ( q —p)
2n m

is in GL.(2,Z) = H and X0 = 0. |

2. STRONG MORITA EQUIVALENCE

The original definition of strong Morita equivalence of two C*-algebras A, B is
given by the existance of an imprimitivity A, B-bimodule Z [17, Definition 6.10]). We
shall abbreviate this by writing A ~ B. From this definition one easily checks that if e
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is a projection in a C*-algebra A such that eAe is a full corner of A (i.e., not contained
in any proper 2-sided ideal of A), then E = Ae¢ is an imprimitivity A, e.Ae-bimodule,
Thus, A ~ eAe. Combining this together with Rieffel’s result [13, Propostion 2.1] we
may use the following as an equivalent definition of strong Morita equivalence; For
A, B unital C*-algebras, 4 ~ B if and only if either one of them is isomorphic to a
full corner of some matrix algebra over the other. Thus, B 2 e M, (A)e is a full corner
of M,,(A), where n is some positive integer and e is a projection in M,(A).

Let us now restate a result due to Phil Green as described in Rieffel’s
“Situation 10”[14].

Let H be a locally compact group acting on a locally compact Hausdorff space
X. The action of H on X is said to be free if whenever hz = x for some h € H and
z € X, then h = 1 = identity of H. The action is said to be wandering if for any
compact subset @ of X the set {h € H : hQ NQ # @} has compact closure in H.
These two conditions together ensure that the orbit space X/H is a locally compact
Hausdorff space.

THEOREM 2.1. (Phil Green, cf. [14]) Let G, H be two locally compact groups
which act on a locally compact Hausdorff space X so that the actions commute, are
free and wandering. Then

Co(X/H) x G ~ Co(X/G) x H.

Now we can apply this result in our case with G=H = Z.

TueoreM 2.2. Let 0 be real number.
(1) By ~ Bag for all A € GL.(2,Z), whenever A0 is defined.

(2) For @ = m/n, where m, n are positive relatively prime integers, one has:

{ Bo ifn is odd
Bg~4q | .
Bisa  ifn is even.

(3) Byy2 and By are not strongly Morita equivalent.

Proof. If # = 0, the result is trivial. Suppose then that 8 # 0. The map Gy(t,y) =
= (t 4 0,9) induces the map @(z,y) = ("%, %) on the orbit space of X = Rx T by
a(t,y) = (t +1,y). Now the actions of Z induced by 8 and o clearly commute, are
free (as 0 # 0) and wandering. By Green’s theorem we have

BgEC(RXT) Xp;Z'VC(“;T) Xoe L.
4

The latter algebra can be suitably scaled as follows. Consider the homeomorphism
H:RxT)/p — (RxT)/Bs given by H[t,y] = [0t,y]s, where [t,4] and [t,y)s
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denote the orbit elements under #; and By, respectively. It is clearly well-defined,
continuous, onto, one-to-one, and hence a homeomorphism. Conjugating the action
of o on (R x T)/Bs by H gives one the homeomorphism a7y on (R x T)/8; defined
by

1
mnhM=P+F4-

It is not hard to see that the orbit space X' = (R x T)/8, is the Klein bottle and
that the second variable (corresponding to %) is the “twisted” variable. So ayye is a
rotation by angle 1/0 in the “untwisted” variable of the Klein bottle. Thus for all
6#0

Ba ~ C(.K) Xo,; o 1= ’CU@.

!

Now as aj 79 = o(1/9)42 One obtains

Therefore, By ~ Bpsg, if R20 is defined. This holds whenever # is irrational or
0 = m/n where n is odd. Since already By = Byvy = Bsg, we sec that Bae ~ By for
all A€ H =GL(2,Z). If 0 = m/2n, where ged(m,2n) = 1, then Lemma 1.4 shows
that the same result holds in this case. In fact, in this case we have Bag ~ By for
all A € GL,(2,Z). If 9 = m/n where n is odd, then by Lemma 1.5 one has By ~ By
for all A € GL.(2,2).

For (3), we shall offer two proofs that By and By;; are not strongly Morita
equivalent (see Corollary 2.8 and Section 3 below).

THEOREM 2.3.
(1) Co ~ Cag for all A € GL.(2,Z) and 0 € R, whenever A0 is defined.

(2) For 0 = m/n, where m,n are positive relatively prime integers, one has:

e Co if n is odd
6 {61/2 if n is even.

(3) C1y2 and Co are not strongly Morita equivalent.

Proof. We proceed similarly as in the above proof. Suppose 0 # 0. The map
v8(t, y) = (1+0, e**i'y) induces Y(z, y) = (e?*®z, 27) on the orbit space of X = Rx T
under a(t,y) = (t+1,y). The actions of Z induced by 75 and « clearly commute, are
free and wandering. Therefore, by Green’s theorem we have

CQ§C(RZT> X—Y;ZNC(RXT) KXo+ L.
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The latter may be properly scaled as follows. We use the homeomorphism

RxT RxT
o

W
o5 Yo

given by
\I’[i, y] - [ot,e2wi0(2t—1)/4-,y]%’

where f, is as in the previous proof, to conjugate the action of o on (R x T)/%y to
yield the transformation ) /o ON the Klein bottle K defined by

1
lgelt,y] = [+ ik ~y]-

Thus for all § #£ 0,
Co ~ C(K) Xaly, 1= K;.

Now as “’1/0 = 0‘21/0)+2 we get

CGNK';E ﬁ;+2~cﬂ&7=(¢n20,
if R26 is defined. Since also s = Cyvg = Csg, We may use Lemmas 1.4 and 1.5 and
argue as in the end of the preceding proof to obtain (1) and (2). The proof of (3) is
deferred to Section 3. " ]

The proofs of the preceding two theorems contain the following result for crossed
products of the Klein bottle by rational rotations along the “untwisted” component.

COROLLARY 2.4. For 0 = m/n, where m,n are relatively prime positive integers,

one has S .
. Ko Ifm is even,
K¢ ~

K1 Ifmisodd.
Furthermore, Ko and K; are not strongly Morita equivalent. The same result holds

for the algebras Ky .

Let us briefly describe how we shall show conditions (3) in the preceding two
theorems. First, one shows that all the irreducible representations of the algebras A =
= Bo, Bij2, Co, Cy1/2 are finite dimensional. Secondly, we shall apply the computations
for “finite” spectra given by Kawamura et al [8] to compute the spectrum jl\, which
coincides with the primitive spectrum Prim(A). Thirdly, we employ the result of
Riefel [15, Corollary 3.3] that Prim(A) is topologically invariant under strong Morita
equivalence. Finally, one shows that Prim(5) and Prim(Bj /) are not homeomorphic;
ditto Prim(Co) and Prim(Cy/2). The computation of Prim(A) could also be made by
a (difficult and deep) result of Williams [21, Theorem 5.3).
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For the remainder of this section we wish to prove that strong Morita equivalence
of integral unital C*-algebras with a CW-complex (cf. [2, page 89]) of low dimension
reduces to mere isomorphism (Theorem 2.7). This will have as its consequence that By
and B,z are not strongly Morita equivalent (cf. Corollary 2.8). However, the author
is not aware whether there is a similar result for Cp and C5. In addition, this will
answer a question raised in [18, Remark p.60] whether any rational rotation algebra
Ap is strongly Morita equivalent to any crossed product of the form C(T?) xo Z
(Corollary 2.9). This is then subsequently generalized (Corollary 2.10).

LEMMA 2.5. Let X be a compact and connected CW-complex of dimension
£ 3. Ife is a non-zero projection in M, (C(X)), then there exists a rank 1 projection
¢’ € M,(C(X)) such that ¢’ < e.

Proof. For this we shall exploit the fact that for CW-complexes X of dimension
< 3 one can always split off line bundles from every vector bundle over X of dimension
> 2. Specifically, if X is an m-dimensional C\W-complex and E is a vector bundle of
dimension k such that 2k — 1 > m, then E = E'® (trivial line bundle) is a Whitney
sum of subbundles (cf. ITusemoller [G], Proposition 1.1, p. 99, or Theorem 7.1, p. 21).

Without loss of generality suppose & = rank(e) > 2 (note that rank(e) = trace(e)
is continuous and hence constant on X, being connected.) In our case the condition
2k —1 2 m is clearly met. Now e € C(X,L(C")) delines a vector bundle E of
dimension k with fibre E; = Im(e(z)). The above result gives us a nowhere-vanishing
continuous cross-section £ of £ (and hence can be assumed to be normalized) and
thus yields a rank 1 projection ¢’ € C(X, £(C")) given as orthogonal projections on
£(z):

e'(x)v = {v,€(2))é(z), veCm,

ie. e = £ ®&. Clearly, ¢ is continuous and &’ < e. [ ]

LEMMA 2.6. Let X be a compact and connected space and let e € Mp{(C(X))
be a projection of rank 1. Then

eM,(C(X))e = C(X).

Proof. An isomorphism may be given by ® : C(X) — eM,(C(X))e, B(f) = fe.
This is clearly an injective x-homomorphism. To see surjectivity fix F' € M, (C(X)).
Since e(z) has rank 1, for each @ € X there is a unique scalar f(z) such that
e(z)F(z)e(z) = f(x)e(z). Evidently, f is continuous (as e never vanishes) and
eFe = ®(f). |

REMARK. Note that Lemma 2.6 does not extend to projections e of rank &k > 2,
i.e. we cannot expect that eM,(C(X))e = Mp(C(X)). As is well-known, we may
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take X to be the 6-sphere S® and e the projection associated with the tangent bundle
of §° with its natural almost complex structure, the latter gives it the structure of
a complex vector bundle E of dimension 3. It is known that this bundle has no line
subbundles (cf. [20, Remark p. 274]). So e contains no projections of rank 1, and
therefore the assumption that X has dimension at most 3 in Lemma 2.5 cannot be
weakened. Another example may be provided by letting X be the complex projective
2-space P%(C) (a CW-complex of dimension 4) where its tangent space is viewed as
a 2-dimensional complex vector bundle.

REMARK. Using Lemma 2.6 one can give an elementary argument to show that
strong Morita equivalence of two C(X)’s, where X is a compact connected space,
reduces to isomorphism and hence to homeomorphism of the underlying spaces.

Let us call a C*-algebra A integral if for some tracial state 7 one has 7, Ko(A) € Z.
This definition differs slightly from Exel’s [4, p.43] who calls an algebra “integral” for
a given tracial state. In cither case, however, C(X) is integral (in both senses) for

any compact connected Ilausdorlf space X, cf. [4, p.64].

THEOREM 2.7. Let X be a compact and connected CW-complex of dimension
€ 3. Every integral unital C*-algebra which is strongly Morita equivalent to C(X) is
actually isomorphic to C(X).

That is, C(X) is the only integral unital C*-algebra which is strongly Morita
equivalent to C(X).

Proof. Let A DLe an integral unital C*-algebra strongly Morita equivalent to
C(X), say A = eM,(C(X))e for some projection e € Mn(C(X)) of rank k. We
claim that & = 1. Lemma 2.5 gives us a rank 1 projection ¢’ € M,(C(X)) such
that ¢’ € e. Let 7 be a tracial state on A such that 7, Ko(A) = Z, which we shall
also use to denote a tracial state on eM,(C(X))e. By [11, 5.2.8] we can extended
T to a tracial positive linear functional ¥ on M,(C(X)), so that 7(2) = 7(z) for all
z € eM,(C(X))e. Normalizing 7 by

gives us a tracial state on M,(C(X)). But such 7/ must have the form
(5)= = ) (=),
T n
§=

for z € M,(C(X)), where p is some tracial state on C(X) obtained by integration
against a probability measure on X. Since e has rank %, it follows that 7/(e) = k/n,
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and as T(e) = 7(e) = 1 we have 7(1) = n/k. Now e’ has rank 1, so 7'(¢/) = 1/n and
1

5

Thus, 1/k € 1. Ko(A) = Z and so k = 1. Therefore, A = eM,(C(X))e and e has rank
1 implies A 2 C(X) by Lemma 2.6. =

r(e) = #e') = T(e) =

Corovnuany 2.8. The algebras By and B,y are not strongly Morita equivalent.

Proof. We know that B3 ~ K2 22 C(X x T) where K x T is a CW-complex
of dimension 3, compact and connected, and where K is the Klein bottle (as in the
proof of Theorem 2.2). A simple application of Pimsner’s computation of the tracial
range [12] shows that 5y is an integral (for any tracial state) unital C*-algebra. Since
By is not commutative and hence is not isomorphic to C(X x T), by Theorem 2.7 it
is not strongly Morita equivalent to C(X x T) ~ By 2.

CoroLLARY 2.9. No Ay is strongly Morita equivalent to any C(T?) x4 Z.

Proof. Let A= C(T?) x4 Z. Suppose A ~ Ag. Then Ko(A) 2= Ko(Ag) = 2?2 and
from the computation of the K-groups of A in [18] one sees that Ko(A) is generated
by the identity and the Bott projection and both have trace 1. So A is integral, and
being strongly Morita cquivalent to .4s one sees that their tracial ranges are multiples
of cach other (see [13, Corollary 2.6]), so ## must be rational. llowever, it is known that
in this case Ag ~ C(T?) (eg. see [16, Theorem 3.1]; or by applying Green’s Theorem),
so A ~ C(T?). Since T? is a compact and connected CW-complex of dimension 2,
Theorem 2.7 implies that A = C(T?), and being commutative, A = C(T?) x;q 7 =
= C(T3), a contradiction. [ ]

CoRroLLARY 2.10. No Ay is strongly Morita equivalent to any non-commutative
integral unital C*-algebra A.

Proof. If A ~ Ag then comparing their tracial ranges we see that § must be
rational. So A ~ Ag ~ C(T?). By 2.7, A = C(T?) is commutative, a contradiction.
]

3. THE RATIONAL QUASI-ROTATION ALGEBRAS

In this section we derive a simple corollary (Theorem 3.1) to a result of Kawa-
mura, Tomiyama and Watatani on the computation of finite-dimensional irreducible
representions of crossed products of a commutative C*-algebra by the integers [8].
In fact, this corollary also follows from the generalized Effros-Hahn Conjecture [5,
Corollary 3.2}.



STRONG MORITA EQUIVALENCE 341

Note that if o is any automorphism of a C*-algebra A and p any positive integer,
then there is a unital (if A has a unit) embedding

Axql — Mp(A Xar Z)
which is implemented by the Banach #-algebra (unital) injection
VLT, A)— Myl (2, A))
given by the matrix whose ij-entry is
U(€)i; = o' (677,

where 4,7 = 0,...,p— 1, & = €kpi, a(€)r = a(&), and IL(Z, A) has convolution
twisted by o.

Let X be a compact Hausdorff space and o a homeomorphism of X. Forn > 1
let

n—1
Xt={z€X:o"(z)=2} and X =’X“\UX‘.
i=1
Let X, /o denote the orbit space of X, under 5. Let A = C(X) X,- Z and .Z,,
the space of equivalence classes of n-dimensional irreducible representations of A.
Kawamura, Tomiyama and Watatani proved in [8] that there is a homeomorphism

A, &2 (Xplo)x T.

TureoreM 3.1. Let ¢ be a homeomorphism of a compact Hausdorff space X
such that o = id, where p is a positive integer, and let A = C(X) X+ Z. Then one
has the homeomorphisms

Prim(A) & A 2 (X/o) x T.

Proof. In view of the a'bove embedding ¥, Ais a C*-subalgebra of the px p matrix
algebra over some commutative C*-algebra. All the latter’s irreducible representations
have dimension at most p. Since every irreducible representation of A “extends” to
an irreducible representation of the p x p matrix algebra {11, 4.1.8], it follows that
the irreducible representations of .4 have dimension at most p. Since, in the above
notation, X? = X and so X; is empty for i > p, we obtain

A= Oﬁnz C)(X,./a)xT:(X/a)xT.

n=l1 n=l
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Since this shows that A is Ilausdor(f (and hence a Tp-space), as o has finite order, it
follows that 4 & Prim(.4) (cf. [1, 3.1.6]). |

As the underlying transformations of the algebras By, By 21 Co, Ciy2 have finite
order, application of Theorem 3.1 gives the following homeomorphisms:

En = (—-——-—Tz—___.) X T, §1/2 = (-..._I_Q__...__) X T,
(:ﬂ, y) ~ (.’L‘, y) (x,y) ~ (—21, y)

[
% (ymemm) * ™ o= (romrmm)
CoZ2 | ————— | xT, o — — | xT
° ((z,y)~(x,zy) 2=\ =9 ~ (—2,29)

Now it is easy to see that go is homeomorphic to [0,1] x T2 and hence it is
a 3-dimensional topological manifold whose boundary consists of two disjoint copies
of the 2-torus. However, 51/2 is the Klein bottle crossed with a circle which has

and

no boundary. Consequently, Prim(Bs) is not homeomorphic to Prim(By;3), and by
Riefel’s theorem [15, Corollary 3.3) one deduces that By and 5, /2 are not strongly
Morita equivalent,

Now Cp is a topological manifold whose boundary is the 2-torus, whereas C; /25
being the Klein bottle crossed with a circle (22 B /2), has no boundary. Thus, similarly,
Co and £y are not strongly Morita equivalent. This concludes the proof of conditions
(3) of Theorems 2.2 and 2.3.

REMARK. One might wonder whether the algebra A = C(X) x4+ Z, where o
has finite order, might be strongly Morita equivalent to the commutative algebra
C’(.A) Indeed, this is so for the rational rotation C*-algebras Ay (as Ay ~ C(T?)
and A; = T2), and for B,,z {eg. from the proof of Corollary 2.7 we had Byyz ~

C(K x T) and from above 5,4 /2 = K x T). However, it is not the case for By. Proof:
From above we saw that By = = [0,1] x T?, a CW-complex of dimension 3. Now if
By ~ C(T? x [0,1]), then in view of Theorem 2.7 By is isomorphic to C([0,1] x
T2), which is false. In fact, it is not the case for Cy/2 either. This can be seen
by noting that their Ki-groups are different: K(Cy2) = 2% and K1(C(K x T))
2 7% @ Z, (see [18] or [19]). But it might be of interest to ask whether A is strongly
Morita equivalent to any commutative C*-algebra.

4. THE NON-QUADRATIC QUASI-ROTATION ALGEBRAS.
In this section we shall construct a simple invariant which will help us to prove
the following:

THEOREM 4.1. For non-quadratic real numbers 0, §' we have:

By~ By &= 0 = X0
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for some X € GL.(2,Z). The same conclusion holds for the family of algebras {Ce}.

The direction (<=) follows from Theorem 2.2(1) and 2.3(1). So we shall prove
the direction (=>) and, in doing so, we shall consider a simple strongly Morita in-
variant object associated with a unital C*-algebra. Denote by [Q] the strong Morita
equivalence class of the C*-algebra Q.

Let A be a unital C*-algebra and look at all of its simple (non-zero) quotients,
and take the strong Morita equivalence classes of these quotients, which we shall
denote by

#(A) = {[Q] : Q is a simple quotient of A}.

LeMMa 4.2. If A and B are two unital strongly Morita equivalent C*-algebras,

then
#(A) = K(B).

Proof. Let @ be a simple quotient of A, so that there is a C*-surjection p : A —
Q. By assumption, B = pM,(A)p for some n and projection p € M,(A) so that
there is an induced surjection 8 = pM,(A)p — p(p)Mn(Q)p(p). The algebra Q' =
p(P)M,(Q)p(p) is full in M,,(Q) since pM,,(A)p is full in M, (A), hence Q' is strongly
Morita equivalent to @. As @Q is simple, so also is ' and we have [Q] = [Q’] € #(B).
We therefore get the inclusion §(A) C #(B). The other containment is obtained
symmetrically by envisaging A as a full corner of a matrix algebra over B. [ |

In particular, the cardinality of §(.A) is invariant under strong Morita equivalence.
In the next two lemmas we calculate §(Bg) and §(Cy).

LEMMA 4.3. For any irrational number 6 : By has Ay and M3(.Azp) as the only
simple quotients, up to isomorphism. In particular,

§(Bs) = {[As], [M2(A20)]}.

Proof. First, it is easy to see that Ay is a quotient of By. In fact, for n = +1 the
surjection py, : C(T?) — C(T) given by p,(f)(2) = f(#,n), is equivariant under the
action of ¢* on C(T?) and the rotation A* on C(T) given by A*(f)(z) = f(3z), where
A =e?™% So p, induces a surjection p,, : By — Ag, and Ay is a simple quotient of
Bs.

Now suppose z € T is such that z # Z. Then we have the surjection

%, =%:C(T*) - C(M) e C(T),
given by ®(f) = (f3, f-) where
$+(2) = £(2,2) and f(z) = (z,%).
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As z # Z, the Tietze extension theorem shows that @ is surjective.

The action on C(T) @ C(T) & C(T) ® C(Z2) is given by A* @ r*, where 7 is
translation by 1 on Zy : 7(a,b) = (b,a). Thus, A* @ *(g,h) = (A*(h), *(g)) for
g, h € C(T). It is easy to show that ® is equivariant and hence induces the surjection

@, : By — (C(T) ® C(Z2)) xreppre L.

It is not difficult to see that the latter algebra is isomorphic to Mo(C(T) x». 2Z) =
2 M,(Az) (see [16, Proposition 1.2]). Thus M»({Az2s) is also a simple quotient of Bg.

It remains to show that these are the only two types of simple quotients. If Q is a
simple quotient of By, then @ & By/J for some maximal 2-sided ideal J. These ideals,
however, can be calculated using the machinery of Effros and Hahn [3, Corollary 5.16).
The latter result implies that the primitive ideals of By (which are maximal here) are
exactly in one-to-one correspondence with the closed p-orbits of points of T2; namely,
in our case they are T x {z,7} for z € T. Now in the above we found all those ideals:
ker(®,.) (for z # Z) and ker(pn.) (for n = £1). Thus J must be one of these and so
Q is isomorphic to Ag or Ma(Az). [ -]

Now suppose that # is a non-quadratic number and that By is strongly Morita
equivalent to By. In this case 20 and @ are not in the same GL{2,Z) orbit so Az
and Ay are not strongly Morita equivalent and hence §(By) = §(Bs) has exactly two
classes. From the above two lemmas we either have:

(1) Ao ~ Ag and M3(Aze:) ~ M2(A2),

or
(2) Agr ~ M2(Az¢) and Ma(A2gr) ~ As.

In case (2) we see that Ay ~ Ap (since Bp ~ By implies Ay ~ Ay/) so that 20
and 8 are in the same GL(2,Z) orbit, and a simple calculation shows that 8 satisfies
a quadratic equation over Z, so case (2) cannot occur. Therefore, only case (1) can
occur, in which case Ay ~ Azg:. Now as also A4y ~ Ay we have that §,8' are in the
same GL(2,Z) orbit and that 20,26’ are in the same GL(2, Z) orbit, and these impiy
that ' = X8 for some X € GL.(2,Z), as a simple calculation shows.

Therefore, for § non-quadratic By ;¢ and By are not strongly Morita equivalent as
in the case for the irrational rotation algebras. In fact, one can show that this is still
the case for some quadratics, eg. /2 (see Proposition 4.7 below). Another interesting
feature related to the Klein bottle is that K (in the notation of Theorem 2.2) and
By are much alike in having homeomorphic primitive spectra, isomorphic centers,
isomorphic K-groups and same range of trace {as can be shown), yet the above shows
that they are not even strongly Morita equivalent (at least) for non-quadratic 8’s:
Since we showed that Ky ~ By, if By ~ Ky, then B9 ~ By and so & must be
quadratic (actually a quadratic of a special sort).
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LEMMA 4.4. For any irrational number 0, Co has Ma(Ag), Ass2 and Ag41)/2 as
the only simple quotients, up to isomorphism. In particular,

6Co) = {[Ma(Aa)), [Ag], [Aes]}.

Proof. Let A = ™% and p = =™ so0 that u? = X. The transformation underlying
Cs here is ¥(z,y) = (Az, z7) and its inverse is ¥~ (z,y) = (Az, AzF). When we look
at the closed y-orbits of points (z,y) in T? we find that there are two kinds: the
“degenerate” points for which the circles

T, = {(tz:c,ty) €T} and T = {()\tg:n,t:v'ﬁ) te T}

are equal, and the “non-degenerate” ones for which these circles are disjoint. Here,
T; is generated by the even powers of ¢ and T> by the odd powers. The closed orbit
of (z,y) is then the union 73 U Tb.

First, let’s look at a non-degenerate point (z,y). It implements the surjection

¥:C(T*) - C(MeaC(T)
given by ¥(f) = (f4, f-) where
f+(t) = f(t*z,ty) and f-(1) = f(t*2, ptz).

Note that (t2z, ut2) = (A(ut)’z, (ut)z7) € T» as p®A = 1. As 7} and T are disjoint,
¥ is surjective. Now we shall see that ¥ is equivariant under the action of 7* @ r*,

where 7 is as in the preceding proof. We have
Yoy (f) = ((foy™ )4, (foy™)-) and (@ @)oo ¥(f) = (@ (f-),F(f+)).

For the first coordinates we have

(f o™ 1)4(t) = f oy~ (2, ty) = f(MtPe, MPaly) = f(u’t?2, p’tay) =
= f((ut)*2, p(ut)ey) = f-(put) = 7 (F-)(t)

and a similar calculation verifies the second coordinates. Ilence we get the surjection
Co = (C(M®C(Z2)) xme0r Z,

and as before the latter algebra is isomorphic to Ma(C(T) xz2. Z) = M2(Ap), a simple
quotient of Cy.
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Now suppose that (z,y) is degenerate. A simple calculation shows that it has
the form (z,y) = (27y?,y). In this case we look at the surjection

o, = :C(T?) - C(T)

given by ®(f){(t) = f(xHt?,t). Give C(T) the action of the rotation (£f)*, so that
the equivariance of ¢ follows:

(o) (N = (F o™ YRR, 1) = FONERR), NEA) = f(ut?, £pt) =
= f(EB(Lpt), 2pt) = O(f)(Eut) = (£7)" e B)(H)(D).

Thus, ® induces the surjection
Co —» C(T) X(£m)* Z,

and the latter algebra is (depending on the = sign) Ag/z or Ags41)2. Arguing as in
the preceding proof we see that these and My(Ajs) are the only simple quotients of
Ce up to isomorphism. |

Now again suppose that  is a non-quadratic number and that Cy is strongly
Morita equivalent to C;. Then §(Cs) = (Ca:) has exactly 3 classes and the fact that @
and & are in the same GL(2, Z) orbit shows My(Ag) ~ Ma2(Ag-) so that we have only
the two possibilities:

(i) A!, ~ Ay;_ and Ao_-!i NA!:;_I.

or
(i) A ~.A_o_l_# and As_# ~.A9,f_.

Note that (ii) may be obtained from (i) by replacing 8 in (i) by ¢ + 1, which
does not affect the equivalence Cy+ ~ Cp. So it is sufficient to show from (i} that ¢, ¢
are in the same GL.(2,Z) orbit. As these are in the same GL(2, Z) orbit we have the
relations:

V)= (’: :) 0=>0 = ’Zg::, where mq — np = +1,

1] b ) .
(2) %: (‘: ) Q:::.o' = 2a9+4b, where ad—'bcr-:tl.

d/} 2 T o+ 2d )
) 9'+1__ a ¥\¢+1 _20'(0+1)+4b’ e ;r
(3)—;_—(0’ d’)—-i—-”‘-‘—‘>9+l—m, where a’d be = 41,

Claim: p is even.
Substituing ¢ from (1) into (2) we get from the fact that ¢ is non-quadratic:

(=) 2pa = me, 4pb+ 2qa = 2md +ne, 4qb = 2nd.
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The first of these shows that 2/mec and the second shows that 2|nc, and as m, n are
relatively prime, we get 2|c so that ¢ is even. Hence a and d are odd. From the last
equation in () we have 2|nd, so n is even. Therefore, m and ¢ are odd.

Now substituting ¢ from (1) into (3) we get the relations

(*%) 2a/p=(m+p)c and 2{(m+n+p+ ).

Assume that p is odd. By the above, m 4+ n + p + ¢ is also odd, and hance ¢’ is even
and so a' is odd. Since 2|(m+p) we have that 4|(m+p)c’, and from the first equation
in (*+) we obtain 2]a’p, a contradiction as a’ and p are both odd. Therefore, p is even
and (1) shows that ¢’ = X0 for some X € GL.(2,Z). This completes the proof of
Theorem 4.1.

COROLLARY 4.5. For the non-quadratic orientation reversing quasi-rotation al-
gebras B(a, A), the following conditions are equivalent:

1. B(a, A) ~ B(da', A"),

2. m(A) = m(A") and ¢ = X0 for some X € GL.(2,2), where X s(a) = e
and X 4/(a’) = e are their respective primitive eigenvalues.

CoroLLARY 4.6. For non-quadratic 8,8 one has:
1 1
K~ Ko & 7= XE for some X € GL.(2,7).
The same conclusion holds for the family of algebras {7 }.

Let’s now make some final comments regarding the quadratic case, where we
shall only address the algebras I3. Curiously, Theorem 4.1 can be shown to hold
without difficulty for certain quadratic irrationals as the following shows.

PROPOSITION 4.7. Let 0 be a quadratic irrational number satisfying a0® + 30 +
+v = 0, where a, 3,4 are integers with ged(a,3,9) = 1. Assume that f# is even.
Then: .

Bg~65:4=>0’=X0 '

for some X € GL.(2,Z).

Proof. Suppose By ~ By so that ¢, 0 are in the same GL(2, Z) orbit and §(Bs) =
= §(Bg+). The latter shows that Agg ~ Azg and so we have

2ml +n
2p0 + ¢’

ald +b

(l) = m, and (ll) ?p' =

where ad—bec = +1 and mg~np = 1. Substituing & from (i) into (ii) and multiplying
out the expression gives us a quadratic equation in # in which the coefficient of # is
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2aq + 4bp — 2dm — cn. As this must be a multiple of 8, which is even, we see that en
is even. If ¢ is even, (i) shows the result. If n is even, then (ii) may be re-written as

n
pmla)_(m 8y,
T 20+¢  \2 ¢/
hence the result. [

Our difficulty thus lies in the case when # is odd. At this point we note that the
conditions: 8, ' are in the same GL(2,Z) orbit and §(I33) = §(Bs) in themselves are
not sufficient to ensure that @, 6’ are in the same GL.(2,Z) orbit.

EXAMPLE. Let @ be a quadratic root of 202 — 0 — 4 =0, and let & = 6-!. Then

20:(3 4)9 and 20’:("3 2)9’,
11 2 -1

are in the same GL(2, Z) orbit; yet 8’ is not in the GL.(2,Z) orbit of # as a simple
algebra shows.

Thus it seems that something recondite is needed to show that the conclusion of
Propostion 4.7 still holds for quadratics 0 with g odd.
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