AFD FACTOR OF TYPE III_0 WITH MANY ISOMORPHIC INDEX 3 SUBFACTORS

HIDEKI KOSAKI

Communicated by William B. Arveson

ABSTRACT. There exists an AFD factor M of type III_0 with uncountably many non-conjugate subfactors N satisfying (i) M, N have the same flow of weights, and (ii) $M \supseteq N$ has principal graph A_5 .

KEYWORDS: Subfactors, factors of type IIIo.

AMS SUBJECT CLASSIFICATION: Primary 46L37; Secondary 46L35.

0. INTRODUCTION

Let $M \supseteq N$ be a factor-subfactor pair with a normal conditional expectation E. We consider such a pair with Ind E = 3 ([6], [8], [14]) whose principal graph in A_5 (see [1]). When M is the AFD II_1 (or II_{∞}) factor, only one such pair (up to conjugacy) exists ([15], [17]), that is, $M \supseteq N$ is conjugate to $R_0 \rtimes S_3 \supseteq R_0 \rtimes S_2$. (Here, R_0 is the hyperfinite II_1 -factor.) If M is the AFD factor of type III_1 , then $M \supseteq N$ splits into an inclusion of II_1 -factors ([5]), that is, $M \supseteq N$ is conjugate to $A \otimes M \supseteq B \otimes M$ with an inclusion $A \supseteq B$ of II_1 -factors (which is conjugate to $R_0 \rtimes S_3 \supseteq R_0 \rtimes S_2$). When M is of type III_{λ_1} , $\lambda \neq 1$, N is not necessarily isomorphic (as a factor) to M so that a situation is slightly different. In this article, let us further assume that M and N have the same flow of weights (see Remark 1 for the precise meaning). Under this assumption the AFD type III_{λ_1} ($0 < \lambda < 1$) factor contains exactly two subfactors N_1 , N_2 ([12]): $M \supseteq N_1$ splits into an inclusion of II_1 -factors while $M \supseteq N_2$ does not. (See [10], [12], [13] for other classification results in the type III set-up.)

18 HIDEKI KOSAKI

In the above mentioned cases subfactors (of the specified form) are thus quite rigid objects. The purpose of the present article is to point out that we have a completely different situation for factors of type III_0 . Namely, we will show that an AFD type III_0 factor M generally (probably always) contains uncountably many subfactors N such that

- (i) M, N have the same flow of weights, and
- (ii) $M \supseteq N$ has principal graphs A_5 .

After collecting some standard results in Section 1, we will construct a model inclusion $M \supseteq N$ of the required type in Section 2 by making use of a certain S_3 -action. This action arises from a two-to-one ergodic extension of a given ergodic flow (X, F_t) , and the flows of weights of M and N turn out to be exactly (X, F_t) . In Section 3 the above two-to-one extension will be shown to be naturally reconstructed from an inclusion data of $M \supseteq N$. Consequently, different extensions give rise to non-conjugate inclusions of factors (with the specified flow (X, F_t) of weights). Therefore, an ergodic flow with uncountably many non-isomorphic two-to-one ergodic extensions gives us the above mentioned AFD type III_0 factor.

1. PRELIMINARIES

Let $M \supseteq N$ be a factor-subfactor pair, and $E: M \to N$ be a normal conditional expectation with Ind E = 3 ([6], [8], [14]). Hence the principal graph for $M \supseteq N$ is either D_4 or A_5 (see [1]). Throughout the article (unless otherwise is stated) we assume that the principal graph is A_5 .

Choose and fix a faithful state $\varphi \in N_{\bullet}^+$. We consider the inclusion

$$\widetilde{M} = M \rtimes_{\sigma \Psi \circ E} \mathbf{R} \supseteq \widetilde{N} = N \rtimes_{\sigma \Psi} \mathbf{R}$$

of von Neumann algebras of type II_{∞} . Connes' Radon-Nikodym theorem guarantees that $\widetilde{M} \supseteq \widetilde{N}$ does not depend upon the choice of φ . The expectation E is lifted to $\widehat{E}: \widetilde{M} \to \widetilde{N}$ $(\widehat{E}(\pi_{\sigma}(x)) = \pi_{\sigma}(E(x)), x \in M$, and $\widehat{E}(\lambda(t)) = \lambda(t), t \in \mathbb{R}$). This expectation \widehat{E} comes from the canonical trace on \widetilde{M} and commutes with the dual action $\{\theta_t\}_{t \in \mathbb{R}}$ (see [11] for details).

In this article we further require that the centers $Z(\widetilde{M})$ and $Z(\widetilde{N})$ coincide. Therefore, M and N have the same flow of weights.

REMARK 1. Even if $Z(\widetilde{M}) \neq Z(\widetilde{N})$, it might happen that the flow of weights of M and that of N are isomorphic as the examples in [4] show. However, "the same flow of weights" will mean $Z(\widetilde{M}) = Z(\widetilde{N})$ in what follows (i.e., $M = A \supseteq B = N$ in the sense of [10]).

Let

$$\widetilde{M} = \int_X^{\oplus} \widetilde{M}(\omega) d\omega \supseteq \widetilde{N} = \int_X^{\oplus} \widetilde{N}(\omega) d\omega$$

be the (joint) central decomposition $(Z(\widetilde{M})) = Z(\widetilde{N}) \cong L^{\infty}(X)$). From this we obtain the (measurable) field $\{\widetilde{M}(\omega)\supseteq \widetilde{N}(\omega)\}_{\omega}$ of pairs of II_{∞} -factors. Since $(\widehat{E})^{-1}(1) = 3$ ([11], 2.1) and \widehat{E} comes from the canonical trace, we conclude that $[\widetilde{M}(\omega) : \widetilde{N}(\omega)] = 3$, the Jones index (for a.e. $\omega \in X$). This means that the principal graph of $\widetilde{M}(\omega)\supseteq \widetilde{N}(\omega)$ is either D_4 or A_5 (and a priori this depends on ω).

Let M_1 be the basic extension of $E:M\to N$. The compatibility between performing the basic extension and taking the crossed product (2.1, [11]) says that the crossed product \widetilde{M}_1 (of M_1 relative to the modular automorphisms of $\varphi(E(J_ME^{-1}(J_M\cdot J_M)J_M)))$ is the same as the basic extension of $\widehat{E}:\widetilde{M}\to\widetilde{N}$. Also, $e_N=\pi_\sigma(e_N)$ is exactly the Jones projection for $\widetilde{M}\supseteq\widetilde{N}$ (see 2.1, [11]). It is straight-forward to see that \widetilde{M}_1 has the same center as $\widetilde{M},\widetilde{N}$, and $\widetilde{M}_1(\omega)$ (defined analogously) is exactly the basic extension of $\widetilde{M}(\omega)\supseteq\widetilde{N}(\omega)$.

Consider the (obviously measurable) function:

$$\omega \in X \longmapsto \dim(\widetilde{M}_1(\omega) \cap \widetilde{N}'(\omega)).$$

This functions is invariant under the flow F_t (a point-map realization of θ_t restricted to $Z(\widetilde{M}) \cong L^{\infty}(X)$), $\widetilde{M}(F_t(\omega)) \supseteq \widetilde{N}(F_t(\omega))$ being conjugate to $\widetilde{M}(\omega) \supseteq \widetilde{N}(\omega)$. The central ergodicity of the dual action thus guarantees that the above function is a constant function (a.e.) (values are either 2 or 3). Therefore $\{\widetilde{M}(\omega) \supseteq \widetilde{N}(\omega)\}_{\omega}$ gives us either D_4 (a.e.) or A_5 (a.e.).

DEFINITION 2. The above D_4 or A_5 will be referred to as the type II principal graph of $M \supseteq N$ (an inclusion of type III factors).

Notice that, if the principal graph (= A_5 in this article) and the type II principal graph of $M \supseteq N$ are different, then $M \supseteq N$ does not split into an inclusion of II_1 -factors. In fact, if $A \supseteq B$ is an inclusion of II_1 -factors, then we would obviously get $(A \otimes M)^{\sim} = A \otimes \widetilde{M} \supseteq (B \otimes M)^{\sim} = B \otimes \widetilde{M}$.

HIDEKI KOSAKI

2. MODEL

20

We start from a given non-singular ergodic flow (X, F_t) (not isomorphic to $(\mathbf{R}, \text{translation with speed 1})$). We will construct a factor-subfactor pair $M \supseteq N$ such that

- (i) M and N have the same flow of weights, which is exactly (X, F_t) ,
- (ii) the principal graph of $M \supseteq N$ is A_5 ,
- (iii) the type II principal graph of $M \supseteq N$ is D_4 .

Let us choose and fix an ergodic flow $(\widetilde{X}, \widetilde{F}_t)$ which is a two-to-one extension of (X, F_t) : $\widetilde{X} = X \times \{1, 2\}$ and $\widetilde{F}_t(\omega, i) = (F_t(\omega), \varphi_{\omega, t}(i))$ with the cocycle $\varphi : X \times \mathbb{R} \to S_2$ (see also the last paragraph in Section 2).

Let Q be the AFD (type III_{λ} , $\lambda \neq 1$) factor whose flow of weights is exactly \widetilde{X} , \widetilde{F}_t) (see [3]). Let α be the unique (up to cocycle conjugacy, [20]) outer S_3 -action on Q specified by

$$\begin{cases} N(\alpha) = \{1\}, \text{ i.e., } \alpha_g \text{ is not centrally trivial } (g \neq 1 \in S_3), \\ \operatorname{mod} \alpha_b = 1, \\ \operatorname{mod} \alpha_a \text{ is the map exchanging the two sheets of } \widetilde{X} \\ ((\operatorname{mod} \alpha_a)(\omega, i) = (\omega, i + 1)). \end{cases}$$

Here, a = (1, 2) and b = (1, 2, 3) are the obvious generators of S_3 , the permutations on $\{1, 2, 3\}$, $(a^2 = b^3 = 1, aba = b^2)$.

With $S_2 = \{1, a\}$ we set

$$M = Q \rtimes_{\alpha} S_3 \supseteq N = Q \rtimes_{\alpha} S_2.$$

The principal graph of $M \supseteq N$ is obviously A_5 (see [1]). We will show that the requirements (i), (iii) are also satisfied.

Let us choose an S_3 -invariant faithful state $\psi \in W^+_*$. Let $\widetilde{\alpha}$ be the canonical extension ([2]) of α to $\widetilde{Q} = Q \rtimes_{\sigma^*} \mathbf{R}(\widetilde{\alpha}_g(\pi(x)) = \pi(\alpha_g(x)), x \in Q$, and $\widetilde{\alpha}_g(\lambda(t)) = \lambda(t), t \in \mathbf{R}$). The following facts are standard ([2], [7], [19]):

- (a) $\widetilde{M} \supseteq \widetilde{N}$ (that is $(Q \rtimes_{\alpha} S_3)^{\sim} \supseteq (Q \rtimes_{\alpha} S_2)^{\sim}$) is conjugate to $\widetilde{Q} \rtimes_{\widetilde{\alpha}} S_3 \supseteq \widetilde{Q} \rtimes_{\widetilde{\alpha}} S_2$,
- (b) the dual action on \widetilde{Q} is the restriction of that on \widetilde{M} ,
- (c) the dual action on \widetilde{M} acts trivially to the generators correspondings to S_3 .

The centers of \widetilde{M} , \widetilde{N} are the fixed point algebras of $Z(\widetilde{Q})$ under the (mod) actions of S_3 and S_2 respectively ([7], [19]). Hence, in the present set-up, we get

$$Z(\widetilde{M}) = Z(\widetilde{N}) = Z(\widetilde{Q})_{\text{mod } \alpha} \cong L^{\infty}(X),$$

and the requirement (i) is indeed satisfied.

Let us decompose \widetilde{Q} over $Z(\widetilde{Q})_{\text{mod }\alpha_{\alpha}} = L^{\infty}(X)$:

$$\widetilde{Q} = \int_X^{\oplus} \widetilde{Q}(\omega) \, \mathrm{d}\omega,$$

$$\widetilde{Q}(\omega) = \left\{ \begin{bmatrix} x & \\ & y \end{bmatrix} : x, y \in R_{01} \right\}.$$

Here, R_{01} is the AFD factor of type II_{∞} , and the first (resp., second) component in $\widetilde{Q}(\omega) = R_{01} \oplus R_{01}$ corresponds to the fiber algebra above $(\omega, 1) \in \widetilde{X} = X \times \{1, 2\}$ (resp., $(\omega, 2)$). Since $\operatorname{mod} \alpha_a$ exchanges the two sheets, $\widetilde{\alpha}_a$ exchanges R_{01} above $(\omega, 1)$ and that above $(\omega, 2)$. By rearranging the algebras above one of the two sheets, we may and do assume that $\widetilde{\alpha}_a$ looks like

$$\widetilde{\alpha}_a \left(\int_X^{\oplus} \begin{bmatrix} x(\omega) & \\ & y(\omega) \end{bmatrix} d\omega \right) = \int_X^{\oplus} \begin{bmatrix} y(\omega) & \\ & x(\omega) \end{bmatrix} d\omega.$$

On the other hand, mod $\alpha_b = 1$ means that $\tilde{\alpha}_b$ is a field of period 3 automorphisms (of factor components in the central decomposition of \tilde{Q}). Since $\tilde{\alpha}_a \tilde{\alpha}_b \tilde{\alpha}_a = \tilde{\alpha}_{b^2}$, we conclude that

$$\widetilde{\alpha}_b \left(\int_X^{\oplus} \begin{bmatrix} x(\omega) & \\ & y(\omega) \end{bmatrix} d\omega \right) = \int_X^{\oplus} \begin{bmatrix} \sigma_\omega(x(\omega)) & \\ & \sigma_\omega^2(y(\omega)) \end{bmatrix} d\omega,$$

where σ_{ω} is a period 3 automorphism of R_{01} .

Hence, above each $\omega \in X$, the fiber algebras look like

$$(1) \qquad \begin{cases} \widetilde{M}(\omega) = \widetilde{Q}(\omega) \rtimes_{\alpha} S_{3} \supseteq \widetilde{N}(\omega) = \widetilde{Q}(\omega) \rtimes_{\alpha} S_{2}, \\ \widetilde{Q}(\omega) = R_{01} \oplus R_{01}, \\ \alpha_{a} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}, \ \alpha_{b} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \sigma(x) \\ \sigma^{2}(y) \end{bmatrix} \end{pmatrix}. \end{cases}$$

For simplicity let us agree to drop the subscript $\omega \in X$. Since α (S_3 -action on $\widetilde{Q}(\omega) = R_{01} \oplus R_{01}$) is free and centrally ergodic, $\widetilde{M}(\omega) \supseteq \widetilde{N}(\omega)$ is indeed a factor-subfactor pair.

To check the requirement (iii), it suffices to show that $\dim(\widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)') = 3$. The standard Hilbert space of $\widetilde{M}(\omega)$ is $L^2(R_{01} \oplus R_{01}) \otimes \ell^2(S_3) = (L^2(R_{01}) \oplus L^2(R_{01})) \otimes \ell^2(S_3)$. Therefore, an operator in $B(L^2(\widetilde{M}(\omega)))$ can be expressed as a 6×6 -matrix with $B(L^2(R_{01}) \oplus L^2(R_{01}))$ -entries, where the rows and columns are indexed by $(g,h) \in S_3 \times S_3$. The two generators $\pi(x)$ $(x \in R_{01} \oplus R_{01})$ and λ_k $(k \in S_3)$ in $(R_{01} \oplus R_{01}) \rtimes_{\alpha} S_3$ are given by the following matrices:

(2)
$$\pi(x)_{gh} = \begin{cases} \alpha_{g^{-1}}(x) & \text{if } g = h, \\ 0 & \text{otherwise,} \end{cases}$$

22 Hideki Kosaki

(3)
$$(\lambda_k)_{gh} = \begin{cases} 1 & \text{if } gh^{-1} = k, \\ 0 & \text{otherwise.} \end{cases}$$

In this representation, the Jones projection $e=[e_{gh}]$ for $\widetilde{M}(\omega) \supseteq \widetilde{N}(\omega)$ is

(4)
$$e_{11} = e_{aa} = 1$$
, other e_{gh} 's are 0.

The modular conjugation J (on $L^2(\widetilde{M}(\omega))$) is given by

$$J_{gh} = \begin{cases} J_0 u(g)^* & \text{if } h = g^{-1} \\ 0 & \text{otherwise,} \end{cases}$$

where J_0 is the modular conjugation of $R_{01} \oplus R_{01}$ and u(g) is the canonical implementation of $\alpha_g \in \operatorname{Aut}(R_{01} \oplus R_{01})$. The commutant $((R_{01} \oplus R_{01}) \rtimes_{\alpha} S_2)'$ (in $B(L^2(\widetilde{M}(\omega)))$) is given by

$$((R_{01} \oplus R_{01}) \rtimes_{\alpha} S_2)' = \Big\{ X = [X_{gh}] :$$

$$X_{gh} = n'_{gh} u(g^{-1}h) \in (R_{01} \oplus R_{01})' u(g^{-1}h), n'_{kg,kh} = n'_{gh} \quad \text{for} \quad k \in S_2 \Big\},$$

where $(R_{01} \oplus R_{01})'$ is the commutant of $R_{01} \oplus R_{01}$ acting on $L^2(R_{01} \oplus R_{01})$. Therefore, the basic extension $\widetilde{M}_1(\omega) = J((R_{01} \oplus R_{01}) \rtimes_{\alpha} S_2)'J$ turns out to be

$$\widetilde{M}_{1}(\omega) = \left\{ X = [X_{gh}] : X_{gh} \in R_{01} \oplus R_{01} \\ X_{gk,hk} = \alpha_{k-1}(X_{gh}) \text{ for } k \in S_{2} \right\}.$$

All of the above computations are straightforward (and standard) so that the details are left to the reader.

We are now ready to compute $\widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)'$. Assume that $X = [X_{gh}] \in \widetilde{M}_1(\omega)$ $(X_{gh} \in R_{01} \oplus R_{01}, X_{ga,ha} = \alpha_{a^{-1}}(X_{gh})$ for $a = (1,2) \in S_2$) commutes with an arbitrary element in $\widetilde{N}(\omega)$. The commutativity with $\pi(x)$ $(x \in R_{01} \oplus R_{01})$ (see (2)) forces that

$$\alpha_{g^{-1}}(x)X_{gh}=X_{gh}\alpha_{h^{-1}}(x).$$

When $g \neq h$, $\alpha_{h^{-1}g}$ is free and $X_{gh} = 0$. On the other hand, X_{gg} belongs to $Z(R_{01} \oplus R_{01}) = \mathbb{C} \oplus \mathbb{C}$. The commutativity with λ_a (see (3)) implies that

$$X_{ag,ag} = X_{gg}$$
 for $a = (1,2) \in S_2$.

We thus conclude that

$$\begin{split} \widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)' &= \Big\{ X = [X_{gh}] : X_{gh} = 0 \text{ for } g \neq h, \\ Y_g &= X_{gg} \in Z(R_{01} \oplus R_{01}) = \mathbb{C} \oplus \mathbb{C}(g \in S_3) \\ \text{satisfy } Y_{ga} &= \alpha_{a^{-1}}(Y_g), Y_{ag} = Y_g \Big\}. \end{split}$$

Based on (1) (and by looking at the double coset spaces $S_2 \setminus S_3/S_2$), we know that $\widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)'$ consists of diagonal matrices (with entries $\{Y_g\}_{g \in S_3}$ as above) satisfying

$$\begin{cases} Y_1 = Y_a = \begin{bmatrix} \alpha \\ & \alpha \end{bmatrix}, \\ Y_b = Y_{ab} = \begin{bmatrix} \beta \\ & \gamma \end{bmatrix}, \\ Y_{b^2} = Y_{ab^2} = \begin{bmatrix} \gamma \\ & \beta \end{bmatrix}, \end{cases}$$

for some scalars α, β, γ . Therefore, $\widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)'$ is a 3-dimensional abelian algebra, and the type II principal graph is indeed D_4 .

THEOREM 3. Let $M \supseteq N$ be the factor-subfactor pair constructed from a two-to-one ergodic extension $(\widetilde{X}, \widetilde{F}_t)$ of (X, F_t) . Then the inclusion $M \supseteq N$ satisfies

- (i) $M \supseteq N$ have the same flow of weights, which is exactly (X, F_t) ,
- (ii) the principal graph of $M \supseteq N$ is A_5 ,
- (iii) the type II principal graph of M⊇N is D₄.

Assume that $(\widetilde{X}, \widetilde{F}_t)$ and $(\widetilde{X}^1, \widetilde{F}_t^1)$ are isomorphic (as extensions) two-to-one ergodic extensions of (X, F_t) . Or more generally, assume that $(\widetilde{X}, \widetilde{F}_t) \to (X, F_t)$ and $(\widetilde{X}^1, \widetilde{F}_t^1) \to (X^1, F_t^1)$ are isomorphic (as extensions) two-to-one ergodic extensions (see [18] for example), that is, there exists a non-singular isomorphism $\psi: X \to X^1$ with $F_t^1 \circ \psi = \psi \circ F_t$ and a measurable map $\beta: X \to S_2$ (relabeling of sheets) satisfying

$$\varphi^1_{\psi(\omega),t} = \beta_{F_t(\omega)} \circ \varphi_{\omega,t} \circ \beta_{\omega}^{-1}.$$

Here, φ, φ^1 are the relevant cocycles (see the beginning of Section 2). In this case, $\widetilde{\psi}: (\omega, i) \mapsto (\psi(\omega), \beta_{\omega}(i))$ is a non-singular (relative to the obvious measures on $\widetilde{X}, \widetilde{X}^1$) isomorphism intertwining \widetilde{F}_t and \widetilde{F}_t^1 , and we have $\pi^1 \circ \widetilde{\psi} = \psi \circ \pi$ (where $\pi: \widetilde{X} \to X, \ \pi^1: \widetilde{X}^1 \to X^1$ are the natural projection maps). This $\widetilde{\psi}$ obviously sends mod α to mod α^1 . Therefore, the two actions α, α^1 are cocycle conjugate ([20]), and the resulting inclusions $M \supseteq N$ and $M^1 \supseteq N^1$ are conjugate.

LEMMA 4. The following three conditions are equivalent:

- (i) $(\widetilde{X}, \widetilde{F}_t) \to (X, F_t)$ and $(\widetilde{X}^1, \widetilde{F}^1) \to (X^1, F_t^1)$ are isomorphic extensions in the sense described above.
- (ii) There exist non-singular isomorphisms $\psi: X \to X^1$ and $\widetilde{\psi}: \widetilde{X} \to \widetilde{X}^1$ such that $F_t^1 \circ \psi = \psi \circ F_t$, $\widetilde{F}_t^1 \circ \widetilde{\psi} = \widetilde{\psi} \circ \widetilde{F}_t$ and $\pi^1 \circ \widetilde{\psi} = \psi \circ \pi$.
- (iii) Via π , π^1 let us consider $L^{\infty}(X)$ and $L^{\infty}(X^1)$ as subalgebras of $L^{\infty}(\widetilde{X})$ and $L^{\infty}(\widetilde{X}^1)$ respectively. Let θ_t , $\widetilde{\theta}_t$, θ_t^1 , $\widetilde{\theta}_t^1$ be the **R**-actions (on the relevant algebras) induced by F_t , \widetilde{F}_t , F_t^1 , \widetilde{F}_t^1 respectively. Then there exists a (von Neumann

24 Hideki Kosaki

algebra) isomorphism $\Lambda: L^{\infty}(\widetilde{X}) \to L^{\infty}(\widetilde{X}^1)$ such that Λ intertwines $\widetilde{\theta}_t$ and $\widetilde{\theta}_t$, Λ sends $L^{\infty}(X)$ onto $L^{\infty}(X^1)$, and $\Lambda|_{L^{\infty}(X)}$ intertwines θ_t and θ_t^1 .

Proof. (ii) ⇔ (iii) is obvious, and it suffices to show (ii) ⇒ (i). Since (ii) ⇒
(i) for Z-actions is well-known, it suffices to reduce the situation to the Z-action case.

Represent (X, F_t) under a ceiling function f on a base space X_0 with a base transformation T, i.e., $X = \{(u, s) : u \in X_0, 0 \le s < f(u)\}$ and $F_{f(u)}(u, 0) = (Tu, 0)$ for example. We consider the sets $\pi^{-1}(X_0), \psi(X_0)$, and $(\pi^1)^{-1}(\psi(x_0)) = \widetilde{\psi}(\pi^{-1}(X_0))$, where $X_0 (= X_0 \times \{0\}) \subseteq X$. Thanks to the intertwining properties in (ii), $(\widetilde{X}, \widetilde{F}_t), (X^1, F_t^1), (\widetilde{X}^1, \widetilde{F}_t^1)$ can be represented under the same ceiling function f in such a way that the relevant base spaces are exactly the above three sets respectively. Let \widetilde{T}, T^1 , and \widetilde{T}^1 be the respective base transformations. From the construction, \widetilde{T} (resp. \widetilde{T}^1) is an extension of T (resp. T^1), and $(\widetilde{T}, T), (\widetilde{T}^1, T^1)$ are isomorphic extensions.

The technique in the above proof also shows that having a (two-to-one ergodic) extension $(\tilde{X}, \tilde{F}_t) \to (X, F_t)$ in the sense described above is the same as the following: flows \tilde{F}_t on \tilde{X} and F_t on X are given with the requirement $\pi \circ \tilde{F}_t = F_t \circ \pi$.

3. MAIN RESULTS

Here, we further analyze the pair $M \supseteq N$ constructed in the previous section. Although the flow (X, F_t) appears as the flow of weights of M (and of N), the two-to-one extension $(\widetilde{X}, \widetilde{F}_t)$ seems to have disappeared during the construction. Actually this is not the case. We will show that the two-to-one extension, $(\widetilde{X}, \widetilde{F}_t) \to (X, F_t)$, can be captured (in a very natural way) from an inclusion data of $M \supseteq N$.

Recall $\widetilde{M}(\omega) \supseteq \widetilde{N}(\omega)$ (in Section 2) described by (1). We set

$$V = \pi \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \lambda_b + \pi \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \lambda_{b^2} \in (R_{01} \oplus R_{01}) \rtimes_{\alpha} S_3 = \widetilde{M}(\omega),$$

where $(\pi = \pi_{\alpha}, \lambda)$ is the covariant representation of the S_3 -action α on $R_{01} \oplus R_{01}$. The last equality in (1) and the covariance relation imply

(5)
$$\pi\left(\begin{bmatrix} x & \\ & y \end{bmatrix}\right)\lambda_a = \lambda_a \pi\left(\begin{bmatrix} y & \\ & x \end{bmatrix}\right); \quad x, y \in R_{01},$$

(6)
$$\pi\left(\begin{bmatrix} x & \\ & y \end{bmatrix}\right)\lambda_b = \lambda_b\pi\left(\begin{bmatrix} \sigma^2(x) & \\ & \sigma(y) \end{bmatrix}\right); \quad x, y \in R_{01}.$$

(In particular, $\pi \begin{pmatrix} x \\ y \end{pmatrix}$) $(x, y \in \mathbb{C})$ commutes with λ_b). Thank to (6), one can easily observe that V is a unitary, $V^3 = 1$, and

(7)
$$V^{2} = \pi \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \lambda_{b} + \pi \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \lambda_{b^{2}}.$$

We also have

$$\left\{ \begin{matrix} V\lambda_a V^* = \lambda_a, \\ V\pi \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) V^* = \pi \left(\begin{bmatrix} \sigma(x) \\ \sigma(y) \end{bmatrix} \right); \qquad x, y \in R_{01}.$$

For example, we compute

$$V\lambda_{a}V^{*} = \pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_{b}\lambda_{a}\lambda_{b}^{*}\pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_{b}\lambda_{a}\lambda_{b}^{*}\pi \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_{b^{2}}\lambda_{a}\lambda_{b}^{*}\pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_{b^{2}}\lambda_{a}\lambda_{b}^{*}\pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \end{pmatrix} \lambda_{b^{2}}\lambda_{a}\lambda_{b^{2}}\pi \begin{pmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{pmatrix} \lambda_{a}$$

$$= \pi \begin{pmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \lambda_{b^{2}a} + \pi \begin{pmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \lambda_{a}$$

$$+ \pi \begin{pmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \lambda_{a} + \pi \begin{pmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \lambda_{ba}$$
(because of $bab^{-2} = b^{2}ab^{-1} = a$ and (5))
$$= \pi \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_{a} + \pi \begin{pmatrix} 0 \\ 1 \end{bmatrix} \lambda_{a} = \lambda_{a}.$$

The second equality can be proved similarly.

The above facts show that V normalizes the II_{∞} -subfactor $\widetilde{N}(\omega) = (R_{01} \oplus R_{01}) \rtimes_{\alpha} S_2$ and gives us the \mathbb{Z}_3 -action AdV.

LEMMA 5. The 6×6 -matrices representing $VeV^*, V^2e(V^2)^*$ (where e is the Jones projection, see (4)) are as follows:

(i) $VeV^*=p$ is a diagonal matrix, and its diagonal entries $\{p_g\}_{g\in S_3}$ are given by

$$p_b = p_{ab} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $p_{b^2} = p_{ab^2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, all other p_g 's are 0.

(ii) $V^2e(V^2)^*=q$ is a diagonal matrix, and its diagonal entries $\{q_g\}_{g\in S_3}$ are given by

$$q_b=q_{ab}=\begin{bmatrix}0&\\&1\end{bmatrix}, \qquad q_{b^2}=Q_{ab^2}=\begin{bmatrix}1&\\&0\end{bmatrix}, \qquad \text{all other } q_g\text{ 's are } 0.$$

26 Hideki Kosaki

Proof. We will prove just (i). ((ii) can be proved similarly.) Let P_g be the "rank-1" projection whose (g,g)-component is 1. Notice the following facts:

$$\left\{ \begin{array}{l} \lambda_h P_g \lambda_h^* = P_{hg} \quad (h,g \in S_2), \\ p_g \quad \text{commutes with} \quad \pi \left(\left[\begin{array}{c} x \\ y \end{array} \right] \right); \quad x,y \in R_{01}. \end{array} \right.$$

The first is easy, and the second follows from the fact that the two involved matrices are diagonal. Since $e = P_1 + P_a$ (see (4)), $VeV^* = VP_1V + VP_aV^*$ can be expressed as the linear combination (whose coefficients are $\pi \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\pi \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, or 0) of eight terms of the form: $\lambda_h P_g \lambda_h^*$, $(g \in S_2 = \{1, a\}, \text{ and } h, h' \in \{b, b^2\})$. Actually four of them vanish. For example, we have

$$\pi \begin{pmatrix} \begin{bmatrix} 1 \\ & 0 \end{bmatrix} \end{pmatrix} \lambda_b P_1 \lambda_{b^2}^* \pi \begin{pmatrix} \begin{bmatrix} 0 \\ & 1 \end{bmatrix} \end{pmatrix} = \pi \begin{pmatrix} \begin{bmatrix} 1 \\ & 0 \end{bmatrix} \end{pmatrix} P_b \lambda_{b^2} \pi \begin{pmatrix} \begin{bmatrix} 0 \\ & 1 \end{bmatrix} \end{pmatrix}$$

$$= \pi \begin{pmatrix} \begin{bmatrix} 1 \\ & 0 \end{bmatrix} \end{pmatrix} \pi \begin{pmatrix} \begin{bmatrix} 0 \\ & 1 \end{bmatrix} \end{pmatrix} P_b \lambda_{b^2} = 0,$$

since $\pi\left(\begin{bmatrix}0&\\&1\end{bmatrix}\right)$ commutes with P_b and $\lambda_{b^2}.$ In this way we end up with

$$VeV^* = \pi \left(\begin{bmatrix} 1 & \\ & 0 \end{bmatrix} \right) P_b + \pi \left(\begin{bmatrix} 0 & \\ & 1 \end{bmatrix} \right) P_{b^2} + \pi \left(\begin{bmatrix} 1 & \\ & 0 \end{bmatrix} \right) P_{ab^2} + \pi \left(\begin{bmatrix} 0 & \\ & 1 \end{bmatrix} \right) P_{ab}.$$

Therefore (i) is proved. (Notice that, for example, the (ab^2, ab^2) -component of $\pi \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is $\alpha_{(ab^2)^{-1}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ by (1) and (2).)

Notice that p,q in Lemma 5 and the Jones projection e are the minimal projections in $\widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)'$. (Recall the computation right before Theorem 2). Neither of V and V^2 commutes with e so that AdV and AdV^2 (restricted to $(R_{01} \oplus R_{01}) \rtimes_{\alpha} S_2$) are outer ([6]). We thus have shown $((R_{01} \oplus R_{01}) \rtimes_{\alpha} S_2) \rtimes_{AdV} \mathbb{Z}_3 = (R_{01} \oplus R_{01}) \rtimes_{\alpha} S_3$ (see [16] or [9]), which of course gives us an alternative proof for the requirement (ii) in Section 2.

So far we have been looking at the "fiber algebras" $\widetilde{M}(\omega)\supseteq \widetilde{N}(\omega)$ and have not paid attention on the dual action. We now go back to the global inclusion $\widetilde{M}\supseteq \widetilde{N}$. From now on the above unitary V, the Jones projection e, and the unitary λ_g $(g\in S_3)$ (arising from the S_3 -action on $\widetilde{Q}(\omega)$, see (1)) will be denoted by V_{ω}, e_{ω} , and $(\lambda_g)_{\omega}$ respectively. The Jones projection e_N for $M\supseteq N$ (and $\widetilde{M}\supseteq \widetilde{N}$, see Section 1) is obviously

$$e_N = \int_X^{\oplus} e_{\omega} d\omega.$$

As pointed out above, the minimal projections in the 3-dimensional abelian algebra $\widetilde{M}_1(\omega) \cap \widetilde{N}(\omega)'$ are

$$\left\{e_{\omega}, V_{\omega}e_{\omega}V_{\omega}^*, V_{\omega}^2e_{\omega}(V_{\omega}^2)^*\right\}.$$

This choice of a basis determines the isomorphism

$$\widetilde{M}_1 \cap \widetilde{N}' \cong L^{\infty}(X \times \{0,1,2\}),$$

and the dual action θ_t (canonically extended to \widetilde{M}_1 with the requirement $\theta_t(e_N) = e_N$) gives us the three-to-one extension: $(X \times \{0,1,2\}, F_t') \to (X, F_t)$ ($\widehat{E} \circ \widehat{E}_1$ sends $\widetilde{M}_1 \cap \widetilde{N}'$ to $Z(\widetilde{N}) = L^{\infty}(X)$ and intertwines θ_t , where $E_1 : M_1 \to M$ is the dual expectation, see [8], [11]). On the other hand, we have already known

$$(\widetilde{M}_1 \cap \widetilde{N}')_{\theta} = M_1 \cap N'$$
 (Corollary 6, [11]),
= $\mathbb{C} \oplus \mathbb{C}$ (principal graph = A_5).

This means that $(X \times \{0, 1, 2\}, F'_t)$ has exactly two ergodic components.

Let $\{(\theta_t)_{\omega}\}$ be the family of isomorphisms $((\theta_t)_{\omega} \text{ sends } \widetilde{M}_1(\omega) \text{ to } \widetilde{M}_1(F_t(\omega)))$ determined by the dual action θ_t . Since $\theta_t(e_N) = e_N$ $((\theta_t)_{\omega} e_{\omega} = e_{F_t(\omega)})$, the 0-th sheet in (8) (which is just a copy of (X, F_t)) is the "trivial" ergodic component corresponding to the Jones projection e_N . Deleting this trivial component, (from $(1 - e_N)(\widetilde{M}_1 \cap \widetilde{N}')$) we obtain the ergodic flow \widetilde{F}_t (the restriction of F_t' to the non-trivial ergodic component) on $X \times \{1, 2\}$, which is a two-to-one extension of (X, F_t) .

We claim that this two-to-one extension is the one given at the beginning of Section 2. In fact, \tilde{F}_t in Section 2 sends $((\omega,1),(\omega,2))$ to $((F_t(\omega),1),(F_t(\omega),2))$ or $((F_t(\omega),2),(F_t(\omega),1))$. The property (c) in Section 2 shows $(\theta_t)_{\omega}((\lambda_b)_{\omega}) = (\lambda_b)_{F_t(\omega)}$. Thus, by (b) in Section 2 and (7) in Section 3, the first (resp. second) case means that $(\theta_t)_{\omega}$ sends V_{ω} to $V_{F_t(\omega)}$ (resp. to $V_{F_t(\omega)}^2$). Since $\theta_t(\varepsilon_N) = \varepsilon_N$, the claim is now obvious.

Summing up the arguments so far, we have proved the next theorem.

THEOREM 6. (i) Let $M \supseteq N$ be the factor-subfactor pair constructed (in Section 2) from a two-to-one ergodic extension $(\widetilde{X}, \widetilde{F}_t)$ of (X, F_t) . Then the given two-to-one ergodic extension is isomorphic (as an extension) to the one obtained from the abelian algebra $(1 - e_N)(\widetilde{M}_1 \cap \widetilde{N}')$ together with the dual action.

(ii) Let $(\widetilde{X}, \widetilde{F}_t)$ and $(\widetilde{X}^1, \widetilde{F}_t^1)$ be two-to-one ergodic extensions of (X, F_t) with $M \supseteq N$ and $M^1 \supseteq N^1$ respectively. These two inclusions of factors are conjugate if and only if the extensions are isomorphic (as extensions).

28 HIDEKI KOSAKI

In the case that (X, F_1) is periodic, there exists only one (up to isomorphism) two-to-one ergodic extension. This fact is related to Loi's result (see Section 0): The Powers factor M contains exactly one (up to conjugacy) non-splitting factor N_2 such that $M \supseteq N_2$ has principal graph A_5 and N_2 , M are isomorphic.

On the other hand, when M is of type III_0 , (X, F_t) probably admits uncountably many (non-isomorphic) two-to-one ergodic extensions. Unfortunately the author is unable to determine if this statement is correct. However, in ergodic theory examples of ergodic transformations with uncountably many two-to-one ergodic extentions are in abundance (see p. 262, [18], for example). Therefore, by using a constant ceiling function, one obtains an ergodic flow with the similar property and gets the next result.

COROLLARY 7. There exists an AFD type IIIo factor M that admits uncountably many non-conjugate subfactors N satisfying

- (i) M, N have the same flow of weights,
- (ii) the principal graph of $M \supseteq N$ is A_5 ,
- (iii) the type II principal graph of $M \supseteq N$ is D_4 .

REFERENCES

- F. GOODMAN, P. DE LA HARPE, V.R.F. JONES, Coxeter-Dynkin diagrams and towers of algebras, Springer 1989.
- 2. U. HAAGERUP, E. STORMER, Equivalence of normal states and the flow of weights, Adv. Math. 83(1990), 180-262.
- T. HAMACHI, The normalizer group of an ergodic automorphism of type III and the commutant of an ergodic flow, J. Funct. Anal. 40(1981), 387-403.
- T. HAMACHI H. KOSAKI, Orbital factor map, Ergod. Th. and Dynam. Sys. 13(1993), 515-532.
- 5. M. IZUMI, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci., Kyoto University 27(1991), 953-994.
- 6. V.F.R. JONES, Index for subfactors, Invent. Math. 66(1983), 1-25.
- 7. Y. KAWAHIGASHI, M. TAKESAKI, Compact abelian group actions on injective factors, J. Funct. Anal. 105(1992), 112-128.
- H. KOSAKI, Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal. 66(1986), 123-140.
- H. KOSAKI, Characterization of crossed products (properly infinite case), Pacific J. Math. 137(1989), 159-167.
- H. KOSAKI, Index theory for type III factors, in Mappings of Operator Algebras (Proc. U. S. - Japan Seminar, 1988), Birkhäuser Verlag, Basel 1990.
- H. KOSAKI, R. LONGO, A remark on the minimal expectation of subfactors, J. Funct. Anal. 107(1992), 458-470.
- 12. P.H. Loi, On automorphism of subfactors, preprint.

- 13. P.H. LOI, On the derived tower of certain inclusions of type III_{λ} factors of index 4, Pacific J. Math. 165(1994), 321-345.
- 14. R. LONGO, Index of subfactors and statistics of quantum fields I, II, Comm. Math. Phys. 126(1989), 217-247 and 130(1990), 285-309.
- 15. A. OCNEANU, Quantized groups, string algebras, and Galois theory, in Operator Algebras and Applications, vol. II, Cambridge Univ. Press 1988.
- 16. M. PIMSNER, S. POPA, Entropy and index of subfactors, Ann. Sci. École Norm. Sup. (4) 19(1986), 57-106.
- S. POPA, Classification of subfactors: reduction to commuting squares, *Invent. Math.* 101(1990), 19-43.
- D. RUDOLPH, Counting the relatively finite factors of a Bernoulli shift, Israel J. Math. 30(1978), 255-263.
- Y. SEKINE, Flow of weights of crossed products of type III factors by discrete groups, Publ. Res. Inst. Math. Sci., Kyoto University 26(1990), 655-666.
- 20. C. SUTHERLAND, M. TAKESAKI, Actions of discrete amenable groups on injective factors of type III_{λ} , $\lambda \neq 1$, Pacific J. Math. 137(1989), 405-444.

HIDEKI KOSAKI
Department of Mathematics
University of Colorado at Boulder
Boulder, Colorado 80309-0426
U.S.A.

On leave from

Graduate School of Mathematics Kyushu University Fukuoka, 810 JAPAN

Received July 15, 1991.