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ABSTRACT. The purpose of this paper is to study the new notions of (+)-
regular and (~)-regular factorizations of contractive analytic operator func-
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systems. We consider also cascade factorization of minimal, optimal passive
scattering systems.

KEYWORDS: (+)-regular factorization, cascade coupling, conservative sys-
tems, passive systems.

AMS SUBJECT CLASSIFICATION: Primary 47A45, 4TAG68; Secondary 93B05,
93B07.

1. INTRODUCTION

¢

1. It is well-known that qualitative properties of dynamic systems, as controllabil-
ity, observability and minimality, in the general case, are not invariant for cascade
coupling. In the theory of automatic controls, there are many investigations on
controllability and observability for cascade coupling of finite dimensional systems,
where the results are expressed in terms of matrix rank or of McMillan degree. of
rational matrix functions ([5], [9], [6]). We will see that it is difficult to develop
these results for infinite dimensional systems.

The purpose of this paper is to study the so-called (+)-regular and (—})-
regular factorizations for analytic functions in the unit disk D = {z : |2] < 1},
whose values are contractive operators from a Hilbert space U to a Hilbert space
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V. An underlying theme is the minimality, controllability and observability of
infinite dimensional systems for cascade coupling of two controllable or observable
passive scattering systems. The results about (z:)-regularity are obtained in terms
of observable and controllable subspaces. We obtain criteria for minimality for
cascade coupling and we consider also cascade factorizations of minimal, optimal
passive scattering systems.

2. Let us consider a linear discrete stationary dynamic system o = (X, U, V;
A, B,C, D) of the form

Zn41 = Az, + Bu,

v, = Czp + Du,
zq € X,u, €U, v, € V.

The state space X, the input space U and the output space V are separable Hilbert
spaces, the operators A: X = X, B: U = X,C: X - V,D:U — V are linear
bounded.

The operator function:

0z = D4 2C(I - 2A)"'B

is called a transfer function of system a.
The subspaces

0o <}
xi=\/ A"BU, Xi=\/A"CV
n=0 n=0

arc called respectively controllable and observeble subspaces of «. The system o
is said to be controllable (resp. observable, minimal, simple) if X5 = X (resp.
X=X, X, =X=X3,X,VvXS=X).

The system « is said to be a passive scaltering system ([2]) (p.s.s.), if the
operator

A B
(C D).X@U—»XGBV

is contractive. If this operator is unitary, then the system « is said to be a
conservalive scatlering system (c.s:5.).

It is well known ([1], [2], [3]) that the transfer function of a p.s.s. & belongs
to the class B(U,V) of all analytic functions in unit disk D, whose values are
contractive operators from U to V. It is also known ([4]) that a simple c.s.s. is
determined by its transfer function uniquely up to unitary equivalence.
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In this paper we shall use the following functional model of Sz.-Nagy and
Foiag for simple c.s.s. ([4]), constructed from a given transfer function ©(z) €

B(U,V).
Let
(1) X =[LI(V)s AL (U)o {0wd Aw:we LT(U)}
(2) Alp ® ¥) = e *(p(e't ~ ¢(0)) ® e (e')
(3) Bu = e"H(0(e") - 0(0))u & e " Alc!*)u
(4) Cle @) = ¢(0), Du=0(0)u
where

A = A(") = (I - O('*) O(e))3

and L} (U) stands for the Hardy space of elements f € Ly(U) whose k-th Fourier
coefficient f(k) = 0 for all k < 0.
It is not difficult to show that the following lemma holds.

LEMMA 1. For the model system (1)-(4) we have
XoX,={(pdv):pdY € X,0%0 + At =0}

XoXx;={0oy):(00¢)c X}.

DEFINITION 1. Let ax = (X, Uk, Vi; Ak, Br, Cr, D), k = 1,2, be linear sys-
tems satisfying V4 = U,. Then the following system a = (X; @ X2, U3, Vo; A1 Py +
APy + BoCy Py, By + By D1, DyCy Py + C2 Py, Dy Dy) is called a cascade coupling
of a1, p and it is written o = aj0;.

It is well known, that if @ = asa then 04(z) = O, (2)Oa,(2) and if ay, a2
are ¢.s.s. (resp. p.s.s.) then o = aya; is also a c.s.s. (resp. p.s.s.).

LeMMA 2. Let oy, ag be simple c.s.s., constructed by (1)-(4), and & = aza;.
Then we have

XoX,={(p1®¢1)®(p2 D %2) € X1 ® Xa : p2 + Q2901 = 0}

XoX;={(p10%1)®(p2®¥2) EX10X2 : 1+0762 =0, =Of e +Ar i, k=1,2}.
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2. (+)-REGULAR FACTORIZATION FOR TRANSFER FUNCTION OF CONSERVATIVE
SCATTERING SYSTEMS

1. We introduce the new notion of (+)-regular factorization, which is very impor-
tant for further considerations.

Let ©(z) = ©2(2)©1(z) be a factorization of the contractive operator func-
tion ©(z) € B(U,V), where ©,(z) € B(Ux, Vi), k=12, U1 = U, Vi =Up, Vo = V.

DeriNITION 2. The factorization ©(z) = ©2(2)©1(2) is said to be
(+)-regular, if

{82011 & Arh: h e LI(U)} = AsLT(U2) ® AL LE(Uy) -

The concept of (+)-regular factorization has been suggested to the author
by the concept of regular factorization, introduced by Sz.-Nagy and Foiag ((8]),
and differs from the last by replacing the spaces La(U1), L2(U2) by L§ (U;) and
L (U2).

The (+)-regularity of the factorization ©(z) = 02(2)01(z) is equivalent to
the following: the operator z* : Ah — A;0,h@A 1k, kh € L} (U}), after continuous
extension, will be a unitary operator from ALT (V) to ALY (Us2) ® ALY (Uh).

PROPOSITION 1. If the factorization ©(z) = ©2(2)©1(2) is (+)-regular, then
it is also regular (in the sense of ([8])).

Proof. By a similar way as in the proof of Proposition VIL3.1 in ([8]), it is
not difficult to show that if the factorization is (+)-regular then for all t € [0, 27]
we have

{A2(e)O1(et)ud Ar(eit)u : u € U} = Ax(eit) Uz @ Ar(eit)U;
whence it follows that the factorization is regular. B
2. From Definition 2 it is easy to obtain
LEMMA 3. The faclorization O(2) = ©2(2)01(2) is (+)-regular if and only
if the following inclusion
O14:2f2 + Arfi € L3 (Uh)
where fi € m, k=1,2, is possible in the unique case: fi =0, fo =0.

THEOREM 1. In order that the factorization O(z) = ©2(2)0:(z) be
(+)-regular, il is necessary and sufficient that for arbitrary simple c.s.s. oy, az
with ©g, (2) = Or(2),k = 1,2 we have

Xo=Xg, ®X], (a=aa).
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Proof. We see first that for o = asa; we always have the following inclusion
XC X3 ®X,,
and secoﬁdly that it is enough to prove the theorem for model systems.

Sufficiency. Let

OAzfo+ Arf1 € Ly (Ua), where fi € A LT (U), k=12

Denoting
(5) P11 = PL;(U,)Azf‘z, Y1 = fi
(6) p2=—0301, Y2=f2—B2pn

it is easy to see that
M or € LT(Vi), ¥r € AxLa(Ue), k=1,2.
Since the element ¢7 = Aaf2 — ) belongs to L7 (V1), and
O Asfa + Arfr = Ofp1 + Arthy + 91y € L3 (Un)
we obtain
(8) O1p01 + Ay € Ly (Uh).
Moreover we have
(9) Q392 + Agthy = —030101 + Az(fo — Aopr) = 97 € L3 (V1)
From (7), (8) and (9), it follows
(10) or @Y € Xi, k=12
Taking into account that m, k=1,2 and Lemma 1 we see that
or®Yr € X3, k=12,
which, together with (6) and Lemma 2 give

(1 ® 1) ® (02 ® ¥2) € [Xg, ® X3, ]© X3,



6 Do Cone KHANH

From this we have
ee=0, ¥%:=0, k=12

Thus, by virtue of Lemma 3, the factorization is (+)-regular.
Necessity. Let us consider any element

(11) h=(p1® %) ®(p2®¥2) € [X2, & X3, )0 X,
Denote
(12) fi=v1, fa=v2+ Azpr.

Since (pr @ Y1) € X3,,k = 1,2, then from Lemma 1 it follows that
v € ML), k=12,
and hence, from (12) we have
fr € ALY (Ur), k=1,2.
Since h L X3 we obtain p; + ©2¢, = 0, hence
O142f2 + Arfi = [B7p1 + Arth] + O1[O%p2 + Asths] € L3 (U1).

Therefore we have
fl = 01 f2 = 0.

Further, since
0=Azfs = Azpz + O5p2 + 91,

and
p1 € LT (V1), O%pr+ Asts € L3 (V2),

we obtain ¢; = 0, hence 2 = 0. Lemma 1 gives then
(pr@r)eXp0X],, k=12

From this and (11) follows A = 0. This completes the proof of the theorem. 8

This theorem implies immediately the following criterion for observability of
cascade coupling.
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COROLLARY 1. Let oy, be observable c.s.s. having transfer functions
©1(2),©2(2) respectively. In order that the cascade coupling o = azoy is ob-
servable 1t is necessary and sufficient that the factorization ©(z) = ©2(2)0O1(2) s
(+)-regular.

CoROLLARY 2. Let ©(z) € B(U,V) have the property thet ALT(U) =

ALy(U). Then the factorization O(z) = ©2(2)0,(2) is (+)-regular if and only
if this faclorizalion is reqular.

Proof. Let a be asimple c.s.s. having transfer function ©(z). Since ALF ()=
AL3(U), from ([2]) we have « observable. If the factorization O(z) = ©,(2)01(2)
is regular, then the system a has a factorization & = @), where ay,as are
observable c.s.s. with transfer functions ©;(z), @,(z) respectively ([4]). The rest
follows from Proposition 1 and Corollary 1.

3. {—)-REGULAR FACTORIZATION FOR TRANSFER FUNCTION OF CONSERVATIVE
SCATTERING SYSTEM

1. Passing to dual system, using the duality of observability and controllability,
we obtain similar results for controllable subspaces of cascade couplings.
TueoreM 2. Let oy, ap be simple é.s.s. and o = aseey. The factorization
Ou(2) = 04,(2)84,(2) (where O(2) = O*(2)) is (+)-regular if and only if
Xe=Xg ®X;,.
2. To study controllable subspaces, it is nseful to introduce the dual notation
of a {~)-regular factorization.

DEFINITION 3. A factorization ©(z) = ©4(2)01(z) is said to be (—)-regular
if

{A1,O3h ® Agh s b€ L7 (Vo)) = ALy (V1) @ Agu L (V3),

where

Age = (I — O1(e"Op(e)")3.
Definition 3 is equivalent to the following: the operator
27 Ayh = ALOLA® Azh, he L7 (Va),

after continuous extension, will be a unitary operator from A,L; (V) to
ALz (V1) @ As. Ly (Va).
Notice that from (—)-regularity we obtain regularity.
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PROPOSITION 2. The factorization ©(z) = O2(2)801(z) is (—)-regular if and
only if the factorization ©(z) = 8,(2)8,(z) is (+)-regular.

Proof. Let the factorization ©(z) = ©,(2)0:(z) be (~)-regular and let
03(e")A1(e*) fi(e") + Aa(e") fole") € L3 (V2),

where -
fe= A )Lf(Ve), E=1,2.

From this we obtain
O2(e") A1 (") fi(e") + An(e) fa(e™) € LT (V2),

where
fe(€) = (e file™) € A (e} L5 (Va), k=1,2.

Hence, by (—)-regularity, we have fi = 0,k = 1,2 and hence fi = 0,k = 1,2.
Thus, the factorization é(z) = (z)l(z)ég(z) is (+)-regular. The inverse statement
is proved in a similar way. 1

Thus, we can reformulate the Theorem 2 in the following form:

THEOREM 3. In order that the factorization ©{z) = ©2(2)01(z) be (-)-
regular it is necessary and sufficient that for arbitrary simple c.s.s. a1,y with
Oq, (2) = Or(2),k = 1,2 we have

Xg!:,al = X;l & X;a‘

CoroLLARY 3. Suppose that a function ©(z) € B(U,V) has the following
(equivalent) properties

1. ALY(V) = ALy(V).

2. AuL; (V) = A La(V).

3. The equalily ©*p + Ay = 0, where p € LT(V),¥ € ALy(U), is possible
only in the case o = 0,9 =0.

Then the (—)-regularity of the factorization ©(z) = ©2(2)01(z) is equivalent
to its regularity.

We obtain also a criterion for minimality of c.s.s. for cascade couplings.

THEOREM 4. Let oy, as be mintmal c.s.s.. Then the sysiem o = aza; is
minimal if and only if the respeciive factorization ©4(2) = ©y,(2)Oq, (2) is (+)-
regular and (—)-regular.
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4, (+£)-REGULAR FACTORIZATION AND PASSIVE SCATTERING SYSTEMS

In this section we shall apply the obtained results to study the cascade coupling
of passive scattering systems (p.s.s.).

1. We consider first several simple propositions on dilation and projection of
linear systems.

DEFINITION 4. A linear system o = (X,U,V; A, B,C, D) is said to be the
projection of the linear system & = (ff, U,V ,ABC, f)) onto the subspace X if

~

(13) XcX, U=0, v=V

(14) A=Pxd|lx, B=PxB, ¢=C|x, D=D

where Py is the orthoprojection of X onto X. In this case we shall write & = Px@.

Let @ = Px&, and moreover, suppose, that there exist subspaces GG, G, of X
such that

AGc G, A*G.cG., B'G.={0}, CG={0}

then the system & is called a dilation ([1], [2]) of the system « and written & = dil .
In this case, it is easy to see that the transfer functions of o and & are equal in a
certain neighborhood of 0. It is not difficult to check the next statements.

ProrosiTioN 3. We have
(Px,&z)(leal) = PX1$X2&2&1s

(dil ag)(dil &;) = dil @zxy.

PROPOSITION 4. Let o be a dilation of oy and of ap with respective decom-
positions of X :

X=Gno®Xi19G, X=0G2.®&X:& .

If morcover G2 C Gy, Gae C Giu then as is a dilation of 0.

2. Let us consider a cascade factorization of a passive scattering system.
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THEOREM 5. Let o be a p.s.s. and Xo be an invariant subspace of the main
operator A of a. Then there ezist p.s.s. &y, @2 having state spaces X) = X©X2, X
respectively and o = agay.

Proof. According to ([2]), for any p.s.s. « there exists a c.s.8. & being a
dilation of @. Then the state space of & has the following decomposition

jE==(?.39)f63(l

where G is an invariant subspace of A, hence X, @G is also invariant for A. From
this, it follows that there exist ¢.5.5. o, &y having state spaces X; = G.®X,, X =
X2 @ G respectively and & = &2&;. By Proposition 3 we obtain

o= Pya= (Px,a‘z)(le&l).

The systems ap = Px, &g, k = 1,2 are the searched p.s.s.

3. In this section we study optimal minimal p.s.s. in terms of (+)-regular
and (—)-regular factorizations.

According to ([3]), a pss. a = (X,U,V; A, B,C, D) is said to be optimal if
for any p.s.s. o = (X', U,V;A’, B',C", D) having the same transfer function as
a: O4(2) = Ou(2) in a certain neighborhood of 0, we have

||Zn: 4*Bu| < ||2 A*Bw|  (vnvu D).
k=0 k=0

In (1], [3], [2]) it is proved that any contractive analytic in D operator function is
the transfer function of a certain optimal minimal p.s.s. and an optimal minimal
p.s.s. is uniquely determined by its transfer function (up to unitary equivalence).

An observable p.s.s. « is said to be *-optimal if for any p.s.s. &' with ©4(z) =
94(2) (in D) we have

"Zn: A"Bu,," > ”iA’kB'uk ” (¥n,Yuy € U) .
k=0 k=0

A minimal *-optimal p.s.s. is uniquely determined by its transfer function
(up to unitary equivalence).

Any linear system a = (X, U, V; A, B,C, D) is the dilation of following min-
imal system X = (X, U, V; A%, B, C, D) where

Xco = PXan, ACO = PXcoA.IXco, Bco = PXGOB, Cco = CIXCO.
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Moreover, if a is a simple c.s.s. then &° is an optimal minimal p.s.s..
Similarly, the simple c.s.s. @ = (X,U,V; 4, B,C, D) is also a dilation of the
following minimal *-optimal p.s.s.

o’ = (Xoc, U) V; Aacy Boc’ Coc’ D):
where
X% = PxeX°, A% =PxocA|X?, B = Px..B, C° =C|X°.

DEFINITION 5. ([2]) The systems & = (X,U,V; 4, B,C, D),/ = (X', U,V;
A’ B',C', D) are said to be weakly similar if there exists an invertible linear
operator T': X' — X having dense domain Dr and dense range Ry such that

(15) ADr CDyr, ARTCR, BUCDr

(16) TA'|Dr=AT, TB'=B, CT=C'|Dr.

In this case we have
(17) TAMB.‘ — AnB, T*(A-@)ncw — (Alt)ncm‘

We see also that the weakly similar systems have the same transfer function.

THEOREM 6. Lel the system o = (X, U,V A, B,C, D) be a minimal p.s.s..
The system a is oplimal (resp. *-optimal) if and only if for every minimal p.s.5.
o = (X',U,V; A, B',C',D') having the same iransfer function s a : Oq:(2) =
Qu(z), we have

N n
(18) ]|\:’(A*)k(m,c [ > "Z(A’*)'“C’*vk ] (Vn €N, v, € V)
k=0 k=0

Proof. Let us prove the theorem for optimality; the statement concerning
*-optimality is proved in a similar way.

Since the minimal systems o, o’ having the same transfer function are weakly
similar ([2]), there exists an invertible operator T satisfying (15)-(17). From the
definition of optimality and (17), it follows that ||T]} < 1 and hence ||T"]| < 1.
Thus, from (17) follows (18).

Conversely, let o” be any p.s.s. with the same transfer function Oqn(2) =
©.(z) as a. Putting o’ = (a”)°°, &' is minimal and O (z) = O4(2). Hence a,a’
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are weakly similar, i.e. we have (17), from which it follows {[T*]| € 1, and {|T| € 1.

Thus n n
[354* B < oy 5]
k=0 k=0

Since
(Al)kBl - PX"” (A”)kB”,

we obtain n n
[55w5u] < [Sr 5.
It is easy to prove the following

LEMMA 4. Let the system o = (X,U,V; A, B,C, D) be conirollable or ob-
servable and let W be a unitary operator from X onto itself such that

A=WAW™Y, B=WB, C=Cw~l.

Then W is the identsty.

THEOREM 7. Let o be optimal (resp. *-optimal} minimal p.s.s., whose trans-
fer function ©,(2) has (+)-regular and (~)-regular factorization ©,()= 0,0, (2).
Then there exist unique optimal (resp. »-optimal) minimal p.s.s. a1, ay such that

a=uag0e;, O (z)=6i(z), k=12

Proof. Obviously, we can suppose a being of model form

where & is a simple c.s.s. having transfer function 94(z) = 94(2).
Since the factorization ©4(2) = O4(z) = ©2(2)01(2) is (+)-regular, then it
is also regular, hence & has a cascade factorization
& = aray,
where &), &2 are simple c.s.s. with transfer functions

6&1(‘2) = 61(2), 65!2 (z) = 62(2)'

Moreover, from Theorems 1 and 3 we have

X =Py Xe = X @ X§°,
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and hence, from Proposition 3 we obtain
Prott = (P.’?§°&2)(PX;”6‘1)'

Thus
& = a0y,

where
Qg = (P}:':odk)) k= 1:2)

are optimal minimal p.s.s. .

To prove the part concerning *-optimality, it is enough to consider the model
system &°¢ instead of &°°.

Let us prove uniqueness. Suppose that we have another factorization o =
oyt where o, o} are optimal minimal p.s.s. such that O, (2) = O (2),k = 1,2.
Then a; is unitarily equivalent to a} with a unitary transformation Wi. In this
case, it is not difficult to see that the system a = aja; is unitarily equivalent
to the system o = aba} with the unitary transformation Wi @ W,. Next, from
Lemma 4 it follows that &) = of, ap = of, which completes the proof. &

THEOREM 8. Let a3, ay be optimal (resp. *-optimal} minimal p.s.s. such
that the factorization ©(z) = ©y,04,(2) is (+)-reqular and (—)-regular. Then the
cascade coupling a = azay is an oplimal (resp. *-optimal) minimal p.s.s..

Proof. Suppose that the optimal minimal p.s.s. &y, a2 have model forms
ap = P):':o&k) k=12,

where &;, &y are simple ¢.s.s. such that ©4,(2) = 4, (2). By Proposition 3 we
obtain
Qa0 = (PX§o&2)(P,\":o&l) = PX{:o@x;od2&1 = Pf(c., Qady.

Since the factorization is regular, then the system d&»d&; is a simple c.s.5., hence
&z is an optimal minimal p.s.s. .
The part of the theorem concerning *-optimality is proved in a similar way.

We shall see that a similar statement is also true for minimal (possibly not
optimal) p.s.s.. For that purpose we consider several simple necessary results.

LEMMA 5. Let the systems oy, be weakly similar respectively lo of, b,
then agoy s weakly similar 1o abe.

Proof. Suppose that oy is weakly similar to o}, by the linear transformation
Ti (k = 1,2). Then it is easy to see that aza; is weakly similar to aja) by the
linear transformation Ty @ T3, 1
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DEFINITION 6. If the transformation operator T in Definition 5 is bounded
(T~! may be unbounded), then the system o' is said to be a quasiaffine transfor-
mation of the system ¢.

PROPOSITION 5. Let &' be a quasiaffine transformation of a. Then
a) The adjoint system a* is a quasiaffine iransformation of o’*.

b) If o' is controllable, then o is controllable.

¢) If a is observable, then o is also observabdle.

The proof of these statements follows from (17), using the boundeness of the
transformation operator 7'.

LEMMA 6. If af,a% are respectively quasiaffine transformations of ay,as,
then oo is a quasiaffine transformation of azay.

The proof of this lemma is similar to the proof of Lemma 5.

PROPOSITION 6. Let oy, ap be optimal (resp. *-optimal} minimal p.s.s. and
let of,ab be minimal p.s.s. such that O}, (z) = O4,(2),k = 1,2. If the system
agay is observable (resp. controllable) then aha) is observable (resp. controilable).

Proof. From the suppositions of Proposition 6 and from ([2]) it follows that
ay is weakly similar to o} (k =1,2). Let

(19) Ti(A,)"B, = A’B, k=1,2.

If a; is optimal, then from (19) we have that o} is a quasiaffine transformation
of ap (since ||Til| < 1); hence, by Lemma 6, aja} is a quasiaffine transforma-
tion of aocr;. If the system aza; is observable then o) is also observable (by
Proposition 5).

The case of *-optimality is similarly considered. B

THEOREM 9. Lel oy, be minimal p.s.s.. If the factorization ©(z) =
04,(2)Oq, (2) is (+)-regular and (=)-regular, then asa; is a minimal p.s.s. .

Proof. Let o, a% be optimal minimal p.s.s. such that
O41(2) = Oa,(2), k=1,2.

By Theorem 8, the system oa} is optimal minimal. Thus it is observable, whence
by Proposition 6 the system aja; is observable.

Similarly, considering #-optimal minimal p.s.s. af, af with transfer function
©41/(2) = O, () we obtain that @, is controllable. 1§
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THEOREM 10, Suppose that an optimal (resp. *-optimal) minimal p.s.5s. a
has a cascade coupling & = azay such that the factorization ©4(z) = Oy, (2)O4, (2)
is (+)-regular and (—)-regular. Then the sysiems oy, g are optimal (resp.
*-optimal) minimal,

Proof. It is obvious to see that &y, are minimal.
If @) is not optimal, then there exists a p.s.s. o} such that Oy (2) = O4,(2)
and 3z @ |z] < 1,ux € U and

"?::1“ SPURSYIN "g(z— A5 B
Then for the system o = aza’ we have
[Soa-ar
L Sy s+ [0 - o) 0n e

<S5 - s B+ [ 300  ox e} Bes (o
k=1 k=1

li

i(r — 2 A)" By, ”2
k=1 '

This contradicts the optimality of a.
Suppose a; is not optimal. By Theorem 6, there exists a minimal p.s.s. af
such that @ (2) = O4,(2) and 3z : 2] < 1, v € V with

"Z(I—zkA vk“ > "Z(I-—zkA ) Cyu|

Taking " = aja; we obtain

300 - 5agt) ey
k=1

—ZLA ) 102”‘" .

By virtue of (++)-regularity and (~)-regularity of the factorization Q,u(2) =
Oy (2)Oq, (2), the system o is minimal (by Theorem 9), hence, by Theorem 6,
it is not optimal. The theorem is proved. o
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