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ABSTRACT. In this paper we develop first a theory providing a character-
ization theorem (Theorem 1) for finite-rank minimal projections. In order
to demonstrate the usefulness of this characterization we provide several ex-
amples. More generally, the theory characterizes operators of minimal norm
which extend a fixed linear action on a given finite-dimensional subspace.
Secondly, a characterization theorem (Theorem 2) is given for minimal linear
operators in a general setting. This setting includes, as examples, minimal
and co-minimal projections, optimal recovery and linear estimation, linear n-
widths, and best linear approximation to continuous preximity maps. These
characterization theorems lead to concrete equations from which the minimal
operators can be obtained and, in some important cases, described geomet-
rically.
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Let B = B(X,V) be the space of all bounded linear operators from a real or
complex normed space X into a finite-dimensional subspace V' and let P be the
family of all operators in B with a given action on V (e.g., the identity action
corresponds to the family of bounded projections onto V).
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DEFINITION. (z,y) € S(X**) x S(X*) will be called an eziremal pair for
Q € Bif (Q*°z,y) = ||Q|], where Q** : X** — V is the second adjoint extension
of @ to X** (S denotes unit sphere).

NOTATION. Let £(Q) be the set of all extremal pairs for Q. To each (z,y) €
£(Q) associate the rank-one operator y ® z from X to X** given by (y ® z)(z) =
{(z,y)z for z € X.

THEOREM 1. (Characterization). P has minimal norm in P if and only if
the closed convez hull of {y ® £}(z y)ec(p) contains an operator for which V is an
snvariant subspace.

Proof. The problem is equivalent to best approximating, in the operator
norm, a fixed operator Py € P from the space of operators D= {A€B : A=
0OonV}=sp{é®@v : §€V+ ve V} Let K= B(X**) x B(X*) endowed with
the product topology, where B(-*) denotes the unit ball with its weak* topology.
Associate with any operator @ € B the bilinear form = C(K) via Q(z,y) =
{@*"z,y), and let D= {3 : A € D}. Then, making use of standard duality theory
for C(K), K compact (see e.g., [23], Theorem 1.1 (p.18) and Theorem 1.3 (p.29)),
we have that P = ﬁo — Ay is of minimal norm if and only if there exists a finite,
non-zero (total mass one) signed measure fi supported on the critical set

C(P) = {(z,v) € S(X**) x S(X*) : |1P(z,9)| = || Plleo}
such that sgn i{(z,y)} = sgn Pz, y) and i € DL, ie.,
0= / Adi forall Ae?D.
c<(P)

But now, since any Q € {}3} U D is a bilinear function, we can replace the signed
measure fi, supported in C(ﬁ), by a positive measure u supported on £(P) C C(P)
by noting that

C(P) = {(z,6*y) : (z,y) € £(P) and 6 € T},
where T = [0, 27) in the complex case and T = {0, 7} in the real case, and setting
#{(z,9)} = |Bl{(z,e’y) : 0 € T}.

For then sgn u{(z,y)} = sgn P(z,y) =1, for (z,y) € £(P), and

o=/3dp forall AeD,
£(P)
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since
[2a= [ A@edaeey
c(P) er
= e Az, y)edll(z, ey) = / Adp.
(emyee®) e(P)
Hence,

o= [ Bau= [ znauzi)= [ (@000
E(P) £(P) E£(P)

=< /(v,y)zdu(z,y)J)
£(P)

foral A=6®v (§ € Vi, v € V), where, for z € X, [ {z,p)zdp(z,yp) is the
£(P)
element w € X** defined by (z*,w) = [ (z,9)(z*,z) du(z,y) for allz* € X*. P
£(P)
is minimal, therefore, if and only if [ (v,y)zdu(z,y) € (V*)t =V, ie, if and
£(P)

only if there exists an operator (from X into X**)

(1) Ep = /y®xdu(z,y):V—vV. .
£(P)

REMARK 1. The identification of a minimal norm operator as the error of
a best approximation problem in C(K), in the proof of Theorem 1, is useful
for examining various other aspects of minimal projections and extensions. For
example, if in the proof of Theorem 1, we apply the Kolmogorov criterion for
best approximation (see, e.g., [23], Theorem 1.16, p.69), we also get the following
characterization.

THEOREM 1.A. P has minimal norm in P if and only if there does nol exist
AeD={A€B:A=0o0nV} such that

sup Re (P**x,y)m <0.
(z.9)EE(F)

Theorem 1.A was proved in [13] in the case X = L! and P consists of
projections, where it was then used successfully in the landmark determination of
a minimal projection from L![~1, 1] onto the lines (see Example 4.a below). See
also [20] for examples where Theorem 1.A is proved and used in other settings.
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NoOTE 1. The existence of a minimal operator characterized in Theorem 1
follows from the fact that V is a finite-dimensional subspace of X and [19], where
the existence of a minimal projection is shown in the more general case of V' being
a dual space, and by noting that the argument of {19] applies just as well to the
case of minimizing over the more general class of operators in Theorem 1.

As a first example of the use of Theorem 1, we have the following sufficient
condition for the adjoint of a minimal projection to be itself minimal. Ep will
refer to the (not necessarily unique) operator in (1). For further discussion of the
nature of Fp see Note 4 below.

CoroLLARY 1. ([10]). Let P be a minimal projection. Then P* is a mini-
mal projection from X* (onto (ker P)L) if P** o Ep = Epo P.

Proof. (Sketch). X = V @ U*, where U+ = ker P (U = range P*). Then
Ep (as well as P) takes V into V, and it follows that P** o Ep = Ep o P if and
only if Ep takes U+ into U*. But the latter occurs if and only if (Ep)* takes U
into U. Finally, (z,y) is an extremal pair for P implies that (y, z) is an extremal
pair for P*, and hence P** o Ep = Ep o P implies that (Ep)* = Ep.. 1

In the examples and discussion below it is helpful to introduce a fixed basis
v = (v1,...,vp) for V; we will write V = [v] = [v1,...,vs]. Then the necessary
and sufficient condition (1) can be rewritten as a system of n equations

(2) / {v,y)zdp(z,y) = Mv for some matrix M.
£(P)

n v
Let Y u;®v; € X*®V (the injective tensor product of X* and V) represent

i=1

n
Q (and @**, where we set {z,u;} = (u;,2) for 2 € X**), i.e., Qz = Y (z,ui)v;.
i=1

Then £(Q) = {(z,y) € S(X**) x S(X*) : é(z,u.—)(v,-,y) = ||Q||} and we can

write

P = {Zu; ® vi : {vi,u;} = A;j for A a given fixed nxn matrix} .
i=1
NOTE 2. M in (2) may be regarded as a function of 4 above. Hence, (2)

may be regarded as determining a minimal P up to the n? entries of M, which are
in turn determined by the n? entries of A.
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NoTaTioN. If z € Z and z* € Z* are such that {z,z*) = ||z|| ||*]| # 0, then
2" is an extremal for z and we write z* = ext z. (Then also z = ext z*.) Note that
ext z is determined only up to a non-zero scalar factor.

For purposes of illustration, observe the following simple examples (Examples
l.aand 1.b) of Theorem 1, where minimal P has an extremal pair (z, y) withz € V,
and therefore we can take Ep = y® &.

EXAMPLE 1l.a. (dimV = 1 ="rank P). Let P = u; ® v;. Then (z,y) € £(P)
if and only if (z, u1){v1, ) = ||P|l, i.e., (z,¥) = (ext uj,ext v;). Then Ep = yQ@<z:
V — V if and only if extu; = v;, i.e., u; = extv; (the solution given by the
Hahn-Banach extension theorem). This example extends to dimV > 1 = rank P
by applying this n = 1 example to X/V Nker P.

EXAMPLE 1.b. (Hilbert space). Let X be a Hilbert space, let the basis v for
V be orthonormal, let P have a fixed “diagonal” action, i.e., A;; = d;6;;, where
d = (di,...,ds) is a fixed n-tuple of scalars, and let J = {j : |d;| = max|d;|}.
Then P = ¥_ d;v; ®v; is minimal, where Ep = y®z for any choice of (z,y) = (2, 2)
with z an arbitrary norm-1 element of the eigenspace corresponding to a maximum
eigenvalue dj, j € J.

The minimality of the Fourier projection in the context of compact abelian
groups is a simple consequence of Theorem 1 as demonstrated by the following
example.

ExaMpLE 2. ([8]). Let T (with “+”) be a compact abelian group with Haar
measure v, T its dual, {v“'}-ref the sel of all characters, N a finite part of T,V

the linear span of the characters v,,7 € N and let X = L*(T),1 < p < o0 or
X = C(T),p = oo. Then the Fourier projection F = 3 v, ® v, is minimal
T€EN

among all projections from X onto V.

Proof. (Sketch). Let (z,y) be any extremal pair for F. Then (z¢,y:) =
(z(- + 1), ¥(- + 1)) is an extremal pair for each ¢ € T. Thus, Er = [y ® z,:dv(t) :

T

V — V, since (Epvs,vy) = (vr, 4}(2,vy)(vy,vr) and (vy,v7) = 6yr =0if T E N
and y € T~N 1

7
NoTaTION. Write {v,y)-u for ¥ (v, y}u; in the following.
i=]

Note 3. For Q = i u; @ v, (z,y) € E(Q) implies z = ext ((v,y) - u) and

1=
y = ext ({z,u) - v), which shows that, to find extremal pairs in general, we must
solve the (non-linear) equation

(3) d = {v,y} = {v,ext ({ext (d - u),u) - v))
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for n-tuples of scalars d = (dy, ..., dn) = ({v1,%}," -, {tn,¥)). For X = C(T) and
LY(T), respectively, however, the extremal pairs of Q have, on the support of u and
the support of v, respectively, the simple forms (z;,y:) = (sgn(v{t) - u), é;) and
(8¢,sgn (u(t) - v)), respectively, since ||Q|| = sug L(t), where L(t) = (z¢,v(t) - u),
and (u(t) - v, ), respectively, is the so-called ‘ﬁLebesgue function” of @. This fact
makes these important cases relatively easy to consider.

That P* in Corollary 1 is not always minimal (and that therefore Ep does
not always commute with P) is shown by the following example, which also serves
as an example of Theorem 1.

ExaMPLE 3.a. ([21]). Consider X = £ and V = [v;, v}, where v; =

(10efeaf), vz = (01fa~f a), with & = (2+v2)/4,8 = V2/4. Then the
2

“interpolating projection” P = ¥ u; ® v;, where u; = & (the i*" standard

=1
basis element in R®), i = 1,2, is minimal. This is seen by first checking that

{(zi,vi)}oy C S(€) x S(£}) are extremal pairs, where z; = (111110), z; =
(1111071), 25 = (1711011), 24 = (17107111), and 3 = eiga,é = 1,2,3,4,

Indeed, L(t) = Z ju(s)-v(t)| = (z4—g,u)- (v,y1—2) = a+ g fort = 3,4,5,6, while
L(1) = L(2) = 1 Secondly, check that (2) holds:

4

; 1
Z(V,yi)%sz, where M:a;ﬁ( 0).
i=1

01

Thus P is minimal, with norm « + 8 > 1, but the projection Z € ® u; from £}
onto [u3, uz] has norm 1, and thus P* : £} — [u;, up} is mmlma.l (]|P‘|| = ||P|D)-

NoTE 4. (See, e.g., [22] or [24] for definitions and notation). The operator

Ep of (1) can be viewed as a norm-one integral operator in (X* éV)‘ separating
PfromD={A€B:A=0o0nV}, ie,

(P, Ep) =tr (Z u; @ Epv,') = Z(Epv,-,u.-) = Z/(v;,y)(x,u;) du
1 1 1
= [tz au =PI,

(D, Ep) = 0 as in the proof of Theorem 1, and ¥(Ep) < [ |lyll||z|ldu(z,¥) =1,
E(P

where v denotes the norm of Ep in the space of integral operators I; (X, X**). Note
also from the above that ||P|| = tr (M A), for which upper bounds are determined
in [9], extending those in [16] for projections (A = I).
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By use of Note 4 and the observation that {P, Ep) = tr(Ep|v o P) we have
the following known corollary, used for example in [15] and [16], and also used in
[21] for obtaining the projection of Example 3.a.

COROLLARY 2. The relative projection constant (of V relative to X ) A(V, X)
= ggf'p [|P||, where P is the family of projections, is given by

AV, X) =sup{tr (Q|v) : Q € (X, X**),Q: V - V,v(Q) = 1}.
Note that if X is finite-dimensional then I; (X, X**) = X*®X** (the projec-
tive tensor product of X* and X**) and v in Corollary 2 is the nuclear norm.

COROLLARY 3. Let P have minimal norm in P. If &1(P) = {z : (z,y) €
€ E(P) N suppp)} is an independent set, then, for eack = € £(P), let 2° €
€ (span £1(P))* such that {z,2% =1 and {z,2°) = 0 for all z # = in £;(P), and
act on (2) with z° 1o get

(2) (v, 9)u{(z,9)} = M(v,z°.

In Examples 4-5 below, we restrict ourselves to minimal projections (i.e.,
A=1).

ExAMPLE 4.a. ([13]). X = L'[-1,1] D V = [v],v = (1,t). Use Note 3
((z¢,3:) = (6:,5gn (u(t) - v))), Corollary 3, the clear fact that z{|y = xys, and
symmetry considerations (whence M = xdiag(1,m) for some scalar x) to write
(2) as follows (cancelling the (infinitesimal) scalar multipliers (u{(z:,v)} and

dt)):
{vi, 90 \ _ ui(t) \ _ . 1

((”2;%)) =" (mvz(t)) - (mt)’

ie.,
" 1 mt

(2 ) (vlyyi) B (v2:92>’
where m is a scalar and

1 r(t) 1

vy = [vis)sgn () veDde =) | [ = [ v(o)s
-1 -1 r(t)

= &(t)(2r(t), r*(t) - 1),

where r(t) is defined (uniquely since V is a Chebyshev system) by u(t)-v(r(t)) =0
and ¢(t) = 1. Equation (2") is then easily solved for r(t), yielding the admissible
solution (in [—1,1]) r(t) = mt — sgn (mt)v'm?¢2 + 1, and then u is obtained from
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the linear relations u(t) - v(r(t)) = 0 and L(t) = u(t)- {v,u) = A, t € [-1,1]. Le,,

2
P = 3" u; ® v; is minimal where

i=1
(ul(t)) 3 (w) r(t) — 1)'1 (Aa(t))
u(t)/ \ 1 r(t) 0o/’
o(t) = sgn((r?(t) — 1)/mt) and m and X are determined to meet the remaining
normality conditions, esp., A = ||P|| = 1.22040 .. ..
This L!-example and Example 4.b which follows demonstrate how Theorem 1

provides a direct formula for P via Corollary 3. (In the L'-cases, {z; = 6, : t € T}
is an independent set (see also [5])). '

EXAMPLE 4.b. ([5]). X = L}[-1,1] D V = [v],v = (1,¢,t?). Analogously

as in Example 4.a, (2') becomes

myy +myat? t __ mgy + mast?
2Ari(t) -2ty +1) ~ r1@) -3 A -5+ 1)

(2”[)

where the r;(¢) are defined to be the roots of the quadratic equation u(t) - v(r) =0,
i.e., u(t) - v(r(t)) = 0,f = 1,2. Next solve equation (2"’) for ri(t) and r3(t) and
then u is obtained from the linear relations u(t) - v(ri(¢)) = 0,4 = 1,2, and

3
Lit)y=u(t) - {v,yu) = Mte[-1,1] Le, P= 3 u; ® v; is minimal where
i=1

(m(t)) (2(r1(t)—r=(t)+1) r(t) - r3(t) %(r?(t)—r%(t)+1))“(Aa(t))

uy(t) 1 ri(t) r3(t) 0

uz(t) 1 ro(t) r2(t) 0
o(t) = sgn (2(r3(t) — r3(t) 4+ 1)/(ma1 + ma3t?)), and myy, mya, ma1, maa and A
are determined to meet the remaining normality conditions, esp., A = ||P|| =
1.35948....

In the case X = L}, there is a remarkably simple geometric solution (Corol-
lary 4 below) to the problem of minimal projections and extensions, which accounts
for the relative simplicity of Examples 4.a and 4.b above,

NoTATION. Denote the underlying real or complex field by F and introduce
the norm on F™ given by ||a]| = ||a-v||x. The following proposition demonstrates a
very useful geometric connection in F* between the two components of an extremal
pair for any P € P.
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n
PROPOSITION 1. For any cxtremal pair (z,y) of P = 3 u; @ v,
i=1

@ (o, ) = P2t =<

lle(v,p) —ell’

where o is any positive scalar and ¢* € F™ yields min||le(v,y) — cl| subject to
c- (v! y) =0.

Proof. Fix z € £(P) and let C = {c € F" : ¢+ {v,y) = 0}. Then there exists
a positive & (= |{v, 3)|2/||Pl]) and c* € C such that (z,u) = a{v,y) — c*. Hence,
0=c-(v,y) = (c-v,ext({z,u) v)) = {c-v,ext (a{v,3) - v—c* -v)}, foralle € C,

which implies that c* - v is a best approximation to a{v,y) - v from {c-v:iceC}
with respect to the norm of X. Hence c¢* yields the minimum of [la(v,y) — cl|.

Further, (||| = (z,u) - (v,9) = ((a{v,9) = €*) - v,9) = [l(alv,9) = ¢*) - ¥l[x =
lla{v, y) —c*||, since y = ext ({z, u)-v). Finally, note that « can be replaced by any

other positive quantity by scaling simultaneously the numerator and denominator
in (4). 1

NOTE 5. Geometrically, (4) says that (z,u)/||P|| is a point of intersection
of the unit || - ||-sphere in F" and its tangent plane perpendicular (in the ordinary
Euclidean sense) to the direction of (v, y).

n
THEOREM 1.B. Under the hypotheses of Corollary 3, P = ) u; @ v; is
i=1

minimal, where
(z,u) = || P||z(z),

with z(x) being a point of intersection of the unit ||-||-sphere in F" (llall = lla-vi|x)
and its tangent plane perpendicular to M{v,z").

Proof. Apply (2') to (4) and use Note 5. B

COROLLARY 4. (Geometric interpretation for L) ([5]). Let X = LNT) D
n
V =[v]. Then P =Y u; @ v; is minimal where

i=1
(5) u(t) = || Plj=(t),

with z(t) being a point of intersection of the unit ||-||-sphere in F* (lall = lla-vllz1)
and its tangent plane perpendicular to Mv(t) for some M.

Proof. Take z; = 6; and z{|v = x{¢} in Theorem 1.B. 1§
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REMARK 2. Corollary 4 has been especially useful in [7].

By use of (2) and (3), we can rewrite Theorem 1 in a form which is construc-
tive in terms of creating a minimal P from P by use only of the Banach space
geometry of V as a subset of X.

n
THEOREM 1.C. (Equations). P = 3 u; @ v; has minimal norm in P if and

i=1
only if, for some matriz M,

/ (v, )z d(z, ¥) = Mv,
£

where £ = ES(U*)x ES(V"*) (ES denotes the ezireme points of the unit sphere S),
withU = [u] C X*, and u,z and y satisfying y = ext ({z,u}-v),z = ext ({v,y)-u),
and (v;, uj) = A,‘j.

COROLLARY 5. In Theorem 1.C, suppose (as in the cases X = L' or X = C)
that the (v,y) = d are known (up to a scalar multiple). Then u (subject to the
conditions (v;,u;) = A;;) is determined from the single equation ext {d-u,u) = e,
where e = {z,u) is determined from Proposition 1.

As a first example of the use of Theorem 1.C, we can construct the projection
of Example 3.a as follows.

ExAMPLE 3.b. Consider X = £ and V =[vy, vy}, where vy = (0 a1 a20),
vy = (la 0B ~a 1) with o = (24/2)/4 and § = +/2/4. Write each v; as a (con-
vex) combination of the (signed) independent extreme points 3 = (11111171),
22=(11111"1"1),...,2¢ = (1 "1-1"1"1-11) in ES(£*):

4(_011-1-7)[61;1 + 2¢2z3 + c3z3 + C4Ta + 20525 + cezg] = V

where ¢; = (a,8),¢2 = (o + B, + §)/2,c3 = (B,a),¢c4 = (—f,a),¢5 = (—a
- Ba+ f)/2ce = (—~a,B). Set {v,y;) = ¢c;i,i = 1,...,6, where y1 = €3,12 =
(e2+€3)/2,y3 = €2,94 = —€6,¥5 = —(€5 + €6)/2,y6 = —€5. Next, construct the
symmetric 12-sided ball ||al] = ||la - v|lz= = 1 and use Note 5 to conclude that
(zi,u) = (1,1),i = 1,2,3, and {z;,u) = (-1,1),i = 4,5,6. le., u;y = ¢4 and
Us = €.

NoTE 6. X = LP(T),1 € p<ooor X = C(T),p = oo, and V is piecewise
n

continuously differentiable, then for P = } u; ® v; minimal, we have the following
i=1
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necessary linear equation for u {obtained by the first author using different meth-
ods in the cases p = 1,00 in [2] and as a corollary of Theorem 1 of the present

paper in [3])):

(*) -l-u’~Mv=-l—u-Mv’ on T,
p q

where M is the matrix in (2) and 1/g + 1/p = 1. (One may view (%) as an n-
dimensional version of the Holder equality condition.) If p = 1, (+) is an easy
consequence of (2). If p = oo, () is very useful and when used is conjunction with
(2), as in Example 5.c below, yields a second linear equation for u.

2
EXAMPLE 5.a. X =C[-1,1]]DV =[v],v=(1,t). Then P= ) u;®u; is
i=1

mintmal with norm 1, where
(u1 _ ( A A b1
U2 - —C C 51 "

Proof. (Sketch). Check that the orthonormality conditions hold and that (2)
holds with (z;, %) = (sgn (- —1), (8 — 6-1)/2) and du(t) = dt/2,-1<t< L, M=
diag (0,1). (Epz = i[z(1) = z(-1)jvz forallz € X.) &

with A=C = 3.

In the case of the following example, in [1] the form of P was guessed by use
of the above (x)-equation and local constancy of the Lebesgue function, and the
minimality of P was proved by showing that its norm was the same as the norm of
a known ([13]) minimal projection in an isometric L!-setting. In the present paper
we check that P is minimal by direct use of Theorem 1. Recall (Note 6 above)
that the equation () can be derived as a consequence of Theorem 1 ([3]). Also
local constancy of the Lebesgue function is a consequence of using knowledge of
the form of the extremal pairs in Theorem 1. In other words, Theorem 1 is being
used both to obtain the formula for P and to establish its minimality.

ExaMpLE 5b. ([1]). X = C[-1,1] D V = [v],v = (1 — t%,t). Then
2
P = 3 u; ® v; is minimal with norm 1.220404917116354. .. (same as ||P|] in

i=1
Fzample 4.a), where

84

(Z:)=(—OC g 27) (i‘l’)ﬁ‘(i)m]—g,-msﬂ,
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with (B,C,b,¢) = (A/2)(1,1/v1 4+ 02,20,0%),A = ||P|| = —20¢/logty, 0 = (1
—12)/2tp = (13 — tg — 1) logto.

Proof. (Sketch). Use (¥) (0 = u- Mv') to determine the continuous part
of u(s) to be w(s)(b,es) for scalars b and ¢ and then determine the scalar func-
tion w(s) to be [1 + (05)%]~%? by forcing local constancy of the Lebesgue func-
tion. Choose all the remaining parameters so that the (ortho)normality condi-
tions hold and that (2) holds (with (z,3:) = (sgn(t)sgn (- — r(t)), &), du(t) =
(1 +t%)dt/|t]® on to £ |t| € 1 (# unnormalized), where r(t) = (¢2 — 1)/20t, and
M = (40?)diag(1,1/0)). 1

As in the previous example, the form of P in the following example is ob-
tained with the help of the equation (), which can be derived as a consequence of
Theorem 1 ([3]) as noted in Note 6, and by use of local constancy of the Lebesgue
function, again a consequence of Theorem 1. In [6] it was checked that P is mini-
mal by direct use of Theorem 1. I.e., Theorem 1 is again being used both to obtain
the formula for P and to verify its minimality.

EXAMPLE 5.c. ([6]). X = C[~1,1] D V = [v],v = [1,t,t?]. This projection
was first found by the authors in 1978, and may now be verified as minimal by use
3

of Theorem 1. P = ¥ u; @v; is minimal with norm 1.220173064217988.. ., where

=1

U1 A B A b4 2 by + dk'sl Xs (lsl)
wl|l=|1-C 0 C|| &6 +Z CLS % m,
u3 D —-B D & k=1 \ b + dk|5| k

for =1 € s €1, with Sp = [s11, sx2] (k = 1,2). For the equations {and values) for
all the parameters see [6].

Proof. (Sketch). Assume extremal pairs (z,6;) and (xfl),éil), for ¢ in the
region of constancy of L(t), where z; = sgn (f)sgn (- — r(t)),:r:gl)(s) = Fz(s) for
|s| € S; U Sa, and the sign + is constant for |s| € S,k = 1,2. Then apply z{ (z?
is differentiation at r(t)) to (2) to obtain

2" wi(t)v(E) + wa(t)v(£1) = MV'(r(2)),

where w; and wy are positive scalar-valued functions. Next, “dot” both sides of
(2") with u(r) to get

wi(u(r) - v(t) + wa()u(r) - v(E1) = u(r) - Mv'(r).
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But u(r(t)) - v(t) = 0 and apply (*) to obtain the linear equation v(z1)-u = 0 for
u. Next use this equation, and (*), to determine the continuous part of u(s) to be
w(8)(bx+ax|s|, cx s, ~bp+dk|s|), where ¢; = (~1)*(di+ax) and then determine the
scalar function w(s) to be 1/(1+wy|s])3, |s| € Sk, k= 1,2,w; = (a1—d1)/2b1, w2 =
—wy, by forcing local constancy of the Lebesgue function. Finally, choose all the
remaining parameters so that the orthonormality conditions hold and so that (2)
holds (see [6]). 1

For some further examples which could be obtained by using Theorem 1, see,
e.g., [11] and [14]. Theorem 1 is a special case of Theorem 2 which follows. The
proof of Theorem 2 is an easy extension of the proof of Theorem 1.

DEFINITION. If X and Y are any two Banach spaces, a continuous homoge-
neous (not necessarily linear) operator @ from X into ¥ will be said to be jointly
weak® continuous if Q has a continuous homogeneous extension @** : X** — Y
such that Q(z,y) = (Q**z,v) is continuous on the compact set X = B(X**) x
B(Y*). (Eg,QeX *®Y or @ any compact linear operator.)

THEOREM 2. Let Py be a continuous homogeneous operator from a Banach
space X into a Banach space Y. Let W be a subspace of X*,V be a subspace of
Y, and D = W QV, where the closure is taken in B(X,Y). Then P = Po — Ao
has minimal norm in P = Py + D if the closed convez hull of {y ® 2}z yyee(P)

contains an operator taking V into W, i.c., for some (total mass one) measure
p supported in E(PY(C S(X*)® S(Y*))

(6) Ep= / y@zdu(z,y): V — W,
£(P)

or equivalently,
Ep= / s @ydu(z,y) : W — V*.
&(P)
If Py is jointly weak* continuous, then (6) is also necessary for P to be minimal.
ExaMpLE A. (Co-minimal (or minimal) projections (in the case V finite

dimensional)). Let Y = X, take Py = I — P, (ot P = P,) where P; is a projection
with (fixed) range V, and W = V%,

(6.A) Ep:V = V.

As an example where P, is not necessarily linear, replace I above by a con-
tinuous proximity map onto V.
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ExampPLE B. (Minimal extension operators (in the case V finite dimen-
sional)). Let V C § C X, let Py be a fixed operator from S to V, and let
P : X — V be a minimal-norm extension of Py. In Theorem 2, let Y = X and

w =25t

(6.B) Ep:V —=38.

ExaMpLE C. (Optimal recovery (in the case U finite dimensional)). In
Theorem 2, let Y = X, take Py = I — Py (or Py = Py) where P, is a projection
with (fixed) kernel UL, W = U,V = U*.

(G.C) Ep:U—U.

COROLLARY 6. (Geometric interpretation for optimal recovery in C). Let
n
X*=C(T)* DU =[u). Then P =Y u; @ v; is minimal where
i=1

v(t) = | Pllz(t),

with z(t) being a point of intersection of the unit || - ||-sphere in F(|la|| =
|la - ulle(rys) and its tangent plane perpendicular 1o Mu(t) for some M.

ExaMPLE D. (Linear optimal estimation (in the case U finite dimensional)).
In Theorem 2, let Py be linear with (fixed) kernel UL, W =U,V =X CY.

(6.D) Ep:U—0.

ExaMPLE E. (Linear n-widths). Let Py be the injection of X into Y D X,
-~ 7 ~
let n be fixed (and finite) and let D = { 3" & @¢:, 8 8¢ € X* ®Y }. Now D is not
=1
a subspace, but apply Theorem 2 to suiaspa.ces Dy=Xs®Y and D2 = X* ®Y,,

where X and Y, are n-dimensional subspaces of X* and Y, respectively, and
determine P = P, = P; from

(6.E) Ep :X,—0 and Ep,:Y, —0.

For some specific instances of Examples C, D, and E, and further references
see [12], [17], and [18].

For an extension of the theory of this paper to “constraints”, see [4].
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