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ABSTRACT. There exists an AFD factor M of type I1I, with uncountably
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weights, and (i) M 2 N has principal graph As.
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0. INTRODUCTION

Let M2N be a factor-subfactor pair with a normal conditional expectation E.
We consider such a pair with Ind E = 3 ([6], [8], [14]) whose principal graph in
As (see [1]). When M is the AFD II; (or II.) factor, only one such pair (up
to conjugacy) exists ([15], [17]), that is, M2N is conjugate to RoxS3=2RoXS>.
(Here, Ry is the hyperfinite IIj-factor.) If M is the AFD factor of type 111,
then M 2N splits into an inclusion of IIj-factors ([5]), that is, M 2N is conjugate
to A® M2B ® M with an inclusion A2B of II-factors (which is conjugate to
RoXS32Ro%S2). When M is of type 111y, A # 1, N is not necessarily isomorphic
(as a factor) to M so that a situation is slightly different. In this article, let us
further assume that M and N have the same flow of weights (see Remark 1 for
the precise meaning). Under this assumption the AFD type III\ (0 < X < 1)
factor contains exactly two subfactors Ny, Np ([12]): M 2N, splits into an inclusion
of II)-factors while M2N, does not. (See [10], [12], [13] for other classification
results in the type III set-up.)
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In the above mentioned cases subfactors (of the specified form) are thus quite
rigid objects. The purpose of the present article is to point out that we have a
completely different situation for factors of type I11y. Namely, we will show that
an AFD type III, factor M generally (probably always) contains uncountably
many subfactors N such that

(i) M, N have the same flow of weights, and

(ii) M2N has principal graphs As.

After collecting some standard results in Section 1, we will construct a model
inclusion M2N of the required type in Section 2 by making use of a certain S3-
action. This action arises from a two-to-one ergodic extension of a given ergodic
flow (X, F}), and the flows of weights of M and N turn out to be exactly (X, F¢).
In Section 3 the above two-to-one extension will be shown to be naturally re-
constructed from an inclusion data of M2N. Consequently, different extensions
give rise to non-conjugate inclusions of factors (with the specified flow (X, Fy)
of weights). Therefore, an ergodic flow with uncountably many non-isomorphic

two-to-one ergodic extensions gives us the above mentioned AF D type I1I, factor.

1. PRELIMINARIES

Let M2N be a factor-subfactor pair, and E : M — N be a normal conditional
expectation with Ind E = 3 ([6], [8], [14]). Hence the principal graph for M2N is
either Dy or As (see {1]). Throughout the article (unless otherwise is stated) we
assume that the principal graph is As.

Choose and fix a faithful state ¢ € N}. We consider the inclusion
H= MxowaERgﬁ = N‘xav‘R

of von Neumann algebras of type Il,. Connes’ Radon-Nikodym theorem guar-
antees that M, _2_17 does not depend upon the choice of ¢. The expectation E is
lifted to £ : M — N (E(n,(2)) = 1,(E(z)), z € M, and E(A(t)) = ()t € R).
This expectation E comes from the canonical trace on M and commutes with the
dual action {0;}ier (see [11] for details).

In this article we further require that the centers Z (H yand Z (N) coincide.
Therefore, M and N have the same flow of weights.
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REMARK 1. Even if Z(M) # Z(N), it might happen that the flow of weights
of M and that of N are isomorphic as the examples in [4] show. However, “the same
flow of weights” will mean Z(M) = Z(N) in what follows (i.e., M = A28 = N in
the sense of [10]).

Let

~— ® ~ 9 .
M =/ M(w)dw2N =/ N(w)dw
X X

be the (joint) central decomposition (2(M)) = Z(N) = L®(X)). From this
we obtain the (measurable) field {M(w)2N(w)}u of pairs of Il-factors. Since
(B)~-1(1) = 3 ({11], 2.1) and E comes from the canonical trace, we conclude that
[M(w) : N(w)] = 3, the Jones index (for a.e. w € X). This means that the
principal graph of M (w)_:__)lv (w) is either Dy or As (and a priori this depends on
w).

Let M; be the basic extension of E : M — N. The compatibility between
performing the basic extension and taking the crossed product (2.1, [11]) says
that the crossed product Ml (of M relative to the modular automorphlsms of

P(E(JmE~(Jum - Jm)JIm))) is the same as the basic extension of E:M-—N.
Also, ey = m,(en) is exactly the Jones projection for M2N (see 2.1, [11]). It is
straight-forward to see that M, has the same center as M,N,and M, (w) (defined
analogously) is exactly the basic extension of M M(w)2N(w).

Consider the (obviously measurable) function:

w € X — dim(M; (w) N N'(w)).

This functions is invariant under the flow F; (a point-map realization of &, re-
stricted to Z(M) = L®(X)), M(Fi(w))2N (Fy(w)) being conjugate to M(w)2

N (w). The central ergodicity of the dual action thus guarantees that the above
function is a constant function (a.e.) (values are either 2 or 3). Therefore {M M(w)2
N (w)}w gives us either Dy (a.e.) or As (a.e.).

DEFINITION 2. The above Dy or Ag will be referred to as the type I principal
graph of M2N (an inclusion of type III factors).

Notice that, if the principal graph (= As in this article) and the type II
principall graph of M2N are different, then M2N does not split into an inclu-
sion of II;-factors. In fact, if A2B is an inclusion of II;-factors, then we would
obviously get (A® M)~ = AQM2(BO®M) = B® M.
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2. MODEL

We start from a given non-singular ergodic flow (X, F;) (not isomorphic to (R,
translation with speed 1)). We will construct a factor-subfactor pair M2N such
that

(i) M and N have the same flow of weights, which is exactly (X, F1),

(ii) the principal graph of M2N is As,

(iii) the type II principal graph of M2N is Dy.

Let us choose and fix an ergodic flow (X, F;) which is a two-to-one extension
of (X,F) : X = X x {1,2} and Fi(w,i) = (Fi(w),pw,(i)) with the cocycle
p: XxR— Sz (see also the last paragraph in Section 2).

Let Q be the AFD (type 1115, A # 1) factor whose flow of weights is exactly
X, ) (see [3]). Let a be the unique (up to cocycle conjugacy, [20]) outer S3-action
on Q specified by

N(a) = {1}, i.e., e, is not centrally trivial (¢ # 1 € Ss),
moday = 1,

mod a, is the map exchanging the two sheets of X
((mod ag)(w,d) = (w,i+1)).

Here, a = (1,2) and b = (1, 2, 3) are the obvious generators of S3, the permutations
on {1,2,3}, (a% = b3 = 1, aba = b?).
With S; = {1,a} we set

M = QXaS32N = @%,5;.

The principal graph of M2N is obviously As (see [1]). We will show that the
requirements (i), (iii) are also satisfied.

Let us choose an Ss-invariant faithful state ¥y € W}. Let & be the canonical
extension ([2]) of & to @ = QX,vR(&,(7(z)) = 7(a,(z)), = € @, and F,(A(t)) =
A(t), t € R). The following facts are standard ([2], [7], [19]):

(a) MDN (that is (on,Sa)”D(Qang) ) is conjugate to Qx~833Q>4~Sz,

(b) the dual action on Q is the restriction of that on M,

(c) the dual action on M acts trivially to the generators correspondings to
Ss.

The centers of M, N are the fixed point algebras of Z (é) under the (mod)
actions of S3 and S respectively ([7], [19]). Hence, in the present set-up, we get

Z(M) = Z(N) = Z(@)mod a, = L™(X),

and the requirement (i) is indeed satisfied.
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Let us decompose @ over Z(Q)mod w = L2(X):
~ @
G=[ dwa,
X

c={[* ] even).

Here, Ry is the AF D factor of type 11, and the first (resp., second) component
in Q(w) = Ro1®Ro; corresponds to the fiber algebra above (w,1) € X =Xx{1,2)
(vesp., (w,2)). Since mod o, exchanges the two sheets, &, exchanges Rp; above
(w,1) and that above (w,2). By rearranging the algebras above one of the two
sheets, we may and do assume that &, looks like

(J [ sl @)= LT o]

On the other hand, mod &, = 1 means that & is a field of period 3 automorphisms
(of factor components in the central decomposition of Q). Since @a&p&s = Gpa,
we conclude that

([l #) = LT apen] =

where o, is a period 3 automorphism of Rp;.
Hence, above each w € X, the fiber algebras look like

M) = QW)%aS2N (w) = Gw)%aSs,
(1) Q(w) = Roy ® Roy,

() R EE (i R e )

For simplicity let us agree to drop the subscript w(€ X). Since a (Sz-action on
Q(w) = Roy @ Rypy) is free and centrally ergodic, M(w)2N(w) is indeed a factor-
subfactor pair.

To check the requirement (iii), it suffices to show that dim(M; (W)NN(w)') =
3. The standard Hilbert space of M(w) is L2(Ro1 © Ro1) ® £2(S3) = (L2(Ro1) ®
L2(Ro1)) ® €2(Ss). Therefore, an operator in B(LZ(M(w))) can be expressed as
a 6 x 6-matrix with B(L?(Ro1) ® L?(Rq:))-entries, where the rows and columns
are indexed by (g, k) € S3 x S3. The two generators 7(z) (¢ € Ro1 ® Roy) and A
(k € S3) in (Ro1 @ Ro1)XqSs are given by the following matrices:

(2) m(&)gn = {39"(3) if g=h,

otherwise,
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1 if gh~'*=k,
0 otherwise.

\
(3) (Me)gn = {
In this representation, the Jones projection e = [eg] for M(W)2N(w) is
4) €11 = €gq = 1, other egs’s are 0.

The modular conjugation J (on L?(M(w))) is given by

S [doue) i k=g
=30 otherwise,

where Jg is the modular conjugation of Rg; & Rpy and u{g) is the canonical im-
plementation of a, € Aut(Ro; ® Ro1). The commutant ((Roy & Ro1)XeS2)" (in
B(L?*(M(w)))) is given by

((Ro1®Ro1)XaS2) = {X = [Xga] :

Xgn = nlpu(g™ h) € (Ro1 ® Ror)'u(g™ k), ny pp = mly for k€ Sz},
where (Ro; ® Ro1)' is the commutant of Ro; @ Ro; acting on L%(Roy & Roy).
Therefore, the basic extension M;(w) = J((Ro1 ® Ro1)XaS2)'J turns out to be

Mi(w) = {X = [Xgn] :Xgn € Ro1 ® Ro
Xk pk = 0x-1(Xgp) for k€ Sz}.
All of the above computations are straightforward (and standard) so that the
details are left to the reader.
We are now ready to compute M (w) N N(w). Assume that X = [X,5) €
Mi(w) (Xyn € Roy ® Roy, Xga,ha = @g-1(Xgn) for a = (1,2) € S2) commutes with
an arbitrary element in N(w). The commutativity with m(z) (z € Ro1 ® Ro1) (see

(2)) forces that
ag-1(z)Xgn = Xgnop-1(z).

When g # h, ap-1, is free and Xgn = 0. On the other hand, Xy, belongs to
Z(Ro1 ® Rg1) = C & C. The commutativity with A (see (3)) implies that

Xagag =Xgg for e=(1,2)€5,.
We thus conclude that
Myw) 0 F(w) = {X = [Xga): Xon = 0 for g # b,
Y, = Xy € Z(Ro1 @ Ron) = C®C(g € S3)
satisfy Yo = aq-1(¥y), Yag = Yg}.
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Based on (1) (and by looking at the double coset spaces Sz \ S3/S2), we know
that M (w)N N(w) consists of diagonal matrices (with entries {¥;};es, as above)

satisfying
Y1=Y,= [a OJ] )

Yb=Yab=[ﬁ ]s
v

Yy =Y, ,,g_[" ﬂ],

for some scalars a,,v. Therefore, M;(w) N N(w) is a 3-dimensional abelian
algebra, and the type I7 principal graph is indeed Dj.

THEOREM 3. Let M2N be the factor-subfactor pair constructed from a two-
to-one ergodic extension (X, Fy) of (X, Fy). Then the inclusion M2N satisfies
(i) M2N have the same flow of weights, which is ezactly (X, Fi},
(ii) the principal graph of M2N is As,
(iii) the type II principal graph of M2N is Dy.

Assume that (X, F;) and (X*, F!) are isomorphic (as extensions) two-to-one
ergodic extensions of (X, Fy). Or more generally, assume that (X,F) — (X, F)
and (X!, F}) — (X1, F}) are isomorphic (as extensions) two-to-one ergodic ex-
tensions (see [18] for example), that is, there exists a non-singular isomorphism
% : X — X! with Fl oy = 9 o F; and a measurable map 8 : X — Sz (relabeling
of sheets) satisfying

99:1;((,0),‘ = ﬁFg(w) O Pu,t © ﬁ;l .

Here, ¢, ' are the relevant cocycles (see the beginning of Section 2). In this case,
" (w i) — (Y(w), Bu{i)) is a non-singular (relative to the obvious measures on
X X 1) 1somorphlsm intertwining 7y and F!, and we have 7! o ) = Yor (where
7:X — X, wl : X! = X1 are the natural projection maps) This ¢ obviously
sends moda to moda!. Therefore, the two actions a,a' are cocycle conjugate
([20]), and the resulting inclusions M2N and M'2N! are conjugate.

LEMMA 4. The following three conditions are equivalent:
(i) (X,F) — (X, ) and (X1, F') — (X, F}) are isomorphic eztensions
in the sense dcscribed ebove.
(ii) There ezist non-singular isomorphisms ¢ : X — X' and ¢ : X = X1
such that Fl o =y o Fy, F} o) = oF and w! op=tom.
(iii) Via m, 7! let us consider L®(X) and L®(X') as subalgebras of L®(X)
and L®(X!) respectively. Let 0;,0;,6%,8} be the R-actions {on the relevant al-
gebras) induced by Fg,ﬁ,,F},f‘,‘ respectively. Then there exists a (von Neumann
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algebra) isomorphism A : L®(X) — L®(X') such that A intertwines 8; and 6;, A
sends L (X) onto L®(X*), and A|pw(x) intertwines 6; and 6;.

Proof. (ii) <> (iii) is obvious, and it suffices to show (ii) = (i). Since (ii) =
(i) for Z-actions is well-known, it suffices to reduce the situation to the Z-action
case.

Represent (X, F;) under a ceiling function f on a base space X with a base
transformation T, ie., X = {(u,s) : u € X,055 < f(u)} and Fyy)(u,0) =
(T'u,0) for example. We consider the sets 7=1(Xq), ¥(Xo), and (7)1 (¥(20)) =
#(7~1(Xp)), where Xp (= Xox {0}) € X. Thanks to the intertwining properties in
(i), (X, FY), (X1, F}), (X!, F}) can be represented under the same ceiling function
f in such a way that the relevant base spaces are exactly the above three sets
respectively. Let T, T, and 7" be the respective base transformations. From the
construction, T (resp. T1) is an extension of T' (resp. T'), and (T, T),(T*,T%)
are isomorphic extensions. 0

The technique in the above proof also shows that having a (two-to-one er-
godic) extension (X F,) — (X, F;) in the sense described above is the same as the
following: flows Ft on X and F; on X are given with the requirement ﬂ'OFg Fiom.

3. MAIN RESULTS

Here, we further analyze the pair M2N constructed in the previous section. Al-
though the flow (X, F}) appears as the flow of weights of M (and of N), the two-to-
one extension (X, F;) seems to have disappeared during the construction. Actually
this is not the case. We will show that the two-to-one extension, ()? , f,) — (X, F),
can be captured (in a very natural way) from an inclusion data of M2N.

Recall M(w)2N(w) (in Section 2) described by (1). We set

V=rn ([1 OD Ap+ ([0 1]) Mps € (Roy @ Roy)¥aSs = M(w),

where (7 = 7q, A) is the covariant representation of the S3-action o on Roy @ Ro1.
The last equality in (1) and the covariance relation imply

R (IS ) A
0 D7 ) e
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(In particular, 7 ([x y]) (z,y € C) commutes with A3). Thank to (6), one can

easily observe that V' is a unitary, V¥ =1, and

o el e ]

We also have

{ VaAJV* = Aq,

e[ )= ([ ) mven

For example, we compute

v =a([! O]){w\a}\;“([l o)+ ([ o)) wer ([ 1))
”([0 1:)’“‘““;”([1 o))
o Do)
el oere(E T )
([ e (P o))

(because of bab~2 = b%ab~! = a and (5))

ST I

The second equality can be proved similarly.
The above facts show that V normalizes the Il,,-subfactor N(w) = (Ro1 @
Rp1)4aS7 and gives us the Za-action AdV.

LEMMA 5. The 6 x 6-matrices representing VeV* VZe(V?)* (where e is the
Jones projection, see (4)) are as follows:

(1) VeV* = p is a diagonal matriz, and its diagonal entries {pg}ges, are
given by

o = Pap = [1 0] , Pyz = Pz = [0 1], all other p,’s are 0.

(ii) V2e(V?)* = ¢ is a diagonal matriz, and iis diagonal eniries {g,}4es, are
given by

b = Qap = [0 1], Q2 = Qapz = [1 0], all other q,’s are 0.
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Proof. We will prove just (i). ((ii) can be proved similarly.) Let P, be the
“rank-1" projection whose (g, 9)-component is 1. Notice the following facts:

{—*hPa 2 =Py (hg€S),

) z
py commutes with = ; =,y € Ros.
y

The first is easy, and the second follows from the fact that the two involved matrices
are diagonal. Since e = P+ P, (see (4)), VeV* = VP, V+V P,V* can be expressed

as the linear combination (whose coefficients are = ([1 0 ]) , T ([0 1]) ,or 0)

of eight terms of the form: A\, P, A}, (¢ € Sz = {1,a}, and h, h’ € {b,b?}). Actually
four of them vanish. For example, we have

() R P )
S 0 P

since T ([0 1]) commutes with Py and Au2. In this way we end up with

v s ([N ) ([0 ) ([ o])porte ([0 4])

Therefore $) is proved. (Notice that, for example, the (ab?, ab?)-component of

w([l 0] isa(,,p)-l([l 0]):[0 1] by (1) and (2)) 8

Notice that p,¢ in Lemma 5 and the Jones projection e are the minimal
projections in Hl(w) N N(w)'. (Recall the computation right before Theorem 2).
Neither of V and V2 commutes with e so that AdV and AdV? (restricted to (Ro1®
Ro1)XaS3) are outer ([6]). We thus have shown {(Ro1 ® Ro1)XoS2)Xadvis =
(Ro1 ® Ro1)X4Ss (see [16] or [9]), which of course gives us an alternative proof for
the requirement (ii) in Section 2.

So far we have been looking at the “fiber algebras” M (w)2N(w) and have
not paid attention on the dual action. We now go back to the global inclusion
M 21\7 . From now on the above unitary V, the Jones projection e, and the unitary
Ay (g € S3) (arising from the S3-action on Q(w), see (1)) will be denoted by
Vi, ew, and (Ag)w respectively. The Jones projection ey for M2N (and M2N,

&
en :j e, dw.
X

see Section 1) is obviously
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As pointed out above, the minimal projections in the 3-dimensional abelian algebra
My (w) N N(w)' are
{ew, Voeo Vo, Vfcw(Vf)*}.

This choice of a basis determines the isomorphism
Myn N =2 L®(X x {0,1,2}),

and the dual action ¢; (canonically extended to M, with the requirement Oi(en) =
en) gives us the three-to-one extension: (X x{0,1,2}, F{) — (X, F) (EoE) sends
ﬁl NN to Z(ﬁ) = L®(X) and intertwines 0y, where Ey : M} — M is the dual
expectation, see [8], [11]). On the other hand, we have already known

(MynN')g=M; AN (Corollary 6, [11]),
=C@®C  (principal graph = As).

This means that (X x {0, 1,2}, F{) has exactly two ergodic components.

Let {(6:)w} be the family of isomorphisms ((6; )., sends M (w) to M1 (F(w)))
determined by the dual action ;. Since fi(en) = en ((f:)wew = €F(w)), the O-th
sheet in (8) (which is just a copy of (X, F})) is the “trivial” ergodic component
corresponding to the Jones projection ey. Deleting this trivial component, (from
(1-e N)(IE N N")) we obtain the ergodic flow F; (the restriction of F] to the
non-trivial ergodic component) on X x {1,2}, which is a two-to-one extension of
(X, Fy).

We claim that this two-to-one extension is the one given at the beginning of
Section 2. In fact, Fv in Section 2 sends ((w, 1), (w,2)) to ((Fi(w), 1), (Fi(w),2))
or ((Fi(w),2), (Fi(w),1)). The property (c) in Section 2 shows (6;).((Xs)w) =
(X6)Fy(w). Thus, by (b) in Section 2 and (7) in Section 3, the first (resp. second)
case means that (6;), sends V,, to Vp,(u) (resp. to VFZ'(w)). Since f;(en) = en, the
claim is now obvious.

Summing up the arguments so far, we have proved the next theorem.

THEOREM 6. (i) Let M2N be the factor-subfactor pair constructed (in Sec-
tion 2) from a two-to-one ergodic extension (}?,F}) of (X, Fy). Then the given
two-to-one ergodic extension is isomorphic (as an extension) to the one oblained
from the abelian algebra (1 — en)(My N N') together with the dual action.

(ii) Let (X, Fy) and (X', F!) be two-to-one ergodic extensions of (X, Fi) with
M2N and M'2N! respectively. These two inclusions of factors are conjugate if
and only if the extensions are isomorphic {(as extensions).
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In the case that (X, F}) is periodic, there exists only one (up to isomorphism)
two-to-one ergodic extension. This fact is related to Loi’s result (see Section 0):
The Powers factor M contains exactly one (up to conjugacy) non-splitting factor
N such that M 2N, has principal graph As and N3, M are isomorphic.

On the other hand, when M is of type IIly, (X, F;) probably admits un-
countably many (non-isomorphic) two-to-one ergodic extensions. Unfortunately
the author is unable to determine if this statement is correct. However, in ergodic
theory examples of ergodic transformations with uncountably many two-to-one
ergodic extentions are in abundance (see p. 262, [18], for example). Therefore,
by using a constant ceiling function, one obtains an ergodic flow with the similar
property and gets the next result.

COROLLARY 7. There ezists an AFD type 111y factor M that admits un-
countably many non-conjugate subfactors N satisfying
(i) M, N have the same flow of weights,
(ii) the principal graph of M2N is Ag,
(i11) the type II principal graph of M2N is Dy.
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