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ABSTRACT. Let G be a bounded simply connected domain with harmonic
measure w and let P?(w) be the closure in L?(w) of P, the set of analytic
polynomials. Let S, be the operator defined by Su f = zf for each f € P*(w).
We characterize all subnormal operators similar or quasisimilar to S, and we
describe the unitary equivalence class of S.,. We make the assumption in this
study that G is a normal domain (we say G is normal if P is dense in the
Hardy space H'(G)). Some examples are given to show that the normality
of G is necessary. We also give some characterizations of a domain (i.e., 2
connected open subset in the plane) that is the image of a weak-star generator
of H* (D).
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1. INTRODUCTION

Throughout this article we tacitly assume that
G i3 a bounded normal domain with harmonic measure w.

That is, we assume that P is dense in the Hardy space H'(G). Normal do-
mains are characterized in [24] (see Theorem 0.3 in Section 2). Jordan domains,
Carathéodory domains, are normal domains. A crescent bounded by two circles is
an example of non-Caratheodory normal domains [2].

Let Hy and H, be Hilbert spaces and let A and B be bounded operators
on H; and Hj, respectively. The operators A and B are unitarily equivalent if
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there is an isometric isomorphism U of H, onto Hj such that UA = BU. The
operators are similar if there exists an invertible operator X from H, to H3 such
that XA = BX. A weaker equivalence relation among operators is quasisimilarity.
We say A and B are quasisimilar if there are injective and dense-range bounded
operators X: Hy — Hj and Y: Hy — Hj such that XA = BX and YB = AY.
We denote these equivalence relations by 2, =~ and ~, respectively.

Let p be a finite positive measure with compact support. We use the symbol
S, to denote the operator defined by S,f = zf for each f € P%(u), where P?(u)
is the closure of P in L%(p).

In this paper we study the following problem: When is a subnormal operator
unitarily equivalent, similar, or quasisimilar to S,. In 1973, W. Clary answered
the latter two questions for the unilateral shift [6]. In 1979, W. Hastings extended
Clary’s quasisimilarity theorem to an isometry of finite cyclic multiplicity [15]. A
decade later, J. McCarthy [18] extended Clary’s quasisimilarity result to a ratio-
nally cyclic shift operator R, on R*(K, o), where o is the harmonic measure on a
compact set K and R(K) is a hypo-Dirichlet algebra.

In this paper we extend Clary’s results in another direction. We generalize
both his similarity and quasisimilarity results to S,. We also characterize all
operators that are unitarily equivalent to S,,.

To state our main results, we need the notion of a Carleson measure on a
simply connected domain. We call a positive measure 7 on G a Carleson measure
if there is a positive constant ¢ such that for every t € [1, )

llelliry € e llpllztw), PEP.

In [24] the author characterizes all Carleson measures on a normal domain (see
Theorem 0.3). We call a function z in P?(w) an outer function if A(G)z is dense
in P%(w), where

AG)={f:feC(G) and f isanalyticon G}.

Recall that a function g in H°(D) is a weak-star generator provided polynomials in
g are weak-star dense in H%°(D), where D is the open unit disc (consult D. Sarason
(28], [29], [30]). We say a simply connected domain U is perfectly connected if U
is the image of a weak-star generator of H*>(D).

Now our equivalence theorems can be stated as follows:
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THEOREM 1. Let S be a subnormal operator. The operators S and S, are
similar if and only if there ezisis a measure p on G such that S, = S and p has
the following properties:

(i) a.b.p.e. PX(u) CG.

(ii) 4|6G < w and log CH4I9) € 1} (w).

(iil) If z € P%(w) is an outer function and |z|* = 9%‘5—61', then ||~2u|G is a
Carleson measure on G. (Here, T is the analytic extension of z t0 a.b.p.e. P*(w) =
G, which is defined in Section 2.)

THEOREM 3. In order that S, be unitarily equivalent to S, for each posi-
tive measure y with the properties that [p] = W] and flog(%f) dw > —oo, it is
necessary and sufficient that G is a perfectly connected domain.

THEOREM 5. Let S be a subnormal operator. The operators S and S, are
quasisimilar if and only if there exisls a measure p on G such that S, = S and p
has the following properties:

(i) a.b.p.e. PH(p) € G.
(ii) 4|6G < w and log(22%) ¢ L}(w).

Theorem 1 and Theorem 5 were first proved by Clary in the case that G is
the unit disc. Condition (i) is necessary in general. Theorem 3 implies that (i)
can be omitted in the other two theorems if and only if G is a perfectly connected
domain (for the proof, see the remark for Theorem 3 in Section 4).

A classical result of the Hardy space theory says that a function f in P%(m)
(here, m is the normalized Lebesgue measure on the unit circle D) is outer if and
only if P f is dense in P2(m). This is not true, in general. In the end of this paper
we characterize all those domains on which our definition of f in P?(w) being an
outer function is equivalent to the condition that P f is dense in PZ(w).

2. PRELIMINARIES
ANALYTIC BOUNDED POINT EVALUATIONS. Let p be a finite positive measure
with compact support in the complex plane €. For ¢ in [1,00), we let P*(u) be

the closure of P in L*(u). A point w in C is a bounded point evaluation (b.p.e.)
for P*(u) if there exists a positive constant ¢ such that

lp(w)| < cllpll, pEP.
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In this case it is clear that p — p(w) extends to a bounded linear functional on
P'(). By the Riesz Representation Theorem there exists a function ko in LI(p)
such that

p(w) = j pky dp.

Let f(w) = [ fkwdp. A point w is called an analytic bounded point evaluation
(a.b.p.e.) if there exists a neighborhood U of w such that each point in U is a
b.p.e. and f is analytic in U for each f € P(w).

In 1990 James E. Thomson proved the following remarkable theorem [33].

THOMSON’S THEOREM: Let y be a finite measure with compact support and
lett € [1,00). Then there ezists a Borel partition {A;}§° of the support of p such
that

Pt(u) = L' (u]Ao) ® €D P'(u|A))

and for each i 2 1, P‘(pIA ) contains no nontrivial characteristic functions. If
i2 1 and W; is the set of a.b.p.e.’s for P'(p|A.), then W; is a simply connected
domain and A; C W;. Moreover, for i > 1, the evaluation map E: f — f 18
one-to-one on P*(u;). Finally, for i > 1, the Banach algebras P*(pi) N L*(pi)
- and H®(W;) are algebraically and isometrically isomorphic and weak-star home-
omorphic via E.

The space P*(u) is called pure if Ap=0.

LEMMA 0.1. Let u be a compactly supported measure and let U =
a.b.p.e. P'(u). If Pi(u) is pure, then A(U) C P*(p).

REMARK. This result was first proved in [20] for ¢ = 2. J. Thomson had a
proof for all t € [1,00), which is essentially the same as that of Lemma 5.5 of [33].
The author extended this result to a space R¥(K,u) with a.b.p.e. R*(K, p1) being
finitely connected in [25].

HARMONIC MEASURE. A domain U is called a Dirichlet domain if the Dirichlet
problem is solvable for every continuous function on 8U. If U is a Dirichlet domain
and if u € C(AU), let © be the unique function that is continuous on U and
harmonic in U. Fix a point @ € U. The mapping u — uU(a) defines a positive
functional on C(8U) with norm one. Thus, there is a unique probability measure
wa on OU such that
t(a) = ] tdw,, ue€COU).
8G
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The measure w, is called the harmonic measure of U evaluated at a (consult {7}
or [36]). When U is a simply connected domain, w; = mo =1, where ¢ is a
conformal map of D onto U/ which sends 0 to a (here, we also use ¢ to denote
its boundary value function on 8D). A simple application of Harnack’s inequality
shows that the harmonic measures of two points of U are boundedly equivalent.

NicELy CoNNECTED DOMAIN. A simply connected domain U is said to be nicely
connected if there exists a conformal map ¢ of D onto U so that it is univalent
almost everywhere on 9D with respect to m. In this case there is a Borel subset
E of 8D with m(E) = 1 such that the conformal map performs a one-to-one
correspondence between the Borel subsets of E and ¢(E). The following theorem,
which can be found in [9], characterizes nicely connected domains and is used
repeatedly in this paper.

THEOREM 0.1. [Davie-Gamelin-Garnett]. Let U be a simply connected do-
main in the complez plane. The following are equivalent:
(1) Every bounded analytic function on U is the pointwise limil on U of a
bounded sequence in A(U). '
(11) U is a nicely connected domain.
(iii) A(U) is a Dirichlet algebra on 3U.

The following fact is repeatedly used in this paper also.

OBSERVATION. Suppose U is a nicely connected domain. Then

/_fdwa:/fogadm feLl(w)

and

/gow“ldwazfgdm g € LY(m)

where ¢ is the conformal map of D onto U such that w, = mo =1,

HarDY Spaces H*(U). Let U be a bounded domain and let ¢ € [1,00). The
Hardy space H*(U) is defined to be the set of all analytic functions f on U such
that |f|* has a harmonic majorant on U. The norm of a function f in H*(U) can
be defined as follows: Fix a point z in U and put ||f|| = u(z0)*/!, where u is the
least harmonic majorant of |f|* (see [11]) Harnack’s inequality guarantees that
the norms of H*(U ) induced by two points of U are equivalent. H*(U) is the
Banach space of bounded analytic functions on I/ with the sup norm.
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In the case that U is a nicely connected domain, we can embed H*(U) in
L'(w). In fact, let ¢ be a conformal map ¢ of D onto U. Then it effects a point
isomorphism between the measure spaces (8D, m) and (8G,w). For f € H*(D),
we let f be the boundary value function on 8D. Now let h € H'(U). Then, h, the
boundary value function of A, is defined to be k = (h op)o@~!. The map h — h
induces an isometric isomorphism of H*(U/) onto its image in L}(w). In this paper,
we shall not distinguish between & and A.

For a given domain U, a point a € G is called removable for H*(U) if each
f in H'(U) can extended analyticaly to a neighborhood of a. The next theorem
is proved in [23].

THEOREM 0.2. [J. Qiu). Let t € [1,00) and let U be a bounded domain
with harmonic measure w such that no point of JU is removable for H'(U). The
following are equivalent:

(i) P is dense in H*(U).

(ii) a.b.p.e. Pw)=U

(iii) U s a nicely connected domain and if 1 is a Riemann map of U onto
D, then its boundary value function belongs to P'(w).

CARLESON MEASURES AND NORMAL DoMaINS. A well-known theorem of L.
Carleson ([11], p.156) says that a measure 7 on the unit disc D is a Carleson
measure if and only if there exists a positive constant ¢ such that

T(Ch) -.<., ch

for each Carleson square
Ch={z= :1—hgr<l;tg€t<tg+h} on D.

The following theorem is the main result of [24], which characterizes normal
domains and also describes all Carleson measures on a given normal domain.

THEOREM 0.3. [J. Qiu]. Let U be a simply connected domain with harmonic
measure w. The following are equinalent:
(i) Every Carleson measure 7 on U has the form 7 = noa™?! for a Carleson
measure  on D and a conformal map o of D onto U.
(i) P is dense in H*(U) for allt € [1,00).
(i) U is a normal domain.
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THE SWEEP OF A MEASURE. Let U be a bounded Dirichlet domain and u be a
finite positive measure on U. For u € C(8U), let & be the unique function that

is continuous on U and harmonic in U. The map u — [#dy defines a positive
v
functional on C(8U) with norm one. Using the Riesz representation theorem,

there is a unique probability measure fi so that

/ Gdp = / udii, ue (V).

i U
The measure Ji is called the sweep of . The proof of the next lemma can be found
in [7]. '

LEMMA 0.2. If u is @ measure on U, then i = /.L]BU + ,t‘t‘ﬁ-f

3. OUTER AND INNER FUNCTIONS

LEMMA 1. Let f be a positive function in L (w). In order that there exist an
outer function g in P*(w) such that [g|> = f a.e. [w], il is necessary and sufficient
that log f is in L'(w).

Proof. Suppose log f € L'(w). We put w = w, for some fixed point @ in
G. Let ¢ be the conformal map of B onto G with ¢(0) = a and let 3 = ™! (so
w = mo ~1). Then both f oy and log(f o ¢) are in L'(m). By the classical
Hardy space theory on the disc, there exists an outer function z in P?(m) such
that |z|?> = fop. Let g = zot. Then

lg|? = |z o9 = f ae. [w] on 8G.
Choose a sequence {p,} C P such that

/ |pn — z|?dm — 0.
It follows that
’ /Ipno1/)-g|2dw—+0.

Since 3 € P?(w) N L™ (u'J) (Theorem 0.2), we conclude that g € P2(w).

Since G is a normal domain, G is nicely connected and thus A(G) is a Dirich-
let algebra on G (Theorem 0.1). So P?(w) = H*(G) = the closure of H*(G) in
H?(G) = the closure of A(G) in H*(G). Therefore, A(G) is dense in P?(w). Using
an abstract version of Szegd’s theorem ([16], p.103), we conclude that A(G)g is
dense in P?(w). Hence g is an outer function.

Conversely, assume that f = |g|? for some (outer) function g in P*(w) =
H?(G). Then g o € H?(D) and so g o ¢ € P?(m). By a result of the classical
Hardy space theory, log |gow| € L!(m). Hence log f € L'(w) and so we are done. ¥
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We call a function f in P%(w) an inner function if |f| = 1 ae. [w]. A
consequence of the proof of Lemma 1 is the following inner and outer factorization
result.

CoroLLARY 1. If g € P%(w), then there are an outer function h and an
inner funclion f such that g = fh.

Proof. Suppose that g € P?(w). Let ¢ be a conformal map of D onto G.
As in the proof of Lemma 1, we have that go ¢ € P?(m). It follows by Szego’s
theorem that

]log|g|dw=/log|go¢|dm>m.

Using a classical Hardy space result, we can find an ocuter function f; in P?(m)
and an inner function h; in P%(m) such that g o ¢ = fih;. Set

f=fiop ™ and h=hop L.

From the proof of Lemma 1, we see that f is outer and A is inner. 8

It is well-known that if G is the unit disc D, then Pf is dense in P?(m) for
each outer function f. But this is not true in general.

QUESTION 1. For what normal domains G do we have Pf is dense in P3(w)
for every outer function f € P%(w)?

The answer to this question is given in Theorem 6.

4. SIMILARITY AND UNITARY EQUIVALENCE

We begin this section with several lemmas. The first two lemmas are well-known
and we include them here for the reader’s convenience.

LEMMA 2. Let p and v be iwo compactly supporied positive measures. If
there ezists a bounded operator A from P%(u) to P%*(v) such that A has dense
range and S, A = AS,, then b.p.e. P*(v) C b.p.e. P¥(p).

Proof. Suppose that w € b.p.e. P2(v). Proposition 9.2 in [7] implies a point
w € b.p.e. P2(v) if and only if Ran[(S, — w)] is not dense in P%(v). Thus,
Ran [(A)(S, — w)] is not dense in P2(v). Since A has dense range, it follows that
Ran (S, — w) is not dense in P?(y), which in turn implies that w € b.p.e. P?(p).
The proof is complete. B
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LEMMA 3. Let y and v be fwo compactly supporied positive measures. If S,
and S, are quasisimilar, then b.p.e. P%(v) = b.p.e. P%(u).

Proof. This follows directly from the definition of the quasisimilarity and the
previous lemma. 8

Let p4 and » be two measures. We use the symbol y <« v to state that u is
absolutely continuous with respect to .

LEMMA 4. Let p be a finite compactly supported measure. If S, and S, are
guasisimilar, then the following hold:
(i) supp(p) C G.
(i) a.b.p.e. P*(u) = a.b.p.e. P?(w).
(iii) p#|0G < w and log(-‘i%qu) is in L} {(w).

To prove Lemma 4 we need the next result which was obtained by Olin and
Yang (with a different proof) for an arbitrary simply connected domain in [20]. A
generalization of their result can be found in [25].

LEMMA 5. Let U be a bounded nicely connecied domain with harmonic mea-
sure w. If p is a finile posilive measure with compact support such that
a.b.p.e Pi(p) = U and P'(u) is pure, then p|oU < w.

First, we need the following version of the Abstract F. and M. Riesz Theorem
(consult [14], p.158 or [8]).

THE ABSTRACT F. AND M. RIEsZ THEOREM FOR THE ALGEBRA A(U): Let

n L A(U). Then 5 can be ezpressed as a series = Y 1;, where each n; L A(U),
20
the 7; 's are pasrwise mutvally singular, o is singular to all representing measures

(of A(U)) for all points of U, and for j > 1, n; is absoluiely continuous with
respect Lo a representing measure (of A(U)) for some point of U.

Proof of Lemma 5. First, since U is nicely connected, it follows by Theorem
0.1 that A(U) is a Dirichlet algebra on U, and hence every point in U is a peak
point for A(U). Second, the nontrivial Gleason part contains U ([14], Section 15)
and every trivial Gleason part consists of a single point since A(U) is a Dirichlet
algebra (consult Section 15 of [14] for an explanation of our terminology and
results). Consequently, U is the only nontrivial Gleason part of A(U).

Now let n L A(U). We claim that n <« v with respect to a representing
measure v for some point of I/. By the Abstract F. and M. Riesz theorem, we
haven = 'E 75, where each 7); is as in the theorem above. Using Wilkin’s Theorem

([14], p. 162) we have g = 0. Let a be a peak point and let f € A(U) be a peak
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function for a. Clearly the sequence f"(z) boundedly pointwise converges to x{(a},
the characteristic function of {a}. Thus,

0= f lim £ dy = n({a}).

This implies that n < v for a representing measure v of A(U), for some a € U.

Since A(U) is a Dirichlet algebra on 68U, each point z in U has a unique
representing measure whose support is contained in U/ ([14], Lemma 31.1). Now
if we let ¥ be the sweep of v on U, we then have

/g(z)dﬁ:f@dv:g(a):/ydwa, g € A(U).

By uniqueness, we conclude & = w,. Hence
n|0U < v|8U < P|0U = w,.

Now suppose that g € L(u) such that

]fy dp=0, fe€P(p),

where 1/¢ + 1/t = 1. Since A(U) C P*(u), it follows that
/fydu =0, feA{).

That is, gu 1 A(U) and thus gp]aU € wg € w. This implies that (gu)s = 0,
where (gu), is the singular part of the Lebesgue decomposition of gu with respect
to w. Consequently, ¢ 1 xa, where A is the carrier of y, and g, is the singular
part of the Lebesgue decomposition of g with respect to w. Now an application of
the Hahn-Banach theorem yields xa € P*(u). Since P*(y) is pure, it follows that
xa =0 a.e. [u] and hence u, =0. 8§

The proof of Lemma 4. Assume that S, and S, are quasisimilar. Since
P*w) is pure, it follows that P2(y) is pure ([7], p.223). Theorem 4.11 of [33]
together with Lemma 3 imply that

a.b.p.e. P?(u) = b.p.e. P*()
= b.p.e. P}(w)
= a.b.p.e. P*(w)
=G.
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Using Lemma 5, we see that
u|aG < w.

The fact that supp(u) C G follows from Theorem 4.10 of [33].

- Since S, and S,, are quasisimilar, we can find an operator A: P2(u) — P*(w)
such that AS, = S,A. For simplicity we may assume ||A|| = 1. Let ¢ be a
conformal map of D onto G with (0) = a and let ¥ be its inverse function. We
may assume, without loss of generality, that w = m o p~1. Set u = A(1). Notice
that A(G) is contained in both P?(w) and P?(u) (Lemma 0.1). Now one can easily
check that

A(f)=uf, [f€AG).
Since |¢| = 1 on 8G a.e. [w], it follows that for all n 2 1 and for each f € A(G)

[ aw = [ 1A o i d
oG 8G

= IAW@) HI?
ik
= [1wen 157 an
G
If we let n — oo, then
(1) [ s e < [ Pdu seae).

8G G

Now we claim that
{pop:p€ A(G)} isdensein P%(|h|?’m) foreach he P%(m).

In fact, since A(G) is bounded pointwise dense in H*®(G) (Theorem 0.1), we
see that {po ¢ : p € A(G)} is bounded pointwise dense in H*°(D). That is,
each f in H%(D) is the pointwise limit of a bounded sequence of functions in
{poy : p € A(G)} on D. Now the Lebesgue dominated convergence theorem
together with the density of H°(D) in PZ(|h|*m) implies that {po ¢y : p € A(G)}
is dense P2(|h|®m).

Now using (1), we have

duloG
[isoutiuoprams [1foe? (4% opam, fea).
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Consequently,
d
[1-oP lopPam< [11-g? (422 opdm, e Pi(m)

where P2(m) is the closure of {p: p € P and p(0) = 0} in L?*(m). Notice that the
function u o ¢ is in P?(m). So by Szegd'’s theorem (see [16], p.49)

. dp|oG
—_ 2 —— N
ge}%t(‘m),[ 11-g? ( op)dm >0

Also, using Szegd’s theorem we get

duldG
jlog( }:il

/log(d’jaa) dw > —co.

W

op)dm > —oo,

ie.,

Hence log( ) is in L1(w). The proof is complete. &

LEMMA 6. Suppose that A is an invertible operator from P*(u) to P%(w)
such that AS, = S,A. Let u = A(1) and let a = p|dG. Then there ezists an

outer function z in P?(w) such that [z|? = ﬁ. Moreover, there ezists an invertible
function h € P3(w) N L®(w) such that u = hz.

Proof. Since AS, = S, A, it is easy to verify that (as in the proof of Lemma 4)

NAHImH N flleaqy < Nlufllzaw) < HANIAllzag,  f € A(G).

Replace f by ™ f. ¢ is a conformal map of G onto D and is in P?(w) since G is

a normal domain. Let n — oo, we obtain

2) 1A 1fllzacay € Nl fllzaw) < AN Iflleae), £ € A(G).

By Lemma 4 we see that log(342%) ¢ L!(w). It follows by Lemma 1 that there
exists an outer function z such that |z|* = -gg. Define an operator B on the
manifold {fz : f € A(G)} via

B(zf) =uf foreach fe€ A(G).



EQUIVALENCE CLASSES OF SUBNORMAL OPERATORS 59

Then for each f € A(G)

sl = [ fuff dw
= [1atP e
<IAIP [ 17 da
do
= 1P [ 175 dw
= 4IPl fol2.

Hence B can be extended boundedly to P?(w). We use B to denote this extension
too. Notice that the operator B commutes with S,. By Yoshino’s theorem ([7],
p.147), there is a function k in P2(w)NL* (w) such that B = My, the multiplication
operator induced by h on P?(w). Ilence u = hz. Finally, (2) clearly indicates that
Mj, is bounded below, and hence A is invertible in L%°(w). The proof is complete. B

LEMMA 7. Let A be an invertible operator from P%(u) to P%(w) such that
AS, = S,A. Letu = A(1) and let v = A"1(1). Then

v=A"1(1) = A—(l-l—)- = ;1; a.e [yl
Proof. Choose a sequence {p,} C P such that
pn— A1) in P*u).
By passing to a subsequence if necessary, we see that
pn— ATHD) ae [g]
By the continuity of A, we get that
up, = 1 in P*w).
Thus, there exists a subsequence {pn;} such that

wpn; — 1 ae [w]

But, a.b.p.e. P?(u) = G by Lemma 4. It follows that p,; converges to 7, the
analytic extension of v on G, uniformly on compact subsets of G. Since v = ¥ on
G, it follows that uv =1 a.e. [u]. Ilence v = L a.e. [u]. So we are done. ¥
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LEMMA 8. If 7 is a Carleson measure on G, then Sy4r =~ Su.

Proof. Suppose T is a Carleson measure on G. Then there exists a positive
constant ¢ such that

lIpll- < ¢ lplle; PEP.

If we define the operator I : P(w) — P*(w + r) densely ! via
Ijp)=p foreach peP,

then it is easy to verify that I is an invertible operator. Clearly, I has the property
that IS, = Su4r1. Hence Sy4r >~ S,. 1

Recall that if z € P%(w), then % denotes the analytic extension of & to
a.b.p.e. P2(w) = G. The next theorem is the first main result of this paper.

THEOREM 1. Let S be a subnormal operator. The following are equivalent:
(i) S~ S..
(i) There is a Carleson measure T on G such that § = Suyr.
(iii) There ezists a finitc measure py on G such that S, = S and p has the
following properties
(a) a.b.p.e. P?(p) C G.
(b) a = p|0G € w and log(4%) € L'(w).
(¢) If = is an outer funclion in P2(w) such that |z|*> = 42, then

|Z|~?p|G is a Carleson measure on G.

REMARKS.
I) Condition (a) in (iii) can be replaced by a.b.p.e. P*(u) = G since S, ~ S,
implies that
a.b.p.e. P?(u) = a.b.p.e. P2(w) = G.

II) Condition (i) says that, up to unitary equivalence, the similarity class of
Sy is:
{Su4r : T is a Carleson measure on G}.
III) If G is the unit disc D, then (a) is satisfied for all u with supp(x) C D

and thus it can be removed. However, (a) can not be dropped in general (see
Example 1 below). A natural question now arises:

1) Here, ‘densely’ means the operator is defined on a manifold that is dense in the
space. We use this terminology repeatly in the rest of this paper.



EQUIVALENCE CLASSES OF SUBNORMAL OPERATORS 61

QUESTION 2. What normal domains have the property that Theorem 1 is
valid with condition (iii).(a) omitted?

The answer is the perfectly connected domains, see the remark after Theo-
rem 3.

The proof of Theorem 1. (i) = (ii). Assume S ~ S,,. By Bram and Singer’s
theorem ([7], p.147) there is a measure  such that S, = S. So §, =~ S, also. It
follows by Lemma 4 that

.U|3G

supp(u) C G, ab.p.e. PX(u) CG, #|/0G € w, and log(——)€ LY (w).

Let T be an invertible operator from P2(y) to P2(w) such that 'S, = S, T. Choose
the functions z, h, and u as in Lemma 6. Using Lemma 7, we have

1 _h_
m_u_hT (1) on 8G ae (g
and R
-}: g:hT‘l(l) on G.
T

Therefore, there exist z; in P?(u) and by in P?(u) N L%(u) such that z = z, and
h = h; a.e. [p] and

-.’tl = hl'U = thﬂl(l) a.e. [}l]
1

Set n = |x3|"%p. Then for each p € P

2 3

- P
||p||n-(/ z d,u)
1
2 a

(|
(/1214

= |1 T (@)l
< Hralleo 1T~ ol -

This implies that a.b.p.e. P?(n) € G. It follows by Lemma. 0.1 that
A(G) € P*(m).

Now define an operator F' : P?(n) — P?(u) densely via

F(f)= (zll)f for every f € A(G).
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One verifies that F' is an isometry. Also, we have
SpF = FS§,.
We want to show that F' is onto. In fact, since
F[A(G)] = T [A(G)]

and since h; is invertible in P2(u)N P (i), it follows that F* has dense range; and
thus F is an isometric isomorphism. Hence S; 2 S,,. Now set

7= || ?4|G.
Then
n=w+T7T
and
SES# gSq =Sw+'r-
Clearly

liell < llplls < llAlleollT=" 1Pl
Hence, 7 is a Carleson measure on G.
(i1) = (iii). It is clear.
(ili) = (i). Let p be a measure as in (iii). Set

7 =w+|2"2u|G.

Since |.7E|‘2p|G is a Carleson measure on G, it follows by Lemma 8 that S, ~ S,.
If we repeat the process of the proof of (i) = (ii), we see that S, = S,. Thus,
S =S, ~ S,. So the proof is complete. 1§

EXAMPLE 1. Let G = D\ {2z : |z —1/2| € 1/2}. Then P is not dense in
L2(G), the Bergman space on G (for the existence of such a domain, consult [4]).
Indeed a.b.p.e. P?(A) = D, where A is area measure on G. Set

p=A+w

Then a.b.p.e. P?(u) = D. Let & be the sweep of p on 8G. It follows from Lemma
0.2 that 2 « w. Clearly, we have

log(%) € L'(dw)

and |Z|~2|G = 0 is a Carleson measure on G (here, |z|® = g—g as in Theorem 1).
On the other hand, P is dense in H2(G) (Akeroyd [2]). It follows by Theorem 0.2
that G = a.b.p.e. P*(w). Hence a.b.p.e. P?(fi) # a.b.p.e. P?(5). Therefore, S;; and
S, are even not quasisimilar. 8
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NoTE. In this example, area measure is not a Carleson measure on G since
a.b.p.e. P2(A) strictly contains G.

The next theorem describes the unitary equivalence class of S,,.

THEOREM 2. Let H be a Hilbert space and let B be a bounded operator on

H. Then B and S, are unitarily equivalent if and only if B is e cyclic subnormal
s -~

operator and there ezists a measure y on G such that B = S, and p has the

properties:
(i) a.b.pe. P?(p) CG.
(ii) (4] = [w].

(iii) [log(§%)dw > —oo.

REMARK. First, note that Example 1 also shows that (i) in Theorem 2 is
necessary. In Theorem 3 we characterize all those domains G for which (i) can be
removed. '

Proof. Suppose that B =2 S,,. Since S, is cyclic, it follows that B is cyclic.
Since S, is subnormal, one verifies that B is subnormal too (for example, one may
apply (f) of Theorem 1.9 of [7], p.118). w is a measure having properties (i), (ii)
and (iii).

Conversely, assume that B & S, for some p that has the following properties

d
abpe P u)CG, [u=[w] and /103(35) dw > —00.
Using Lemma 1, we can find an outer function z in P2(w) so that |z|> = 92, Since
)
a.b.p.e. P’(u) C ab.pe PYw) =G,

it follows that _
A(G) C P*(p).

Now if we define an operator A from P?(u) to P?(w) densely via
A(p) = zp for each pe A(G),

then A ciearly is an isometric isomorphism. Also, A has the properties that AS,, =
SwA. Thus S, 2 S,,. This proves the theorem. §

The next theorem not only answers Question 2 but also gives a characteri-
zation of perfectly connected domains.
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THEOREM 3. In order that S, and S,, be unilarily equivalent for each pos-
itive measure p with the properties that [y] = [w] and flog(%&)dw > —oo, it is
necessary and sufficient that G is a perfectly connected domain.

REMARK. Using Theorem 3 we now show that the answer for Question 2 is
the perfect connected domains. Assume that Theorem 1 with hypothesis (iii).(a)
omitted is valid for a normal domain G. This means that S, >and S, the similar
for every measure p that satisfies conditions (b) and {c¢) of Theorem 1. Since
0 measure is a Carleson measure on G, we derive that S, are S, similar (so
a.b.p.e. P*(4) = a.b.p.e. P2(w)) for all those yu satisfying (b) and (¢} in Theorem
1 and having the property that Iu|G = 0. (Therefore, we see that if p satisfies (b)
and (c) and if |G = 0, then u has properties (i), (ii) and (iii) in Theorem 2.)
By Theorem 2 we conclude that S, and S, are unitarily equivalent for all those
4 with the properties that {u] = [w] and log$% € L!(w). Hence, it follows from
Theorem 3 that G is a perfectly connected domain.

For the proof of Theorem 3, we need to recall Sarason’s weak-star density
theorem for polynomials. For a compact set K, let R(K) denote the uniform
closure in C(K) of the set of the rational functions with poles off K. Recall that
R(K) is a Dirichlet algebra if {Re f : f € R(X)} is dense in Cr(0K), the real
continuous function algebra on 8K. Sarason’s theorem for weak-star density of

polynomials now can be stated (see [31] or [8], p.301).

SARASON’S THEOREM. For a compactly supported posilive measure yu on the
complez plane, there ts a compact set K and measures p, and p, having the fol-
lowing properties:

(i) b= o+ s, pha L pgy and PP (p) = L®(p,) @ Pm‘(l—‘a)‘

(ii) K contains the support of pa, R(K) C P®(u,) and R(K) is a Dirichlet
algebra.

(iii) There is an isomelric isomorphism & from H* (int (X)) to P®(y1a) such
that o is also a weak-star homeomorphism and a(f) = f for every f € R(K).

REMARK. The set K is known as the Sarason hull of u.

For a compactly supported measure g, let b.p.e. P®(u) denote the set of all
points A such that the linear map p — p()), p € P, can be extended to a weak-star
continuous linear functional on P®(p).

The following lemma can be found in [§], p.3086.
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LEMMA 9. If p is a finite measure with compact support, then

b.p.e. P®(p,) = int (K).

Proof of Theorem 3. Suppose that G is a perfectly connected domain. Then
there is a conformal map ¢ of D onto G such that {poy : p € P} is weak-star dense
in H°(D); this clearly is equivalent to saying P is weak-star dense in H**(G) and
the latter is equivalent to having

P%®(w) = H*(G).

Let 1 be a measure such that

(4] = w] and /log(%) dw > —oco.

It follows that
A(G) € H*(G)

= P®(w)
= P*(u)
C P*(p).

By Lemma 1 there is an outer function z in P2(w) such that |z?| = §# and thus
there is an isometric isomorphism A: P%(u) — P?(w), defined by extending the
following isometrical map

Aa) = az foreach a€ A(G).

Clearly the operator A has the property that AS, = Sy A. Hence S, = S,,.
For the proof of the other direction, let us assume that S, = S, for each
positive u that has the properties

[4] = [w] and /log(-dﬁ) dw > —00.
dw” |
Let f € L'(w). Clearly

(fl+Dw=w and log(|f| +1) € L'(w).

It follows, by our assumption, that Sgjs141)0 = Sw. Thus,

a.b.p.e. P2(|flw) C a.b.p.e. PX((|f] + 1)w) = a.b.p.c. P*(w).
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Now if i is a measure such that [] = [w], then by the Randon-Nikodym theorem
there exists A € L!(w) such that h = gﬁ. Using the previous argument, we get

a.b.p.e. PX(|n]) C a.b.pe. P(w).

Since G has no removable point for H2(G) and since  is normal, it follows by
Theorem 1 in [23] that
abpe PHw)=G.

Thus, we have
a.b.p.e. P(|n]) C G for each 5 with [n] = [w].
We now claim:
b.p.e P®w) =G.

Actually, using a result of T. Gamelin, J. McCarthy and J. Thomson (see Theo-
rem 5.9 of [33], or [17]) we can find a finite measure v such that [v] = [w] and

P®(w) = PX(v) N L®(v).

If we apply Sarason’s theorem to P®(w) and Thomson’s theorem to P?(v) respec-
tively, then

H®(b.p.e. P°(w)) = H*(a.b.p.e. P*(v)).

Consequently,
b.p.e. P®(w) = a.b.p.e. P*(v).
On the other hand, clearly
G C b.p.e. P®(w).

It follows from the last equality that
G C ab.pe. P¥v).

Hence,
G = a.b.pe. PX(v) = b.p.e. P®(w).

Now applying Sarason’s theorem again, we conclude that P is weak-star dense in
H*®(G). Using the argument at the beginning of the proof, we see that G is a
perfectly connected domain. &

It is natural to ask whether we can extend Theorem 1 and Theorem 2 to
non-normal domains. The question should be phrased as follows (keep in mind
that U is strictly contained in a.b.p.e. P?(w) when U is not a normal domain):
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QUESTION 3. Let U be a non-normal simply connected domain with har-
monic measure w. Let u be a positive measure with the following properties:

(1) a.b.p.e. P?(u) = a.b.p.e. P*(w).

(i) [¢] = W] and [log($2) dw > —oo0.

In addition, let o and wg be the restrictions of u and w on the boundary of
a.b.p.e. P(w) respectively and assume that S, 2 S,,.

Are S, and S, similar?

NoTE. The measure g stated in Question 3 satisfies all conditions in both
Theorem 1 and Theorem 2. (But, U is not a normal domain!)

The following example shows that the question has a negative answer.

EXAMPLE 2. Let V be an open disc whose boundary contains the origin
such that one of its diameters lies on the nonnegative real axis. Let J be a closed
segment which joins 0 and a point inside the disc such that J forms an angle % at
0 with the nonnegative imaginary axis. Let E be the closed domain enclosed by
the triangle that is symmetric to the real axis and has J as one of its sides. Now
set

U=V\E.

Let w be the harmonic measure of {7 and set
Wo = w]BV and wy =w[BE.

Using Lemma 2.8 in [3], we se¢ that w and the measure |z|?s are boundedly equiv-
alent near 0, where s is the arclength measure on 8U. Set

sp = s[E)V and s = slBE.

Then |z|~%w; and 51 are boundedly equivalent. It is obvious that s, is a Carleson
measure on V (see [11]). Thus, there is a positive constant ¢ such that

o)l L22)-2w1) € € IPllzago), P E P
This implies that there exists another positive constant ¢y such that
IpllLa(w) < co [IPllz2(we)s P EP.
Now we define A: P%(w) — P?(wq) densely via

A(p)=p foreach peP.
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The last inequality implies that A is invertible. Apparently, AS, = S.,A; hence
Sw and S, are similar. Since ]og(%‘f:) € L(s0), it follows by Theorem 3 that
Sie = Sue (80 is boundedly equivalent to the harmonic measure of V). Thus Sy,
and S, are similar.

Now we define a measure u on U by setting

p=so+ |z 35

The measure |2|~%s, is not a Carleson measure since it does not satisfy the ‘win-
.dow’ condition of the original definition of a Carleson measure {11}, p.156. There-
fore, S, and S,, are not similar. Combining this fact with the previous argument,
we conclude that S, and S, are not similar. However, one can easily verify that
we do have :

(i) a.b.p.e. P(u) = a.b.pe. Pw) =V

(ii) [1] = [w] and log 9% € LY(w).
(iii) Swo = Sy, where pg = p|8V.

NoTEe. The above domain U is one of the simplest non-normal domains. So
it seems that there is no hope for us to extend Theorem 1 and Theorem 2 to a
larger class of domains. However, if we only consider an operator that has the
form S,4r (where 7 is a positive measure on U), then the author has shown that
Sw4r =~ S, if and only if 7 is a Carleson measure on the domain U (see Theorem
6.3 of [26] or see [22]).

There is not much known concerning operators similar to shift operators
associated with more general domains. We close this section with a theorem which
deals with arbitrary domains.

THEOREM 4. Let U be a non-normal bounded domain with harmonic mea-
sure w. Letl pu be a fintle posilive measure. Let o and wq be the resirictions of the
measures 4 and w to the boundary of a.b.p.e. P?(w), respectively. Then

(i) In order that S, = S, il is necessary that Sy, = S.,.

(i) In order that S, ~ S,,, il is necessary that S, =~ S, -

Proof. The proofs of (i) and (ii) are almost identical, and so we are only
going to prove (i). Suppose S, = S,. Let X be an isometric isomorphism from
P?(p) to P%(w) such that XS, = S, X. If we let v = X(1) and u = X~'(1), then
for every pe P

lIpllw = [luplls
and
ltells = llvpllw-
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Let g be a Riemann map from a.b.p.e. P%(w) to B and extend g to 8fa.b.p.e. P?(w))
by defining it to be its boundary value function (in nontangential limit sense)
on 8[a.b.p.e. P2(w)) (this is possible since a.b.p.e. P*(w) is nicely connected by
Thomson’s theorem and Theorem 94 of [19]). Then g can be regarded as a function
in both P?(w) and P?(y). Replacing p by pg™ in the above equalities (this can
be done as follows: Let {gx} be a sequence in P that converges to pg" in P%(w).
By the same argument in the proof of Lemma 7 one shows the first equality above
holds for pg". Others can be proved similarly.) respectively, and letting n — o0,

we see that for each pe P

(3) 1Pllwo = H1upllue

and

[12/lss = I1oPlhus-

Now define A: P%(po) — P%(wo) densely by
A(p)=uvp foreach pe?P.

The operator A obviously is an isometry and it has the property that ASy, = Su,A.
If we can show that A is onto, then we are done. To do this, let us pick a function
f € P?(wo). Then (3) implies that uf € P?(yo) and thus uvf is in the range of
A. But uv = 1 almost everywhere with respect to w (Lemma 7), and so f is in the
range of A. Therefore, A is onto. Hence, A is an isometric isomorphism. 1§

5. QUASISIMILARITY THEOREM

Quasisimilarity of subnormal operators has been studied by a number of authors.
W. S. Clary ([6], 1973) first characterized all subnormal operators quasisimilar
to the unilateral shift. W. Hastings ({15), 1979) extended his result to operators
that are finite direct sums of unilateral shifts. In 1990 J. McCarthy [18] extended
Clary’s result to rationally cyclic shift operator (where a hypo-Dirichlet algebra
condition was imposed).

The next theorem is our primary result concerning quasisimilarity of subnor-

mal operators.
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THEOREM 5. Suppose S is @ subnormal operator. Then S and S, are qua-
sisimilar if and only if there exists a finile measure p on G such that S, = S and
p has the following two properties:

(i) a.b.p.e. P2(p) C G.

(ii) 4|0G € w and log(l2%) € L (w).

REMARK. We would like to point out the differences between J. McCarthy’s
similarity result and Theorem 5. In [18] McCarthy shows that if R(K) is a hypo-
Dirichlet algebra, then R, ~ R, if and only if ,u|6K < w and log(g‘ﬁdiz—x) € L'(w)
(here y is a finite measure on X, w is the harmonic measure of int (X), and R,
is given by R,f = zf for each f € R%(K,w), the closure of R(K) in L?(w)).
McCarthy’s result does not cover this theorem even when G’ =G and R(G)is a
Dirichlet algebra (for example, let G be a crescent domain). The reason is that
the spaces P2(u) and R2(G, ) are different and thus the operators S, and R, are
different, in general, no matter whether R(G) is a Dirichlet algebra or not.

In summary, we generalize Clary’s result in two different directions.

Proof. Suppose S and S,, are quasisimilar. It is easy to verify that S is a
cyclic operator because S, is cyclic. By Bram and Singer’s theorem ([7], p.147),
there is a measure p such that S, 22 S and thus S, and S, are quasisimilar. Using
Lemma 4, we have

supp(p) € G, ab.pe P¥u)=G, p]BG’ € w, and log(%qg) € L} (w).

For the proof of sufficiency, assume that y is a measure with supp(u) C G
such that (i) and (ii) listed in Theorem 5 are satisfied. We first want to show that
the inclusion operator

I: P*(u) — P*(u|8G),
given by
I(a)=a forall a€ P(p),

is injective. In fact, if one notices that a.b.p.e. P2(y) = a.b.p.e.Pz(,ulaG') =G (by
Theorem 2), then it is routine to check that I must be injective.
Since § 1, = Su, there is an isometric isomorphism J : P2(]|0G) — P*(w)

such that
JS;:]BG = S,J.

Now let Y = JI. Then Y is injective and has dense range. Clearly, we also have

YS, =5.Y.



EQUIVALENCE OLASSES OF SUBNORMAL OPERATORS 71

To finish our proof we need to find another operator X from P?(w) to P2(y) that
is injective, has dense range, and has the property

XS, =SuX.

Let ¢ be a conformal map of D onto G. Without loss of generality, we may assume
that w = mop~!. Extend ¢ to 9D by defining it to be its boundary value function
on 3D. Since G is nicely connected, v = p o ¢ defines a measure on D. Since

#|0G «w and log(%(i‘g—G) € L'(w),

it follows that
du|3D

v|dD < m and Iog( ) € Li(m).

Let ¥ be the sweep of v. Since

llallzaey € llallgay for each a € A(D),

it follows that the map A, given by A(a) = a for each ¢ € A(D), extends to
be a bounded operator from P2?(%) to P%(v). Using Lemma 0.2, we see that
log(ad:“;) € L!(m). Thus, 85 & Sy, (Theorem 2). Choose an isometric isomorphism
R from P%(m) to P?(?) such that RS, = S;R and set C = AR. Then C is an
injective operator with dense range. Let u = C(1). Then A(D)u is dense in P2(v).
Let 1 be the inverse of ¢ and let v = uo 4. It is easy to verify that v € P?(u).
Now, if we can show that A(G)v is dense in P?(u), then the operator X from
P2(w) to P%(y), defined densely by

X(a) = va foreach a€ A(G),

is the desired operator, which is an injective bounded operator with dense range
and has the property that S, X = XS,,. Hence S, ~ S,.

To show that A(G)v is dense in P?(y), we pick a function f € P?(u). Then
fop € P(v), and hence it can be approximated by the functions in A(D)u in the
P?(v)-norm. This is equivalent to saying that f is approximable by functions
in {v(a o) : a € AD)} in the P?(u)-norm. Now the Lebesgue dominated
convergence theorem together with the fact that A(G) is pointwise bounded dense
in H(G) implies that A(G)v is dense in P?(g). 1§
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NoOTE. As in Theorem 1 and Theorem 2, condition (i) in Theorem 5 is
necessary. The following corollary shows that condition (i) may be removed if and
only if G is perfectly connected.

COROLLARY 2. In order that S, and S, be quasisimilar for every finile
measure p with p € w and log(g‘gg—q) € L} (w), #t is necessary and sufficient that
G s a perfectly connected domain.

Proof. The sufficiency follows from the previous theorem. For the proof of
necessity, let us assume that S, ~ S, for every finite positive measure u with
log(-q%%-g) € L'(w). We have, in particular, S, ~ S, for each g with [u] = [w]
and log(%ﬁ) € LY(w). So it follows by Theorem 2 that S, = S, for every finite
positive measure g with (] = [w] and log(%ﬁ) € L'(w) (since S, ~ S, implies that
ab.p.e. P?(u) C a.b.p.e. P2(w)). By Theorem 3, we conclude that G is perfectly
connected. 1

It is natural to ask whether Theorem 5 can be generalized to non-normal
domains. One may ask the following question.

QUESTION 4. Let U be a non-normal simply connected domain with har-
monic measure w. Assume y is a finite positive measure such that
(i) P?(p) contains no non-trivial characteristic functions.
(ii) a.b.p.e. P2(w) = a.b.p.e. P2(p).
(1ii) log(g‘ﬂ%ﬂ) € L'(wo), where po and wq are the restrictions of g and w

on the boundary of a.b.p.e. P?(w) respectively.
Are S, and S, quasisimilar?

The answer is negative.

ExaMPLE 3. Let V be an open crescent enclosed by two circles Cy and C
such that Cj is its outer boundary. Let Dy and D; be the open discs enclosed by
Co and C, respectively. Let J be a proper closed arc of £ which intersects Cp
and has its endpoints in Dy. Set

U=Dg\J
and let w be the harmonic measure of U. We now claim:
a.b.p.e. P2(w) = Dy.

For the proof of the claim, we first need to show that a.b.p.e. P?(w) is a nicely
connected domain. This follows from Thomson’s theorem and Theorem 94 of
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Miller-Olin-Thomson [19]. Second, since w is the harmonic measure of U, we have
that '
U Cabpe Piw).

Now, since Dg is the smallest nicely connected domain containing U and since
a.b.p.e. P2(w) must be contained in Dy, the conclusion follows.

On the other hand, P is dense in H2(V) ([2], Akeroyd). It follows by The-
orem 0.2 that a.b.p.e. P3(A) = V, where ) is the harmonic measure of V. If we
denote the restriction of A on Cp by Ay and denote arclength measure on Cy by
s, then Szegd’s theorem implies that log(4}*) is not in L'(s). Now a well-known
argument about harmonic measure shows that wg and Ao are boundedly equiv-
alent on 8Cy. So we conclude that log(%) is not in L'(s). Using Theorem §,
we see that S, and S, are not quasisimilar (note that s is boundedly equivalent
to the harmonic measure of Dy and so Theorem 5 can be applied here). But, we
obviously have

(i) P?(s) contains no non-trivial characteristic functions.

(ii) a.b.p.e. P2(s) = Do = a.b.p.e. P?(w).

(iii) log(§) € L' (wo). ®

Now we present the theorem that answers Question 1.

THEOREM 6. In order that Pg be dense in P*(w) for every outer function g
in P2(w), it is necessary and sufficient that G is a perfectly connecled domain.

Proof. Suppose that G is a perfectly connected domain. Let g be an outer
function in P%(w). The hypothesis implies that a.b.p.e. P%(|g|*w) C G (since,
G = b.p.e. P*(|g|*w)). It follows from Lemma 0.1 that A(G) C P?(lg|*w). Since
g is outer, we conclude that Pg is dense in P*(w).

Conversely, suppose that Pg is dense in P?(w) for every outer function g in
P%(w). Let u be any measure such that

[4] = [w] and log(-g-S) € L*'(w).

Using Lemma 1, we can find an outer function z such that g—ﬁ = |z2?|. If we define
an operator A from P%(u) to P?(w) via

A(p) =zp foreach p€e?P,

then A is an isometric isomorphism with the property that AS, = S, A. Therefore
S, and S, are unitarily equivalent. Now the conclusion follows from Theorem 3. 1
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