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ON THE REGULAR SPECTRUM

VLADIMIR MULER

0. INTRODUCTION

Let T be a bounded linear operator acting in a Banach space X. Denote by
R(T) =TX and N(T) = {z € X, Tz = 0} its range and kernel, respectively.

Continuity properties of the functions z — R(T — z) and z +— N(T — z) were
studied by a number of authors. The investigation was started by Kato [9], [10],
who introduced also useful concepts of the reduced minimum modulus and the gap
between two closed subspaces.

The spectrum 0., (T") was defined for Hilbert space operators by Apostol [3] as
the set of all complex X such that either (T — }) is not closed or A is a discontinuity
point of the function z — R(T — z). Properties of this spectrum are analogous to the
properties of the ordinary spectrum. It is always a non-empty compact subset of the
complex plain, contains the topological boundary of ¢(T") and satisfies the spectral
mapping property.

The results of Apostol were generalized by Mbekhta [14], [15], Mbekhta and
Ouahab [16), [17] and Harte [7] for operators in Banach spaces.

In this paper we continue the investigation of 0.,. We define an essential version
oye which exhibits similar properties as ¢., and is closely related to the theory of
semi-Fredholm operators. Further we study generalized inverses for 7' — A and show
that it is not possible to extend reasonably o., for n-tuples of commuting operators.

The author would like to thank to the referee for drawing his attention to the
paper of RakoZevi¢ [18] which is closely related to the present paper. Some of the
results are already proved in [18], especially Theorem 3.1., equivalence 1 < 2 (see
Theorem 2.1 of [18]) or the spectral mapping theorem for ... We leave the proofs
here for the sake of completeness and because they seem to us sometimes more direct.
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On the other hand the present paper solves some questions posed in [18]). Thus
Example 2.2 gives a negative answer to both parts of Question 4 and Theorem 3.5
gives a positive answer to Question 2 of [18].

1. SEMI-REGULAR OPERATORS AND SPECTRUM o+

Throughout the paper we shall denote by X a fixed complex Banach space X.
Denote by B(X) the algebra of all bounded linear operators in X. For T € B(X) the
reduced minimum modulus of T is defined by

Y(T) = inf{||Tz|), = € X, dist{z, N(T)} = 1}

(if T = 0 then we set ¥(T') = co).
Let M; and M, be two closed subspaces of X. Then we denote by

6(My, Ma) = sup{dist{z, M2}, z € M, ||z|| =1}
(if M, = {0} then 6(My, M;) = 0) and the gap between M; and Mz by
5(My, Ma) = max{8(My, Ma), 6(M2, My)}.

We list the most important properties of the reduced minimum modulus and the gap
between two subspaces (see [10], Chapter IV):

THEOREM 1.1.

1) 4(T) > 0 if and only if R(T) is closed,

2)¥(T) > r > 0 if and only if for every y € R(T) there exists € X such that
Tz =y and

llzll < r=Hill,

3) 1(T*) = «(T),

4) the set {T' € B(X), ¥(T) > €} is norm-closed in B(X) for every ¢ (see [2]),

5) 6(Mi, My) = (M, M),

6) if 6(M1, M2) < 1 then dim M; = dim M.

For T € B(X) we have R(T) D R(T?) > R(T3) cand N(T)C N(TH C ---
Denote shortly R®(T) = ﬂ R(T") and N>®(T) = V N(T™).

Consider the functlon z lD—v (T z) defined for complex z. Although this function
is not continuous in general, it has good continuity properties. From a great number of

equivalent conditions characterizing the continuity points of the function z +— ¥(7T'—2)
we choose the most important:
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THEOREM 1.2. Let T € B(X) be an operator with closed range. The following
conditions are equivalent:

1) the function z + (T — z) is continuous at z = 0,

2) the function z — (T — z) is bounded from below in a neighbourhood of 0,
1.e. there exists € > 0 such that | ;fl(ft YT - 2) >0,

3) the function z — R(T — z) is continuous at 0 in the gap topology, i.e.
lim 8(R(T), R(T - 2)) = 0,

4) the function z — N(T — z) is continuous at 0 in the gap topology, i.e.
lim §(N(T), N(T - 2)) =0,

5) N(T) C R=(T),
6) N*(T) C R(T),
7) N®(T) C R®(T).

The previous theorem was proved in [16). The equivalence of the first four condi-
tions is true for any continuous operator-valued function z — T'(z); in {19] this result
was attributed to Markus, see [13].

DEFINITION 1.3. (see [16]). An operator T € B(X) is called s-regular (semi-
-regular) if T has closed range and satisfies any of the equivalent conditions of Theo- -
rem 1.2.

For s-regular operators the subspaces R®(7) and N*°(T’) can be described in
another way, We start with two simple lemmas:

LEMMA 1.4. Let T € B(X) be s-regular, € X and Tz € R®(T). Then
z € R®(T).

Proof. Let n > 1. Then there exists y € X such that 7"ty = Tz, ie., 2T y €
€ N(T) C R®(T) C R(T™). So z € R(T") and as n was arbitrary, z € R®(7). ®

LEMMA 1.5. Let T € B(X) be an s-regular operator. Denote by U= {z € C,
|z| < ¥(T)}. Then for every A € U and ¢ € N(T — )) there exists an analytic function
f:U — X such that (T - z)f(z) =0 (2 € U) and f(A) = =z.

Proof. By [16), Theorem 2.10, T — z is s-regular for z € U. By [19], Theorem 2,
there exists a Banach space ¥ and an analytic operator-valued function S : U —
B(Y, X) such that R(S(z)) = N(T(z)) (2 € U). Choose y € Y such that S(A\)y =z
and set f(z) = S(z)y. Clearly f satisfies all conditions of Lemma 1.5. u

THEOREM 1.8. Let T € B(X) be s-regular and let » be a positive number,
r L ¥(T). Then
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DNN=(T)= V N(T-A),
|A|<r
2) R®(T)= 1 R(T-2).
[Al<r
Proof. 1) Denote by U = {z € C, |z| < 7(T)}. Let A € U and =z € N(T - A).
Then there exists an analytic function f : U — X such that (T = 2)f(z) =0 (z €
oo .
€ U) and f(A) = =. Let f(2) = Za,-z‘ (z € U), where a; € X. The equality

=0
(T — 2)f(2) = 0 implies Tag = 0 and Ta; = a;-y (i =1,2...). Thus T"a, = 0 and

a, € N(T™) C N°°(T), so that

oQ
z=f(A) =) a) € N®(T).
i=0
Hence \ N(T-2X)CN®((T).
IAl<¥(T)
Conversely, let 0 < r € ¥(T) and z € N(T™), ie,, Tz = 0. Set ap = "1z,
=T""2%z,...,ap1 = 2. AS z € N(T™) C R®(T), we can find a, € X such that

Tan =z = an—; and ||a,|| € 2r~!||an—i||. By Lemma 1.4, an € R%(T), so that we
can inductively construct elements a; ( = n+1,n+2,. ) such that Ta; = a;—

and {[a;]| < 2r~ aizaf] G = n,n+1,..). Set f(z) = Za. . Clearly this series
i=0
converges for |z < r/2 and (T —2)f(z) =0, ie. f(z) € N(T -2z) (|2} < r/2). Further

1
=8ap-1= 5

f( )
o ldze \/ N(T-2).

jz]=rf4 lzl<r
D Let0<rLy(T)andze (| R(T—z).
{zl<r
2 -
By [19] there exists an analytic function f(z) = Z a;2* such that (T—2)f(z) = =z
i=0
(lz| < 7). Hence Tag =  and Ta; = a;_1 (i=1,2,...), so that z € R>(T).
Conversely, let z € R®(T) and |A| < 4(T). Choose r, |A| < r < ¥(T). Similarly
asin 1) we can find points a; € X such that ag = z, Ta; = a;—1 and [|a;]] < r~*{|ai-1|
o0
fori=1,2,.... Set f(z) = Za‘-z“'l. Then f(z) is defined and
i=1

(T-2)f(z)=x forlz]<r

Thus z € R(T — A) and
R(T)c ) R(T-2). |
lz]<+(T)
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We shall need the following lemma (for better use we state it in a little bit more

general form):

LEMMA 1.7. Let T € B(X) be an operator with a closed range. Suppose that,
for k = 1,2,..., there exists a finite dimensional subspace Fi, C N(T) such that
N(T) C R(T*) + Fy. Then R(T*) is closed for each k.

o0

In particular, if R(T) is closed and N(T') C U m then T is s-regular.

k=0

Proof. We prove by induction on k that R(T*) is closed.

Suppose that k > 1 and R(T*) = R(T*). Let u € R(T*+1). By the induction
assuption u € R(T*), i.e. u = T*v for some v € X. Further there are clements v; € X
(G =1,2,...) such that T*+1y; — u (§ — 00). Thus T(T*v; — T*~1v) — 0. Consider
the operator 7 : X/N(T) — R(T) induced by T. Clearly T is bounded below and
T(T*v; — T*'v + N(T)) — 0, so that T*v; — T*~1y 4+ N(T) — 0 (j — 00) in the
quotient space X/N(T). Thus there exist vectors k; € N(T') such that T*v; + k; —
T*=1y, Since k; € N(T) C R(T*) + Fi and R(T*) + F; is closed, we have T*~1y =
T*a + f for some a € X and f € Fy, C N(T). Hence u = T*y = T**+1a € R(T*+1)
and R(T*+1) is closed. n

The following theorem gives another characterization of s-regular operators (cf.
(3], Lemma 1.4 and {15], Theorem 2.1).

THEOREM 1.8. Let T € B(X) be an operator with closed range. The following
conditions are equivalent:
1) T is s-regular,
2) N(T)C V N(T -2),
z#0

3) R(TYD N R(T - z).
2#0
Proof. Implications 1 => 2 and 1 => 3 follow from the previous theorem (note
that R(T" — 2) is closed for }z| < 4(T"} by [16], Theorem 2.10).
Tz

2 = 1. Let A#0O0and z € N(T— A). Then Tz = Az and z = W € R(T™),
so that z € R®(T). Thus \ N(T — X) C R®(T), so that N(T) C R>(T) C
AZ£0

Noeo R(T™) and T is s-regular by the previcus lemma.
3 = 1. Let z € N(T") and A # 0. Then

(T=NT P AT 24 4 3 Dz =T — Az = A"z,

so that z € R(T—2X). Thus N(T™) C R(T-2). Hence N°(T) ¢ (\ R(T - z) C R(T)
z£0

and T is s-regular. B
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DEFINITION 1.9. Let T'€ B(X). Denote by o (T)={X€ C,T— isnot s-regular}.

For properties of o4(T) see (3] and [15). The spectrum o.,(7") is always a non-
-empty compact subset of C and

8o(T) C 04(T) C o(T).

More precisely, 04(T) C ox(T) Nos(T), where o4(T) is the approximate point spec-
trum of T,
0e(T) = (A inf{(T ~ e, 2 € X, [|el| = 1} = 0}

and o5(T) = {A\, (T - A)X # X} is the defect spectrum of T
The set {A € 04(T), R(T — A) is closed} is at most countable and

o4(T) = {, lim (T - 2) = 0}

(this limit always exists).
Further oy (f(T)) = f(o+(T)) for every function f analytic in a neighbourhood
of ¢(T) (in particular for every polynomial).

2. GENERALIZED SPECTRA

The axiomatic theory of spectrum was introduced by Zelazko (20]. A generalized
spectrum in a Banach algebra A is a set-valued function & which assignes to every
n-tuple a,,...,a, of commuting elements of A & non-empty compact subset of C"
such that

1) 5(a1,...,an) C [] o(as),

i=1

2) (p(a1,...,an)) = p(5(a1,...,as)) for every m-tuple p = (p1,...,pm) of
polynomials in n variables.

Sometimes, a generalizated spectrum is defined first only for single elements and
one is looking for its extension for n-tuples of commuting elements, see e.g. [6]. We
show that o, can not be extended to a generalized spectrum. We start with the
following simple criterion:

THEOREM 2.1. Let & be a generalized spectrum defined in a Banach algebra A,
let a,b € A and ab = ba. Then 0 € G(ab) if and only if either 0 € &(a) or 0 € &(b).

Proof. If 0 € &(a) then there exists A € C such that (0,A) € #(a,b). Then
0=0-2 € g(ad). Similarly 0 € &(b) implies 0 € &(ab).
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Conversely, let 0 ¢ &(a) and 0 ¢ &(b). Then
5ab) = s, (0, 1) € 3(0,8)) € (s, A € 5(a), e 5(B)} C

C {AmA#0,u# 0} = C= {0},

ie. 0 ¢& &(ab). (]

EXaMPLE 2.2. We construct two commuting s-regular operators such that their
product is not s-regular.

Let H be the Hilbert space with an orthonormal basis {e; ;} where i and j are
integers such that ij £ 0. Define operators T and S € B(H) by
{0 ifi=0, 7>0,
Te;',- = . .
l eiy1,j otherwise
d o ,
an {0 ifj=0,i>0,
Se‘rJ = N
e;j+1 otherwise.

Th
en 0 ifi=0, j>0,00j=0i>0

€i41j+1 otherwise,

TSeij = STei; = {

so that T" and S commute.

Further N(T') = \/{eo,;, j > 0} C R®(T), N(S) = V{ei, i > 0} C R*(S) and
both R(T) and R(S) are closed. Thus T and S are s-regular.

On the other hand T'Segp = 0, i.e. egp € N(T'S) and eg,0 € R(T'S), so that T'S

is not s-regular.

CoROLLARY 2.3. There exists no generalized spectrum & such that 6(T) = o (T)
for every T' € B(X).

REMARK 2.4. Note that one implication in Theorem 2.1 is true for o.:
if TS = ST and either 0 € 04(T") or 0 € o4(S) then 0 € 0,(T'S)

(see [15], Lemma 4.15).

Another drawback of the spectrum & is that it is not upper semicontinuous. For
this it is sufficient to show that the set of all s-regular operators is not open.

ExAMPLE 2.5. Let H be the Hilbert space with an orthonormal basis
{ei j, 1,7 integers, i > 1}.
Let T € B(H) be defined by

eijyr fj#0
Te; s = 4 .
e {0 if£5=0
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Clearly N(T) = V{ei, i 2 1} € R®(T) and R(T) is closed so that T is s-regular.
Let € > 0. Define S € B(H) by
&m={§%oﬁj=g
0  ifj#0

Clearly [|S|| = € and S is an infinite dimensional compact operator so that R(S) is
not closed. Denote M = V{e; 1, i = 1}. We have R(T)L M and R(S) C M, so that
(T+S)z € M implies £ € N(T) and (T+S)z = Sz. Thus R(T+S)NM = SN(T) =
R(S), so that R(T + §) is not closed. Therefore T + S is not s-regular.

3. ESSENTIAL CASE

In this section we admit finite dimensional jumps in N(T — z) or R(T — z).

If M; and My are subspaces of X then we shall write shorty M, C. M; if there
exists a finite dimensional subspace F ¢ X such that M, C My + F. In this case we
may assume that F C M;. Clearly M; C., M, il and only if dim(M; |(M1NM3)) < co.

THEOREM 3.1. Let T' € B(X) be an operator with closed range. Then the
following conditions are equivalent:

1) N(T) C. R*=(T),

2) N*°(T) Ce R(T),

3) N*(T) C. R*®(T),

4) there exists a decomposition X = Xy @ X» such that dim X; < oo, TX; C X3,
TX3 C Xo, T|X; is nilpotent and T|X; is an s-regular operator,

5) N(T) C. \ N(T - 2),

2#£0

mmm:zgnw~4

7) dim(N(T)|N(T)) < oo, where N(T) is the set of all z € X such that there
are complex numbers ; (i = 1,2,...) tending to 0 and elements &y € N(T — X;) such
that z = ‘l_l‘r& z; (clearly N(T) C N(T)),

8) dim(R(T)|R(T)) < oo, where R(T) is the set of all z € X such that z = il_i‘m z;
for some z; € R(T — X;) and some X; — 0. (Clearly R(T) C R(T)). oo

Proof. Implications4 = 3,3 = 1and 3 = 2 are clear.

1 = 4and 2 = 4. We prove these two implications simultanously. The proof
will be done in several steps.

a) Either 1) or 2) implies N(T™) C, R(T*) for every n, &, i.e., there are finite
dimensional subspaces Fj, , C N(T™) such that

(+) N(T™) C R(T*) + Fu .
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Suppose first N(T) C. R®(T). We prove (*) by induction on n.
The statement is clear for n = 1.
Suppose that we have found subspaces Fpx C N(T™) for every m < n -1
and every k such that (x) holds. Choose a subspace F, , C X such that T'F, ,
= Fo 1441 N R(T) and dim F}, &= dim(Fo—1k+1 N R(T)) dim Fy, 1 g 41 < 00.
Then
NI =T IN(T™ Y Cc T~HR(T* ) + Fac1 1) C

C (R(T*) + N(T)) + (Fy » + N(T)) C R(T*) + Fp 1 + R(T*) + Fip = R(T*) + Fap,

where Fop = Fp , + P16 C N(T").

We prove that 2) implies (¥). Suppose N®°(T) C, R(T). We prove (*) by
induction on k. The statement is clear for ¥ = 1. Suppose (*) is true for every n and
every | € k — 1. Then N(T™*+!) C R(T*~1) + Fo41,k—1, so that

TN(T’H'I) C R(Tk) + TFag1k-1.

Further TN(T™+1) = N(T")Q R(T) and N(T") C R(T)+ F,,,1 where F, ; C N(T"),
so that
N(T) C(RID)NNT™) + Far =TNT**) + F, 1 C

C R(T*) + TFnp1k-1+ Far = R(T*) + Fo,

where Fy ¢ = TFpq1k + Fn,1 C N(T™).

b) Condition (+) implies by Lemma 1.7 that R(T*) is closed for each k.

¢) We construct the decomposition X = X; @ X,. Suppose that T satisfies (*).
If N(T) C R®(T) then T is s-regular and we can take X; = {0}, X, = X.

Therefore we may assume that N(T') ¢ R(T*) for some k and we take the smallest
k with this property, i.e. N(T) C R(T*-1). Find a subspace L; such that

N(T) = Ly & (N(T)n R(T")).

Clearly 1 € dimL; = r < 0.

As Ly C N(T) C R(T*-'), we can find a subspace L; such that dimL; =
and T*=1L; = L;. Set L; = T*iL, (i = 1,...,k). Clearly L; C R(T*"*) and
L; N R(T*=#+1) = {0} for every i. Therefore subspaces Ly, Li-1,..., L1 and R(T¥)
are linearly independent in the following sense: if &; € L; (1 € i < k), z € R(T*) and
z4+h+ -+l =0,thenz=h ==l =0.

Let #1,...,2, be a basis in L;. As 24,...,z, are linearly independent modulo
R(T*)+ Ly + - -+ Ly, we can find linear functionals fi,..., fr € (R(T*)+ L2+ -+
+Li)* such that (z;, f;) = 6;,- (14, j<r). Set

kw1 7

\/ Li and Yz = () [ ) ker(T™ fi).

j=0i=1
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Clearly dimY; < o0, TY) C Y1 and (T'|Y1)* = 0. Further TY; C Y,. Indeed, ifz € Y3
then
(Tz, T ;) = {z, T*UVfy =0 for0K i<k —2

and (Tz, T**-1f) = (T*z, f;) = 0.
Find vy,...,¥, € Ly such that z; = T¥~!y; (1 € i < r). Then
{Ty, 0Kj<k-1,1€igr}
form a basis of Y; and

{Tiy, 0ji<k—1,1<igr} and {TYf, 0€igk-1,15igr}

form a biortogonal system. Thus it is easy to show that X =Y, & Ya.

Denote by T} = T'|Y; and T = T|Yo. We have N(T) = N(T1) ® N(Tz) =
= Ly & N(T3) and R®(T) = R®(T1) & R®(T2) = R™(Ty).

If T satisfies 1), i.e. dim(N(T)|(N(T)N R*(T))) < oo then

dim(N(T3)|(N(T2) N R®(T2))) = dim(N (T)(N(T) N R(T))) —r <

< dim(N(T)|(N(T) N R®(T))) < oo

and we can repeat the same construction for T3. After a finite number of steps we
obtain a decomposition X = X; @ X3 such that dimX; < oo, TX; C Xy, TX2 C X,
T|X, is nilpotent and N(T|X3) C R®(T), i.e. T|X3 is s-regular.

Similarly, if T satisfies 2}, i.e.

dim(N®(T)|(N®(T) N R*(T))) = a < o0,
then

dim(N®(T2)|(N*(T2) N R(T2))) = @ — dim(N*(T)|(N(T1) N R*(T1))) =

k-1
:a—dim(YﬂVL,-) =z=a-r<a,

i=1
so that after a finite number of steps we obtain the required decomposition X =
=X, & X,
1 = 7: Since N(T|X3) = N(T|Xs) by Lemma 1.5, we have dim(N (T)|N(T)) =
= dim(N(T|X:)|N(T| X)) = dim N(T}X1) < o0.
7 = 5: Clearly N(T) C ¥0 N(T - 2).
F1
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5 => 1: It is easy to see that N(T"— z) € R*(T) for z # 0. Thus

N(T) C. \/ N(T - 2) c R=(D).
z#0
by Lemma 1.7 we have R(T*) = R(T*) for each k, so that N(T) C, R®(T).
4 = 8: By condition 2 of Theorem 1.2 R(T|X2) = R(T|X>), so that

dim(R(T)|R(T)) € dim X; < oo,
8 = 6: Clearly () R(T - z) C R(T).
z#0
6 = 2: This follows from the inclusion N®(T) C [ R(T — z) (see the proof
z#0

of Theorem 1.7). a

DEFINITION 3.2. We say that an operator T € B(X) is essentially s-regular if
R(T) is closed and T satisfies any of the equivalent conditions of Theorem 3.1.

REMARK 3.3. Condition 4 of Theorem 3.1 is the Kato decomposition which was
proved in [9] for semi-Fredholm operators. Clearly, essentially s-regular operators are
a generalization of semi-Fredholm operators.

This notion is closely related to quasi-Fredholm operators, see [11], [12).

CoRoLLARY 3.4. (cf. [18]). Let T € B(X).
1) If T is essentially s-regular, then T™ is essentially s-regular for every n.
2) T is essentialy s-regular if and only if T* € B(X*) is essentially s-regular.

Proof. 1) Let X = X, @ X be the Kato decomposition for T (see condition 4 of
Theorem 3.1). Clearly the same decomposition satisfies all conditions for 7.

2) We have X* = X§ & X{* where dimX3 = codimX; = dimX; < oo,
T*X3 C X§,T*X{ C X{t, T*| X3 is a nilpotent operator and T*) X is isometrically
isomorphic to (T'X2)*, so that T*|X{- is s-regular and T* is essentially s-regular.

Conversely, if T* is essentially s-regular, then R(T) and R(T™) are closed for
every n and T** € B(X"*) is essentially s-regular, so that N(T**) C, R®(T™**).
Further N(T) = N(T**)NX and R(T™) = R(T**")NX for every n, so that R®(T) =
= R®(T**)N X and N(T) C. R*(T). [

THEOREM 3.5. Let A, B € B(X), AB = BA. If AB is essentially s-regular then
A and B are essentially s-regular.

Proof. We have N(A) C N(AB) C. R®(AB) C R*®(A), so that it is sufficient
to prove that R(A) is closed.

There exists a finite-dimensional subspace ' C X such that N(AB) C R(AB) +
+F. We prove that R(A) + F is closed. Let v; € X, f; € F and Av; + f; — u.
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Then BAv; + Bf; — Bu and Bu € R(AB) + BF since R(AB) + BF is closed. Thus
Bu=ABv+ Bf forsomev€ X and f € F,ie.

Av+ f —u € N(B) C N(AB) C R(AB) + F C R(A) +F.

Hence u € R(A) + F and R(A)+ F is closed. u

The closeness of R(A) follows from the following lemma, which is particular case
of lemma of Neubauer, see [1], Proposition 2.1.1.

LEMMA 3.6. Let T € B(X), let F C X be a finite-dimensional subspace. Sup-
pose that R(T) + F is closed. Then R(T) is closed.

Proof. Without loss of generality we can assume R(T)NF = {0}. Let § :
Xl|kerT @ F — X be defined by S((z + kerT) @ f) = Tz + f € R(T) + F. Then
S is a bounded injective operator onto R(T) + F. Hence S is bounded below and
R(T) = S(X|ker T & {0}) is closed. |

DEFINITION 3.7. Let T € B(X). Denote by

0ye(T) = {A € C, T — X is not essentially s-regular}.

THEOREM 3.8. (cf. [18]). Let dimX = oo and T € B(X). Then

1) 04¢(T) C 04(T) and 64(T") — oe(T) consists of at most countably many
isolated points,

2) 0e(T) is & non-empty compact set,

3) 80.(T) C 04.(T) C 0.(T), where .(T) denotes the essential spectrum of T
More precisely, 04o(T) C 0xe(T) N 05(T"), where ox.(T) is the approximate point
spectrum of T,

oxe(T) = {X, T — X 1s not upper semi-Fredholm} =
= {}, R(T — )) is not closed} U {X, dim N(T" — }) = oo}
and
a5(T) = {\, T — X is not lower semi-Fredholm} = {}, codim R(t — A) = co}.

Proof. 1) Let A € 04(T) ~ 0e(T). Then T — ) is essentially s-regular, so that
there exists a decomposition X = X; @ X with TX; C Xy, TX; C X, dim X3 < oo,
(T = A)| X, nilpotent and (T" — )| X is s-regular. Then (T — z)|X; is s-regular in a
certain neighbourhood U of A and (T — #)|X; is s-regular (even invertible) for every
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z # A. It is easy to see that T — z is s-regular for z € U — {1}, i.e. UNe,(T) = {A}.
Clearly 0 (T) — 04.(T) is at most countable.

2) If X ¢ 0yo(T) then either A & o,(T) or A € 0,(T) — 64.(T). In both cases
UNoy(T) = D for some neighbourhood U of A. Hence o-.(T) is closed.

The non-emptiness of a..(T) follows from the inclusion 96.(T) C 0..(T) which
will be proved next.

3) Suppose A € do.(T) and A € 64.(T)- Then T — A is essentially s-regular so
that R(T — A) is closed and there exists a decomposition X = X @ X, such that
dimX; < oo, TX; C X3, TX2 C Xz, (T — X)|X; is nilpotent and (T — A)|X; is
s-regular. Choose a sequence A, — A such that A, & ¢.(T), i.e. T — A, is Fredholm.
We have

dimN((T — 2| X2) K dmN(T - X)) < 00

and, from the regularity of T|X2 and property 6 of Theorem 1.1 we conclude that
dimN{((T — A)|X2) < oo

and also dim N(T - A) < 0.

Similarly we can prove codim R(T—A) < 0, so that T — A is a Fredholm operator
and A ¢ o.(T), a contradiction.

Thus 86.(T) C o4.(T).

If A € 04.(T), then T — X is not semi-Fredholm by Remark 3.3, so that A €
€ 0xe(T) Nose(T). ) |

REMARK 3.9. In fact we have proved 9¢.(T) C ox.(T) and 8¢.(T) C as.(T),
which is not so trivial as in the non-essential case (see [8], cf. also [1}).

THEOREM 3.10. Let T € B(X). Then o4.f(T)) = f(o4.(T)) for every function
f analytic in a neighbourhood of o(T).

Proof. It is sufficient to prove that 0 ¢ o.(f(T)) if and only if T— X 1s essentially
s-regular whenever f(A) = 0.

Since f has only a finite number of zeros A1, ..., A, in o(T) we can write f(z) =
= (z— A1)™ .- (2 — Ap)™"h(z) where h is analytic in a neighbourhood of ¢(T') and
f(z) # 0 for z € o(T).

We have f(T) = (T — A)™ - (T = A )™ A(T). If f(T) is essentially s-regular,
then T — Aq,...,T — A, are essentially s-regular by Theorem 3.5.

Conversely, suppose that T"'— Ay, ..., T — A, are essentially s-regular. Denote by
9q(z) =(z=A1)-+-(z2— An) and p(2) = (z — A1)™ -~ -(z — A )™". Then

N(@T) = \/ N(T - &)
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and .
Rg(T)™) = () RUT = 3)™)
i=1
for every m (see [15], Lemmas 5.2 and 5.3). Thus R(¢(T)) is closed. Further N(T —
=Ai) C R®(T = )j) for j # i and N(T ~ X;) C R®(T — ;) + F; for some finite-

dimensional subspace F; C X. Thus

N(T=-X)C ﬂ R®(T - ;) + F,

j=1

and

n
N@T) € (VR®(T = X)+ Fi+- -+ Fo = R°(@(T)) + Fi + -+ + Fa.
i=1
Hence ¢(7) is essentially s-regular. If m = max{m;, 1 < i < n}, then ¢(T)™ is essen-
tially s-regular by Corollary 3.4 and p(T') is essentially s-regular by Theorem 3.5. Fur-
ther h(T) is an invertible operator commuting with p(T). Thus N{f(T)) = N(p(T))
and R(f(T)") = R(p(T)") for every n, so that R(f(T)) is closed and

N(/(T)) = N(p(T)) C, R®(p(T)) = R®((T)).
Hence f(T) is essentially s-regular. [ ]

ProBLEM 3.11. Example 2.5 shows that ¢..(T) is not stable under compact
perturbations. We do not know if it is stable under finite-dimensional perturbations.
Equivalently, taking into account the Kato decomposition, we can reformulate this
question as follows:

Let T be s-regular and A a finite-dimensional operator. Is then T + A essentially

s-regular?

4. GENERALIZED INVERSES

Let T € B(X). We say that S € B(X) is a generalized inverse of T if TST =T
and ST'S = S. In this case T'S is a bounded projection onto R(T") and ST is a bounded
projection with N(ST) = N(T). Thus it is easy to see that T has a generalized
inverse if and only if R(T') is closed and both N(T) and R(T) are ranges of bounded
projections.

An operator T is called regular if T is s-regular and has a generalized inverse.

Let T be an operator in a HIlbert space H. Then there is an analytic generalized
inverse of T — z defined on the open set G = C — 04 (T') (see [3], Theorem 2.5). More
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precisely, there exists an analytic operator-valued function S : G — B(X) such that
(T = 2)S(z)(T — z) =T — z and S(z)(T — 2)S(z) = S(z) for all z € G. One can see
easily that C — o(T) is the largest open set with this property.

If T is an operator in a Banach space X then another necessary condition for
existence of an analytic generalized inverse of T'— z is that R(T — z) and N(T - 2) are
ranges of bounded projections. We show that this is already a sufficient condition.

We start with a local version of this result, which was essentially proved in [14],
Theorem 2.6, see also [7], Theorem 9.

TueoreM 4.1. Let T € B(X) be a regular operator. Then there exists an
open neighbourhood U of 0 and an analytic function S : U — B(X) such that
(T-2)SENT —2)=T-2 and S(x)(T - 2)S(2) = 5(z) forall z € U.

Proof. Let S € B(X) be a generalized inverse of T, i.e., TST = T and STS = §.
Set U = {z € C, |2| < ||S||=!}. For z € U define P(z) = iS‘(I - 872", Clearly
the sum converges for z € U. We have (I - ST)S = 0i==0 T(I — ST), therefore
P(2)? = iziS‘(I ~ 8T)? = P(2) and

i=0

(T - 2)P(z) = (T - ) i S(I - ST)7 =

i=1
o =4}
=T(I - ST)+ Y A[TS(I - ST) - §'~(I - 8T)] = Y (TS - )§*~'(I - ST)z".
i=1 i=1
Let £ € X. Then T(I — ST)z = 0, so that (I — §T)z € N(T) C R=(T).
Further, if y € R®(T), y = Tz then y = Tz = T'STz = TSy and, by Lemma
1.4, Sy € R®(T). Thus S(R®(T)) C R®(T).
Finally, for u € R(T), u = Tv we have (T'S — Iu = (TS — I)Tv = 0. Thus

(TS=DS=YI-8T)=0 (iz1)

and (T — z)P(z) = 0.
For z € G set S(2) = ZS‘“Z‘. Then

i=0

S()T - 2)+ P(2) = i S+ (T - 2) + i SH(I - ST =

=0 i=0

=ST+I-ST+ Y [SHT -5 +85(I-5T) =1,

i=1
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hence S(z)(T —z) = I— P(z). Wehave (T—2)S(z)(T=2) =(T—2)(I-P(2)) =T~z
and S(z)(T — 2)S(z) = (I — P(2))S(z) = 5(z) since

P(2)S(z) = (Zz S - ST)) (i S"“z‘) =0.

Clearly P(z) is a bounded projection onto N(T — z).

REMARK 4.2. Let 5(z) be the function constructed in the previous theorem and
let A, € U. Then

SO) = S(u) = S — WS = (= ) SN Nk o )5 =

i=1

=(A—p) (i Y si+1) (i )\"S"'“) = (A — p)S(X)S(p).

=0 k=0
Thus S(z) satisfies the resolvent identity and so it is not only a generalized inverse of

T — z but also a generalized resolvent in the sense of {4] or [5].

The next theorem shows that it is possible to find a global analytic general
inverse of T'— 2. It is an open question if there always exists a global analytic general

resolvent.
THEOREM 4.3. Let T € B(X). Denote by G = {z € C, T — z is regular}. Then
G is an open set and there exists an analytic function S : G — B(X) such that
(T-2)S(z)(T~2)=T-z
and
S(:NT - 2)S(z) = S(z) (2 €G).
Proof. For z € G define the operator M(z): B(X) — B(X) by

M)A = (T - AT -z2) (A€ B(X)).

Clearly M:G — B(B(X)) is an analytic function. Let A € G. By the previous
theorem there exists a neighbourhood U of A and an analytic function S;: U — B(X)
such that (T — 2)$1(z)(T — z) = T — z and Si(2)(T — 2)S1(z) = Si(2) (z € U).

Let u € U and A € B(X). Set Ay = Si{p)T — p)A(T — p)S1(#). Then

M(p)Ar = (T — p)S1(p)(T ~ AT — p)S1 ()T — p) = (T — WA(T — p) = M(p)A

and

Al < IS1IPIT = ) AT ~ )l = 1IS1 ()| () All-
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Thus y(M(r)) 2 ||S1(4)l|~2 so that y(M(z)) is bounded from below in a certain
neighbourhood of A. Further function z — T — z € B(X) is an analytic vector-valued
function and, by the definition of G, T — z € R(M(z)) for every z € G.

By [19], Theorem 2, there exists an analytic function S; : G — B(X) such that

M(2)S3(z) =T - z,ie,, (T — 2)S:(z (T —2)=T —zfor z € G. Set

S(2) = Sa(2)(T - 2)Sa(z) (= € O).

Then

(T = 2)S()T - 2) = (T — 2)Sa(2)(T — 2)82(z)(T —2) =T — z

and

S(2)(T - 2)5(2) = 83(2)(T = 2)S2(2XT = 2)S2(2 (T = 2)S2(2) =
= Sz(z)(T - Z)Sz(z) = S'(z)

for every z € G.
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