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A CRITERION FOR ESSENTIAL SELF-ADJOINTNESS

B. THALLER

1. ASSUMPTIONS AND MAIN RESULTS

Let $ be a separable Hilbert space. {A}32, denotes a sequence of bounded and
self-adjoint operators on §3. We consider a linear operator 7" in §3, densely defined
and symmetric on D(T) = Do C H.

NOTATION. If a linear operator S is defined and closeable on Do we denote its
adjoint by S* and its closure S** by S¢. The restriction to Dg of an operator B
defined on some larger domain is occasionally denoted by B|Dj.

For the operators A, and T we formulate the following conditions:

A;: For all n there exist k, m with
(1.1) ArAn = Apn,  AnAp = Ar.

A,: For all n, [T, An] = An — AnT is defined on g and bounded.

Aj: Tor all n, the operator A,T A, [Dy is essentially self-adjoint.

A,: Tor all ¢ € D(T™), there is a sequence {An, }$2, converging weakly to 1
such that

(1.2) kl_ig.lo(T*Anktp:"r/) - Ank 1&) =0

One of the main results which can be proved under the conditions above (or under
similar conditions discussed below}) is the following:

THEOREM 1.1. Assume A;-A,. Then T is essentially self-adjoint on Do.

As an illustration consider a Ililbert space which is an infinite orthogonal sum of
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closed subspaces. Define
(1.3) H=PsY, 9. =Ps",
k=0 k=0

and let A, be the projection onto $,. Hence A, converges (strongly) to 1 and
Assumption A is trivially satisfied. Let T be symmetric on some dense subset Dy.
Then Theorem 1.1 gives conditions which assure that the essential self-adjointness of
the restrictions A,T A, of T is equivalent to the essential self-adjointness of T (the
equivalence follows with the help of Theorem 3.1 and Remark 3.3 below).

Another example is provided by the Dirac operator the Hilbert space LZ(R%)%.
The theorem contains as a special case a famous result of Chernoff [1, 2] and Jorgens
[3] stating that the essential self-adjointess of the Dirac operator on C3°(R®)* depends
only on the local properties of the potential. In this case the A, are multiplication
operators with suitable C§°-functions. See Section 4 for a discussion and a simplified
proof of this result.

We conclude this section with some remarks on the assumptions.

REMARK 1.1. Assumption A; is satisfied, e.g., if the A, form an increasing
sequence: Am A, = A, for all m > n. One might think of a sequence of projections,
but we do not require AZ = A,. From A% = A, for all n we easily conclude that the
operators A,, Am, and Ax in A; commute.

REMARK 1.2. The commutator [T, A,] is assumed to be defined on its natural
domain. Since A, is defined on all of £, we have D([T, As]) = D(TA,) N D(T).
Assumption A» requires that D([T, A,]) = Do = D(T) which means

(14) Angﬂ - :DO’

Boundedness of [T, A,,] on a dense domain implies the existence of a unique bounded
extension [T, A,]¢ to all of 5.

»

REMARK 1.3. Theorem 1.1 can be formulated as a perturbation theoretic result.
Let T = Ho + V, where Hj is essentially self-adjoint and V is symmetric on ®q. If
we replace Ag by the assumption that Hy+ A, VA, be essentially self-adjoint on Dy,
then we may conclude the essential self-adjointness of T'. See Section 5 for details.

REMARK 1.4. The expression T*A,, ¢ occuring in A, is well defined for all
¥ € D(T*), provided Ay holds (see Lemma 2.1 below). If A4 holds, then

(1.5) lAn.]] < X,
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where the constant K is independent of k (any weakly convergent sequence of opera-
tors is bounded). If the commutators [T, A,,]° are also bounded uniformly in k, then

we can replace A4 by a more convenient assumption:

LEMMA 1.1. Assume Ao. Then A4 is implied by
Al: For all ¢ € $ there is a subsequence {An, }3%, converging strongly to 1 such
that
[T, AnJo¥ll < C(#),

where C(3) > 0 is independent of k.
By the uniform boundednesss principle, Assumption A% implies [|[T', An,}%| €

£ K/, uniformly in k.

2. LEMMAS AND PROOFS

We start by proving some elementary technical lemmas. As always we assume
that A, is self-adjoint and bounded and that T is symmetric on Dy.

LEmMMA 2.1. Assume Aj. Then A,D(T™) C D(T*) and

(2.1) [T, An]Y = T" Antp — AT ¢ for all € D(T").

Proof. Let ¢ € D(T*). Tor all ¢ €Dy
(2.2) (An%, Tp) = (¥, (TAn — [T, An])p) = (AnT" = [T, An]" ), ¢)-
Hence, by the definition of the adjoint operator, A% € D(T*) and
(2.3) T AnY = (AnT" — [T, An]" )¥.
Since [T, A,] is obviously symmetric on Dy, its bounded extension is self-adjoint, i.e.,
(2.4) (T, An]" = —[T, An]".

Combining this with equation (2.3) completes the proof of the Lemma 2.1. a
LEMMA 2.2. Assume A;-Ajz. Then A, D(T*) C D(T*) and

(2.5) TAnt) = (AmTAm) Ant + [T, Am]Ant  for all ¢ € D(T™),

where m is chosen according to' Assumption A;.
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Proof. Let ¢ € D(T*). By Lemma 2.1, A,¢ € D(T*). Choose m, k according to
A; and note that A, A, = A, ApA, = A A, = A,,. Hence for p € Dy,

(2.6) (Anth, AT Amp) = (AnT" Ant, 9).
Since by Assumption Aj

(2.7) (AT Ain|D0)” = (AmT Am|Do)",
equation (2.6) implies

(2.8) Ant € D((AmTAm|Do)%).

Ilence there is a sequence {x;}$2, with x; € Do for all j, limx; = An¥, such that
{AmT Amx;}§2o is convergent. Dut then the sequence{¢;}§2, with § = Agx; has
the same properties: &; € Do and (by continuity of A,) lim¢§; exists. Furthermore

(29) AmTAm‘fj = AkAmTAij + Am[T) Ak]Aij1
which converges, as j — oo, Therefore
(2.10) TE; = TAméj = AnTAmtj + [T, Anlé;
again converges in §3, as j — oco. Hence A,¢ = lim§; € D(T°) and
(2.11) T°Any¢ = lim T¢;,
j—oo
which is just what we wanted to prove. B
Proof of Theorem 1.1. Let ¢ € D(T*). By Lemma 2.2, A,¢ € D(T°), and
(212) (¢! T‘lb) = (TcAﬂk 1/): A"lk 1/)) + (TcAn;. ’!’r 1/} - An). 1.5') + (¢ - Aﬂxd)yr‘/)))

Using A4 we find

(2'13) I(TcAnk'/’: Y- Aﬂk ¢)| + ](d’ - Anu¢1 T‘¢)| n_——::o 0.
Note that
(2.14) (TAn, ¥, Ani¥) = (An, ¥, T An¥)

is real, because the closure of a symmetric operator is always symmetric. We conclude
that

(2.15) (. T*9) = lim (A, T An,¥)
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is real as a limit of real numbers. Hence (by the polarization identity) T is symmetric
which proves that T is essentially self-adjoint. u

Proof of Lemma 1.1. Assuming A; we find with the help of Lemma 2.1 that for
all ¥y € D(T*)

(216) I7* Anull < 1AL [HIT* 91 + 7' An 9.
Using equation (1.5) and A} we find

(2.17) IT* Any Il € KIT*¢l| + C(#) = Cr(#)-
Hence we obtain

(2.18) (T Ant, ¥ — Ani¥l < CL(¥)Y — Ans ¥,

which tends to zero because the sequence A, is assumed to converge strongly to 1.

This proves Lemma, 1.1. [ ]

3. SOME REMARKS AND FURTHER RESULTS

REMARK 3.1. A slight modification of the proof of Theorem 1.1 allows to replace
the condition A4 resp A} with, e.g.,
B4: For some subsequence {A,,}%2, and for all ¢ € %,

. oo
ZA,.,‘ =1,
k=1

where the series converges in the strong sense, and

S IT, An, )¢ || < C(9),

k=1

where C(3) > 0 is independent of j.
J
Repeat the calculation equations (2.12)~(2.18) with A,, replaced by A; = E An,
k=1
to arrive at the conclusion of Theorem 1.1.

REMARK 3.2. An immediate consequence of the essential self-adjointness of T
on Dg and the boundedness of the commutator is the following.

COROLLARY 3.1. Assume As and let T be essentially self-adjoint on Dy. Denote

(3.1) P(t) = exp(—itT)y, forallyp €N.
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Then for all Y, € $ the function t — (Y(t), An(t)) is continuously differentiable
with

(3.2) S (0(0), Anpl) = (B0, AnlFplD)

Proof. For convenience we give the proof of this simple fact: For ¥, ¢ € § choose
{#;},{¥j} in Do with ¥ = limy;, ¢ = limyp;. By the strong continuity of the
unitary group, f;j(t) = (¢¥;(t), Anp;(t)) is continuous, and by As even continuously
differentiable with f(t) = (¥;(1),i[T, Anlp;(t)). Define g(t) = (¥(1),i[T, An]0(2)).
Then

(3.3) £ (&) — g < NNIT, AnlllClesll 15 — Sl + 1l les — l) <&,

where ¢ can be chosen independently of ¢ and is arbitrarily small for j large. Hence
we can exchange the differentiation and the limit to conclude that f(z) = lim f;(2) is
differentiable with f'(t) = lim f;(t). u

The following theorem is a converse of Theorem 1.1. We give conditions for the
essential self-adjointness of A,T A, as a consequence of the self-adjointness of T°.
First we state a lemma similar to Lemma 2.1.

LEMMA 3.1. Assume Aj. Then A,D(T¢) C D(T*) and

(3.4) [T, An)% = T°Anvp — AnT*%  for all ¢ € D(T*).

Proof. By the definition of closure, for any ¥ € D(T*) there is a sequence
{¥e}52, with 3 € Dy, limy, = ¢, and lim Ty = T°¢%. Using the continuity of A,
and [T, A,] we find

(3.5) TAntr = ATt + [T, Aul¥s AT+ (T, An)¢

Hence the sequnces {An%r} and {TA,vr} both converge. This implies

(3.6) kl_ilrolo Anthp = App € D(T°), T Ay = klillgo TAnYr.
Now equation (3.4) follows immediately. |

THEOREM 3.1. Assume A,. Let T be essentially self-adjoint on Dg. In addition
we assume for all ¢ that A2y € D(T°) implies Ay € D(T°). Then AT AL|Do is
essentially self-adjoint.
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Proof. Denote B = A,TA,|Do. Let ¥ € D(B*), » € Do. Then

(3.7) (B*%,9) = (¥, AnTAnp) = (A29, T) + ([T, An]" An ¥, ¥)

shows that A2y € D(T*) = D(T°) and

(3.8) T¢Al¢ = B*¢ — [T, An]" Anv.

The additional assumption implies A,¢ € D(T*) and with Lemma 3.1 we obtain

(3.9) T A2¢ = AT Apt + [T, An]CAn.

Using equation (2.4) we find that

(3.10) B*¢ = AT Ay for all ¢ € D(B”).

Hence B* is symmetric which is equivalent to the essential self-adjointness of B. W

REMARK 3.3. The additional assumption in Theorem 3.1 is trivially satisfied if
the operators A, are projections.

4. AN EXAMPLE: DIRAC OPERATORS

In the Hilbert space i = L*(R®)? of C4-valued square integrable functions on R®
we define the free Dirac operator as the closure of the operator

(4.1) Hoy=—-ia-V+8 onDo=CyR*\ {0

Here o = (a1, @3, og) and B are the Hermitian 4 x 4 Dirac matrices (see [4] or details).
It is well known that Hy is essentially self-adjoint on Dy, its closure H§ is self-adjoint
on the first Sobolev apace

(42) D(HS) = H'(R)* = (¢ € L*(R%)*|a- V¥ € L'(R%)"}.

Here V denotes the distributional derivative.
We denote by g the bounded operator of multiplication by a function g € CP(R3),

(4.3) ¥ —g¥, (g¥)z)=g(x)¥P(z), allyp€H, allze R3.

It is easy to see that

(4.4) [Ho,g]® = —ia - (Vg)
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is a bounded operator of multiplication with a Hermitian matrix-valued C§°-function.
LEMMA 4.1. The operator ¢Hyg is essentially self-adjoint on Dy.

Proof. Since 8 is a bounded operator in $, it is sufficient to consider the operator
(4.5) Th=—-ia-V

when investigating the self-adjointness-properties. Again, Ty is essentially self-adjoint
on D(To) = Do, self-adjoint on D(T§) = D(H§), and [Ty, 9]¢ = [Ho, g])°. Our proof
uses the self-adjointness of 7§ on H!(R*)* and the boundedness of [Tp, g]°. Denote
B = gTog|Do. As in the calculation leading to equation (3.8) we conclude for all
¥ € D(B*) that g2y € D(Ty) = D(T§) and

(4.6) B* = —ia - Vg? +iga - (Vo).

By the Leibniz rule which holds for the product of a distribution with a smooth

function we obtain
(4.7) —ia - Vg*yp = —2iga - (Vg)y — ig’a - V.

This shows that for all ¥ € D(B*) the distribution o - Vyy € H~}(R%)* satisfies
9%a- V¢ € L2(R3)*. Therefore we can perform the following calculation for arbitrary
¥, € D(B")

(4.8) (¢, B*Y) = (¢, —iax- Vg4 +iger - (Vo)) =

(4.9) = (~ig’a - Vi, ¥) + (~ige - (Vg)p, ¥) =

(4.10) = (—ia - Vg +iga - (Vo)p, ¥) = (B9, ¥).

Hence B* is symmetric, i.e., B is essentially self-adjoint. |

Now, let us consider a function f € C§°(R) with the properties f(0) = 1, and
f(r) =0if r > 1. Define the sequence of multiplication operators 4,, n =1,2,... by
P(z) if [z] € n,
f(zl = n)g(z) if |z| > n.

The sequence {A,} satisfies A; and A, the commutators [Hp, An)¢ are bounded
uniformly in n by sup | f/(r)|. By Lemma 4.1 all the operators A, HoA,, are essentially

(4.12) (o) = {

self-adjoint on Dg. Ilence the following corollary is an immediate consequence of
Theorem 1.1,

CoRroLLARY 4.1. Let A, be defined as above and let V be a symmetric operator
on Dg such that A4 holds with T = V, and assume that A,(Hq + V)A, is essentially
self-adjoint on ®g. Then Hy + V is essentially self-adjoint on Dg.
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The assumptions of the corollary are trivially satisfied, if V' is multiplication by
a locally bounded Hermitian matrix-valued function (no matter how fast it grows at
infinity), because in this case A,V A, is a bounded perturbation of the essentially
self-adjoint operator A,HpA,. As noted by Chernoff [2] this result is in marked
contrast to the situation for the second-order Schrodinger operator and is related to
the existence of a limiting velocity for the propagation of wavepackets according to
the Dirac equation.

Because of the Kato-Rellich theorem only the relative boundedness of A,V A,
with respect to A, HoA, is needed and one could also consider potentials with local
singularities. Other examples include nonlocal potentials. See [3,4] for details.

A variant of the preceding proof is obtained by using a partition of unity {f,}
on R3 with sup [V f,(z)| € M < oo to define operators A, satisfying B,.

z,n

5. PERTURBATION THEORY

Let Hy and V be symmetric operators defined on a dense subset Dy of some
Hilbert space §3. Let {A,}5%, be a sequence of bounded self-adjoint operators satis-
fying A;. Assume that A, holds with T replaced by Hg and V, respectively. Instead
of Az let us now assume

Cs: Hj is essentially self-adjoint on D9, and for all n the operator Ho + AV A,
is essentially self-adjoint on Dy with

(5.1) D((Ho + AnV An)®) = D(HE).

The operator T'= Hg + V is well defined and symmetric on ©g and we assume that
it satisfies A4.

THEOREM 5.1. Under the above assumptions, T is essentially self-adjoint on Dy.

With the help of the following lemma, the proof of Theorem 5.1 is an easy
modification of the proof of Theorem 1.1.

LEMMA 5.1. Assume A,, C3, and A, with Hq and V. Then ¢ € D(T*) implies
that Apy € D(T°) and

(5.2) T Anth = HiAn + VEALY, for all € D(T*).

Proof. Let 3 € D(T*). Since T satisfies A; we find with Lemma 2.1 that
An € D(T*). Hence for ¢ € Dy we obtain using An A, = Ap

(5.3) (T*Ant,0) = (Anth, {Tn = [V, Aml}e), Tm = Ho+ AmVAm.
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This shows that A,y € D(T};,) = D(TE) = D(H§), where we have used Cz. By
definition of closure, there is a sequence x; € Do with x; — Ap%¥ and Hfx; —
— H§Anv, ie., {x;} converges in the Hilbert space D(Hy) equipped with the graph
norm ||]|2 = JJHEW? +||¥)|?. Since TS, is closed on (2(Ho), ||-||o), it is bounded and
hence the sequence {T}5,x;} is again convergent. As in the proof of Lemma 2.2 we can
replace x; by the sequence §; = Apx;, which has the same properties, if Ag is chosen
according to A,. In particular, the sequences {Tr,€;} and {Hof;} are convergent.
But then

(5.4) VEj = VAmE = AmVARE + [V, Am]fj = (Tm — Ho); + v Arm]céj
is convergent, i.e., lim&; = A, € D(V®). Finally,
(5-5) T¢; = Hobj + VE — HiAnth + Vo Aa1,

which implies A,y € D(T*°) together with equation (5.2). ]

THEOREM 5.2. Let Hq be essentially self-adjoint on Dg and X be self-adjoint on
D(X), such that [H, X] is well defined on Dg and bounded. Let V be a real-valued
function on R, which is locally bounded. Define V(X) = fV(A)dEx(A) and assume
D C D(V(X)). Then Ho + V(X) is essentially self-adjoint on Dy.

Proof. Let g be a real-valued function, which can be written as the Fourier-
transform of a function §, such that (1 + |€])§(£) is integrable:

(5.6) o) = o= [ e
Define g(X) by the weak integral
(5.7) 1008 = = [ Xey5(e)se, forallpes.
Vs J.
Then
e v« L urme wen | s
(58) 10275, 8 CO1Y < =I5, X1l [ el lg©lde.

Let f € C§°(R) be real-valued, with f(A) = 1, if [A] € 1/2 and f(A) =0, if |A| > 1.
I

Define An := f(X/n) = /f(/\/n)dEx(,\), where Ex is the spectral measure of X.
-n
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Now it is easy to see that T' = Ho and A, satisfy the assumptions A;-Ay,
and even A). By our assumptions, V(X) = / V(A)dEx()) is a densely defined self-

-adjoint operator which commutes with all A,. Moreover, A,V (X)A, is bounded and
symmetric on Dg. Hence Hy+ ApV(X)A, is essentially self-adjoint on Dg. Essential
self-adjointness of Hy + V(X) now follows immediately from Theorem 5.1. |
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