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ABSTRACT. We prove comparison criteria for the absence of absolutely con-
tinuous spectrum which have the following form: If the set {z; Va(z) # V (=)}
can be divided into bounded parts with suitable geometric conditions, then
Oac(—2A + V) C [inf dess (3 A + Vo), 00), or, under somewhat stronger con-
ditions, @ac{—3A + V) C Gess(—2 A 4 Vo). The first result proves absence of
absolute continuity for ~2 A+V below inf gess(—3 A+ Vo) and is 2 continuum
analog of a result for discrete Schrédinger operators by Simon and Spencer.
The second inclusion implies in addition that —3A +V has no absolutely
continuous spectrum in arbitrary gaps of dess(—3 A + Vo). One should think
of applying this to a given V' by constructing V; suitably in order to produce
prescribed gaps in oess(—3 A+ Vo). Different potentials Vo may be associated
with one and the same V in order to exclude absolute continuity in varying
intervals.
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1. INTRODUCTION

The study of random or quasiperiodic media in physics is the main motivation for
the rising interest in the spectral theory of Schrodinger operators with irregularly
varying potentials. The most striking phenomenon is the occurence of dense pure
point spectrum (localization) in many of these models. Absence of absolutely'
continuous spectrum (non-existence of extended states) is a weaker property which,
nevertheless, may be regarded as a preliminary step in this direction.
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While there is by now a good understanding of the underlying mathematics
in dimension d = 1, much less is known for d > 1, where most rigorous results
are established for discrete Schrédinger operators. Fairly complete up-to-date
information and references can be found in the monograph {9].

In the present article we wish to contribute to the study of the multidimen-
sional continuous case, proving “comparison criteria” for the absence of absolutely
continuous spectra. More precisely, we will show that if the “exceptional set”
{z € R% Vy(z) # V(z)} allows a suitable decomposition, respectively strict de-
composition (the precise definition of these notions is given in Section 4), then

1 . 1
a,c(—iA +V)C [mfa'm(—-iA + Vo), 00)
(Theorem 4.1), respectively
Gacl~3 5+ V) C Tars(—5 A+ V)

(Theorem 4.2).

The reader will immediately notice that these results can be viewed from two
different points: On the one hand they provide a stability result saying that below
or in the gaps of the essential spectrum of the unperturbed operator —%A + Vo the
perturbed one, —éA + V, has no absolutely continuous spectrum. On the other
hand, one can start with —2A + V and look for a “close enough” V with gaps in
ac,.(—éA+ Vo). For example, one might define Vp(z) = max{V(z), Ep} in order to
prove oac(—3A + V) C [Eo, 00), provided of course, the set {z € R%; V(z) < Eo}
admits an application of Theorem 4.1.

To illustrate Theorem 4.1 with a typical example and at the same time
describe the contents of the following sections let us now sketch the following
analog of a discrete result of Simon and Spencer [12].

CoroLLARY 1.1. (to Theorem 4.1) Assume that {Vu # V} C |J B, where
7
the By, are balls of radius R, such that dist(B,, |J Bm) =6, > 6 > 0. If

m¥En

Z(Rﬂ +6n)4 e <00 forall £>0,
n

then goc(—1A + V) C [inf 0ess(— 3 A + Vo), 00).

Our global strategy to prove such a result is taken from [12]: We want to
show that Pjac := Ej(H)Pac(H) = 0 for every compact J C (—00,inf oess(—1 A+
Vo)) N p(—1 A + Vo) and this will be achieved, if we can construct wave operators

. . D i
Wi(HP H, Prac) =5 Jim e e Py,
—to00
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for an operator H? which has no absolutely continuous spectrum below
inf cre,,(—lz-A + Vo). The idea is to add Dirichlet boundary conditions in order
to decouple the set {V # V'} as illustrated by Figure 1.

Figure 1. Decomposition by spheres.

Denote by S, a sphere of radius R, + 6,,/2 around the center of the ball
B,, and write H, for the operator which is obtained from H by adding Dirichlet
boundary conditions at the first n spheres Si,...,S,. H? = lim H,, is the operator
which has Dirichlet boundary conditions at S = | J Sa, and thus can be written as

n
a direct sum (U; is the “interior” of S;, Uy the rest where ¥y = V)

P34+ V)u, ® (=34 + Vodu,.

i>1

Since the first summand has pure point spectrum (the U;’s are bounded!), the
absolutely continuous spectrum of H? equals o',,c((—%A + Vo)u,), which clearly
is contained in [inf aess(-éA + Vo), 00). By the invariance principle, existence of
wave operators can be reduced to proving that (e~ —e=H D)P_x.,,‘c is a trace class
operator. To this end, we estimate the trace norms ||[{(e"*H»-1 — =t~y P) _ |sr,
and the summability condition in Corollary 1.1 above will ensure that these norms
are summable. In fact, in the condition of Corollary 1.1 two characteristic features
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of the geometry of the sequence (S;;) occur: One is the size of S,, more precisely
its surface area. In Definition 2.4 we will provide an analog suitable for more
general sets S under the name of “generalized area”, denoted by o(S). Section 2
will be devoted to showing that

(1) lie™ — ™ R4s)xl.e < Ce™?(S)

where Hge\s denotes —%A + V' with an additional Dirichlet boundary condition
at S and x is a characteristic function with dist (S,supp x) = 6.
Together with the estimate

(2) lxrEs (H)|| € C(J)e™")

found in Section 3 for sets F which satisfy dist (F,{Vp # V}) 2 6 we can then
deduce that

(™=t — e~ #*)Pacller < ll(e7 =1 — &7 H)(1 = x, ler
+ fle™Hr=t — e Fn) e X P Pryecll

4

has a summable majorant, setting Fy, := {z;dist(z, Sn) < 8./2}.

The second parameter, entering critically in (2), is the distance 6,,/2 from
the exceptional set to the set S,, where we add Dirichlet boundary conditions.

In view of applications, where one wants to exclude absolute continuity of
-%A + V for a given V, it is desirable to have high flexibility in choosing the
comparison potential V. Therefore we have made an attempt to prove our results
under very general assumptions on the geometry of the exceptional set {Vp # V}
and the decoupling surfaces S,. In Theorems 4.1 and 4.2 this is reflected by
the fact that assumptions can be formulated completely in terms of ¢(S,) and
dist (Sn, {Vo # V}), which allows quite general patterns for the decomposition of
R? into {Vp = V} and {Vp # V}. We also think that Theorem 4.2, which allows
the use of ¥y with gaps in cfm(—{;A + V5), is of considerable interest beyond the
range of applicability of Theorem 4.1.

Results of the above type as well as the use of trace-class methods in their
proofs go back to Simon and Spencer [12], who treated the one-dimensional case
as well as the discrete higher dimensional case. Further results for one dimension
are given in [6] (see also [16] and [17]). The first to treat the continuous higher
dimensional case were Combes and Iislop [2], who despite following the same
general ideas (those of Simon and Spencer) employ techniques which are very
different from ours.

Let us finally say a few more words about those techniques.
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In contrast to the discrete case or the one-dimensional situation, adding a
Dirichlet boundary condition is no longer a finite dimensional perturbation. Hence
the trace class estimates, worked out in Section 2, become more involved. We
use here a factorization technique (already employed in [14]) which is based on
pointwise estimates of the semigroup .calculated via the Feynman-Kac formula.
Together with quite elementary properties of hitting probabilities this implies (1).
We think that the operator theoretic part of this argument, Lemma 2.1, is worth
noting.

The estimate (2) is deduced by an argument which is very close to the one-
dimensional situation: (2) follows from a Combes-Thomas type decay property for
the resolvent, given in Lemma 3.1. Since this technique has many applications, the
estimates proved in Lemma 3.1 are of independent interest. Clearly, the geometry
in R? is more complex than in R and this is reflected in our use of regularized
distance functions.

Our methods compare to the methods of [2] as follows: In [2}, Section 3 no
use is made of semigroups; to some extend they are replaced by powers of the
resolvent. This allows the use of more classical trace class results than ours, but
will need more regularity of the potential in applications. Here, we will only need
that the potentials V and V; are in Ly jo with negative parts belonging to the Kato
class. Combes and Hislop in [2] are interested in proving oac(H) N (—o0, E£) = 0
in situations where the wells of the potentials, i.e., the regions with V{(z) < E, are
sufficiently scarce. In this case estimates of the type (2) are provided in the form of
tunneling estimates by results in [1], where the Agmon metric is used to measure
the size of the barriers {2 : V(z) > E}. The Agmon metric is a very precise tool in
this case and allows summability conditions in [2] which are more closely adapted
to the geometry of V than the summability conditions in our results. For example,
the effect of wide barriers and high barriers can be studied simultaneously. But the
Agmon metric can not be applied to energies in a spectral gap of the comparison
operator —1A + Vp, as needed to prove oac(~1A + V) C Gess{—2A + Vo). This is
our reason for using the Combes-Thomas method in Section 3, thereby replacing
the Agmon distance by Euclidean distance.

The trace class estimates of Section 2 below can be extended to prove absence
of absolute continuity for multidimensional Schrodinger operators with a series of
high potential barriers. This is done in (8], where a proof is given which does not
use tunneling estimates.
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2. TRACE CLASS ESTIMATES

We start with a general trace class criterion for operators in Lj-spaces, which
factorize over Ly in an appropriate way. B, B; and B with norms ||-||, || -|l¢r and
| - lus denote the bounded operators, trace class operators and Hilbert-Schmidt
operators, respectively.

LEMMA 2.1. Let T € B(Ly1, L), S € B(La, Ly) and € L, such that

51(2)I € p(=)
for a.e. 2 and all f € Ly with ||fll € 1. Then T'S € B, and

T Sller < Nl TN

Proof. Setting ¢~1(z) = 1/¢p(z) if p(z) # 0 and p~!(z) = 0 otherwise, we
have

(3) TS =Teipip™ls.

By assumption =15 € B(L,, Loo) and [lp~ 1S : Ly — Loo|| € 1. From /2 € L,
and the Dunford-Pettis theorem (e.g. [11], Theorem A.1.1) we get p!/2p~15 ¢
B, and ||/ % 15|lys < [loll/?. Moreover, T* € B(L2, Leo) and therefore
ITe* s = T llws < llell 1T}l = llelli/*IT)l. The result now follows
from (3). &

For the rest of this paper let V = V4 — V_, V& > 0 with V4 € L 10(R%)
and V_ € Kgy, the Kato class over R%. For an open subset  of R? let —1A2 be
the Dirichlet Laplacian on , i.e. the Friedrichs extension of -1Al|CE Q). V. is
infinitesimally form small with respect to —2AEL ([11], p.459 or [15], Proposition
2.3), therefore we can define the selfadjoint form sum Ho = —1A24V in Ly(Q).

In the following (2%, P%, (X;):»¢) denotes Brownian motion starting at z €
R? with expectation E*. For w € Q° the hitting time of S is 7s(w) = inf{t > 0 :
Xi(w) € S}.

PROPOSITION 2.2. There ezist constants C = C(V_), A= A(V_) and 5> 0
such that for every compact S C R? with Lebesgue measure zero, every open  C R4
and Ms := {z : dist (2, 5) > 6} we have

[I(e™2H0 — e~ ons )y p, lor

< certm4{ / (P¥[rs <))} dz + =% /(P"[rs <)} da
.A!g ' R

+ /(P’[‘rs <t X; € Ms])} da}.
R4
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REMARK. Tor the special case § = 0 this result was given in [14].

Proof. Writing G := Q\ S and D() := e~ *He — ¢~1Ho we have

XM, D(2t) = xpr,6” 2 D(t) 4 xps, D(t)e ™ He
= e My, D(t) + (xmse 70 — e Moy y) D(t) + xar, D(2)e e,

(4)
In order to estimate || D(2¢)xal|er = |[x a1, P(28)[|er we will first show that

(5) e 8 xag, D(t)ler € Cett=3 / (Plrs < 1)) de.
Ms

By the Feynman-Kac formula ({11], resp. [3], where it can be found in the gener-
ality needed here)

1
(e-tﬂn_f)(-‘b‘) = E* [exp (— / VeolX, ds) 1{Te4\n>‘}f ° Xt]

0

and

t
(e f)(a) = E° [e""(* / Vo X ds)Lrgu o Lirssu S © X’} '
0

Therefore, Cauchy-Schwarz for the Wiener measure gives

(D) f)(=)| =

t
E® [exp (-— f VolX, ds) 1{?’..1\n>i}1{fs€t}f ° X;]
' 0

1
< (E”[exl)(—2/VoX, ds)lflzoXt
0

By V 2 —V_ and Feynman-Kac we get

)(mmsm?

t
E*® [exp (-—2/ VolX, ds) If]% o X,] < (e'(§A+2V‘)|f|2) ()
0
< [€GAY) s Ly Lo I PN,
but |[e(38+2V-) . L) — Loo|| € Ce?'t=% ([11), p.463), so we finally arrive at

(6) [(D(2)f)(z)] < Cettt=% (P?[rs < 1])3
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for f with ||f]l2 € 1. The estimate (5) is now a consequence of Lemma 2.1 and
“e_”{“ 1Ly — Lg“ < Ce‘“t‘f.

QOur next estimate is

"(XM;G""" = e"”“XM,)D(i)ll .
) ,
) < Cert=t{e " / (P*[rs < 1)) do+ j (Plrs < f])3 dz}.
Mg
Fi
To prove it, we write

—tHq eitHn

XM;s€ - XMe = xnpe” HO (1 - ng)

e—f”n

+ (xM,e“”"xug - xm)

=T + Ts.
As in the proof of (5) we get

ITaD@)le < G472 / (Pelrs < 1)) da.
Mg

Estimate (6) and Lemma 2.1 yield
T2 D(&)llex < Cet'e=% /(P"[Ts < U)3 dellxare™ (1~ xag) - L = Lol

Since dist (supp xm,, supp (1 — xm,)) = 8/2 we know ([11], Proposition B.4.2,
2 .
p. 469)

(5y?

lxmee™ o(1 — xar, ) s Ly — Lof| S Ct~%e 51,
2

This completes the proof of (7).
We finally prove

Xas D(D)e™" 7 or = [|e™*5° D(t)x, e

8
® < Cettt~4 /(P’[Ts <t, X, € My))? dz.

For f with ||f]|2 £ 1 we get

(D) x4 £) ()] =

1
E* [exp (—/ VolX, dS) Lirsgey(xar f) o X:]
0

1
]

t
< (P[rs <t, X1 € .M;])J?' (E” [exp (—2/ VolX, ds)ﬂﬂ2 o Xt])
0

< Ce*t=4(P[rs < t, Xy € Ms))3.
Lemma 2.1 and [|le™*7@ : Ly — Ls|| < CeA%~%4% imply (8). The proof of Propo-
sition 2.2 is completed by inserting (5), (7) and (8) into (4). W
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Our applications of Proposition 2.2 will be based on the following elementary
estimate for P7[rs <t]:

LEMMA 2.3.  P?[rs < {] < 2d e~ dist (2.5)°,

Proof. Let @ be the hypercube inscribed into the ball of radius dist (z, S)
with center z, i.e. Q@ = (z1 —@a,21 +a) X --- X (24— a, 24 +a), a = dist (z, S)V/d.
Then

(9) P?lrs < 1] < P?lraq < f] = 1 — P7[rag > 1.

Denoting by P°® the Wiener measure of one-dimensional Brownian motion starting
in 0, we have
Pz[TaQ > t] = (PU[T{_a‘a} > t])d
=(1- PO[T{—a,a} < t])d'

A use of the reflexion principle yields

Po[‘r{_a,a} <t} 2P0[‘r{a} <] = 4P0[X¢ > a]

1\ 7 1\* 7
2 =2 2
=4 (——2ﬁ) /e"ﬂT <4 (—27“) /e‘ Ste” % dz
a 0

T
= 2e”ar,

Inserting into (9) gives

al

Pflrs <1] < 1—(1-2e"5)¢ < 2de~%. 8
The following definition will provide us with high flexibility in the choice of
S when applying Proposition 2.2.
DEFINITION 2.4. A compact subset S of R? has generalized area o(S) > 0 if
there exists o € [0, d] such that

meas{z :r € dist(z,5) <r+ 1} < o(S)(r* + 1)

for every r 2 0.

In applications one will of course aim to work with (he minimal value for
o(S). Important are the choices @ = d and &« = d — 1, in which cases ¢(S) will
correspond to a volume and a surface measure, respectively:
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ExaMPLES. (i) For an arbitrary compact § we have
meas {z : r < dist (z, S) < r + 1} € cg((diam S) + r + 1)¢
£ Ed((diam.S')d + 1)(:"'j +1),
i.e. the “volume” ¢(S) = 4((diam S)4 + 1).
(i1) For a sphere § = {|z| = R} we get
meas {2 : r £ dist (::,S)' <r+1}€cg(R+r+1)41
&R A1) 41,

ie. 0(5) = ¢a(R?* + 1), a surface measure for large R. More general surfaces in
R? (the boundary of a cube, etc.) can be treated similarly.

PROPOSITION 2.5. Given t > ( there ezisi consianis C = C(V_,t) and
n=7n(t) > 0 such that

" (e"z‘”“ — e~ HHms) Iltr <C U(S)e"’“’

for every 6 2 0, every compact S C R? with Lebesgue measure 0 and every open
Q C R4,

Proof. Lemma 2.3 and the definition of o(S) yield

/(P”[‘rs < t])é dz = i / (P*[rs < t])% dz
Mg

n=t n+'§ Kdist (z,S)$n+§+l

o) [+4
<VEdo($)S) ((n + -g-) + 1) e~ +4)
n=0

<€ \/Zﬁo‘(.S')e""-'iT(‘E‘)2 Zga (na + (%) " 1) e‘fdl

< Ci(1 + 6% (S)e™ ¥ < Cra(S)e ™%,

n=0

In particular, we have for 6§ = 0
[ (P=[rs <))} dz < Cyo(S).
R¢
Furthermore, we have
(P*[rs <1, X, € Mi))* < (P*[rs < ) *(P*[X: € My))¥
< min {(P[rs <O}, (PIX: € My))? ),
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l.e.

/ (P?[rs < £, X: € My])} da € / (P*lrs < )} do
R4 Mg

+ / (P*[X, € Ms]) dz .
dist (2,5)< 42

The first term on the r.h.s. is estimated as above by C'aa'(S)e"’"’z. For = with
r = dist (¢, Ms) we have

:—IP 2
P7[X: € M;] = (27:'15)“21 /e" it dy € (27rt)‘§ f e_hﬂ_ dy
My jylzr

(=]
!Iir.a
= (2711)"‘2l /(u +r)ilemTa dy
0

< Cae™™ (14741 € Cpe™ ",

From this we finally get, setting [6/2] := min(Z N [§/2, c0))

15/
[ Exempia=3 [ Exempia
dist (z,5)<4 n=0 £ _n_1gdist (z,5)€E—n

[(5/2] 6\ ()2
- -ne(n+3
< Cea(S)ng% ((2) + 1) e~
< C70(S)e""’6g.

Collecting all our estimates in Proposition 2.2 we have shown Proposition 2.5. 1

3. LOCALIZATION IN ENERGY

The aim of this section is the estimate in Proposition 3.2 below. For our application
it will be crucial that we can control the constants. From a technical point of view,
this will require the construction of “cut-off functions” with universal Lounds on
their derivatives. Tor this purpose we recall the regularized distance (see [13],
p.170 £.):

There exist constants ¢; > 0, ¢ > 0 and B, such that every closed set
F C R? admits a C®-function O : R4\ F — (0, co) with the following properties:

c1dist (z, F) € Op(x) < codist (2, F) for z € R4\ F,
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[0°©F(2)| < Ba(dist (z, F))*~1*!  for z e R\ F.

The point is that ¢;, ¢z and the B, are independent of F! We shall use O in the
proof of the following lemma, which is based on an argument of Combes-Thomas
type (see [5], [11]) and is analogous to the proof of Lemma 1 of [17] and, in the
discrete case, Lemma 4.2 of [12). A special case can also be found in {4].

Here we introduce Ho := —3A+Vp with Vo4 € Ly40c(R%) and Vo € Ka,
which will later play the role of a comparison operator. We write J CC U to
indicate that J is a compact subset of U,

LEMMA 3.1. For J CC p(Hqo) there exzist constants C = C(J) and 9 =
n(J) > 0 such that for all x,X € Leo with [[x[loo < 1, [[X[| £ 1 and dist (supp x,
suppX)2éandallE€ J,i=1,...,d:

I%(Ho - E)~ x|l < Ce™,

[1%0:(Ho — E)™"x|| < Ce™"".

Proof. We only give the details for the first estimate, since the proof in [17)
is sufficiently analogous.

Fix a C®°-function u : R — R such that u(z) =0 for 2 € 1/2 and u(z) = 2
for z > 1. If Op is chosen to F := supp yx as above, p := pp = uo (-&@p) extends
by p(z) = 0 for z € F to a C®-function on R? with

“va”oo’ ”APF“oc ‘<~. C':

where the bounds only depend on ¢;, ¢3, By and not on F.
We calculate

&P(Ho - E)e = (I - ée"”(Ae'"”)(Ho —E)!

— e(Ve™™?) - V(Ho ~ E)™*)(Ho - F)

as operators on D(Hy). J is a compact subset of p(Hy) so that (Ho — E)~! and
di(Ho—E)~! are bounded uniformly in E € J (recall that D(Ho) C W2, the first
order Sobolev space in Ly, since Vp,— € Kj). Since ||e" Ae™ ||, || Ve~ || —
0 for n — 0 we find C = C(J) and y = 5(J) > 0 such that

lle"(Ho — B)~'e™|| < C

(stability of bounded invertibility).
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By the uniform boundedness of (Ho — E)~! and &;(Hg — E)~' in E € J we
only have to prove the assertion for § > 1. Using the fact that ¢18 < cidist (z, F) <
p(z) for z € supp X and changing 7 if necessary, we arrive at

IX(Ho — B)™ x|l < [I%e™|| [le" (Ho = E)~"e"|| [[e"x]| < ™™ - C. ®

We are now in position to prove the main result of this section. E;(H)
denotes the spectral projection for H onto a subset J of R.

PropPoSITION 3.2. For all J CC p(Hp) and o > 0 there ezist C = C(J, &)
and 1= 7(J,8) > 0 such that for all F C R® with dist (F,{Vo # V}) =6 > 6p:
lxr E1(H)|| € Ce™™.

Proof. (cf.[17], Proof of Lemma 2) It clearly suffices to prove the claim for
bounded F only. Moreover, we may replace H by Hy, where

Hy = -%m‘-v in Ly(|z| < L)

with Dirichlet boundary conditions, provided the constants do not depend on L
(see loc. cit. for the respective argument; note that Hy — H in strong resolvent
sense for L — 00).

For every bounded F set dr(z) = v(gﬁ:@p(m)), where OF is as above and
v a smooth function with v(z) = 1 for z < 1 and v(z) = 0 for z > 2. We have
Jp(z) = 0 for dist (z, F) > 26, 9r(2) = 1 for dist (z, F) < £=6, where ||VIr||w
and {|{AYp||e are uniformly bounded for F with § > 5.

Fix J and let L be large enough in order to ensure supp ¥r C {|z] < L}. For
every normalized eigenfunction ¢ of Hy with eigenvalue E € J we have by the
first representation theorem for quadratic forms (cf. [7]) that drp € D(H,) and

1
(Ho = E)ory = (Adr)p — V- (Vir)p + dp(HL — E)p
— ——
=9p(-3A+Vo—E)p=0
1
= 5(Adr)p =V - (Vir)p,

where we have used that {Vp # V'} lies outside supp #p. llence

(e, xrg)| = [{(Ho — E)~Y(Ho — EYrp, xra)|
_ 1 _
< (e, VIr - V(Ho — E) *xrg)| + |(<P,§(A=9F)(Ho — EY'xra)l

C(7)e™" )38 g

N
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by Lemma 3.1, since dist (supp VI, supp xr) 2 -3‘;;6 and the derivatives of dp
are bounded. If ||f|| < 1 then E;(Hp)f = > aig; for suitable normalized eigen-

functions @; of Hy and 3 Jai|> € 1. Therefore we have

IxrEs(HL? = sup  [{ES(HL)f, xrg)I*
<L ligii<t

= sup > el liwi, xra)?
e, S ladi<t 5

< O(J)%e 51000

which yields the assertion. @

4. THE RESULTS

We now come to our main results which treat the following situation: Assume
Ho= —1A+V; has a gap I in its essential spectrum. We want to find “geometric”
conditions on the set {z : Vo(z) # V(z)} such that ga(H) NI = @ (without
necessarily implying oess(H) NI = B!). Roughly speaking, we will require that
the exceptional set {Vp # V} can be surrounded by “surfaces” S, in a way which
allows us to decouple the compenents of this set by Dirichlet boundary conditions.
Some different possibilities how this may look like are shown in Figures 1, 2 and
3; the exceptional set is dotted.

It appears appropriate to use the following notion: We say that (S,) is a
decomposition of {Vy # V'}, if each S, is a compact set of Lebesgue measure zero

and R? \ |J §. is a disjoint union |J U; of open sets such that all U; which meet

n L] v
{Vo # V} have finite measure. We speak of a otal decomposition if every U; has
finite measure. In the formulation of our results we will also use the generalized
area introduced in Section 2.

THEOREM 4.1. Assume that {Vo # V} admils a decomposition (S,,) with
6y = dist (S, {Vo # V}) 2 & > 0 and generalized area o, = 0(S,). If

Zane"&" < oo foreverye >0,
n

then opc(H) N (—00,inf oess(Ho)) = 0.
If {Vo # V} C |UBn, where the By are balls of radius R, and if §, :=
w

dist (B,,, U Bm) = 6p > 0, then obviously we find a decomposition by spheres

m#n
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of radius R, + 12*6,,. These spheres have generalized area C(R, + én)d'l, l.e.
we get Corollary 1.1 as an immediate consequence. Of course, this result is easily
reformulated with the balls B, replaced by cubes or more general bounded subsets
of R4,

A typical situation one should think of is V3 > 0. Since V may satisfy the
above condition but nevertheless be —1 on balls of arbitrary radius we find that
in general gac(H) N (—00,0) = 0 but oees(H) N({—00,0) # 0.

The next result can even be applied to gaps in the essential spectrum, e.g. to
periodic Vy. It seems to us that this may be of particular interest in applications,
because in principle it can be used to prove absence of absolute continuity at high

energies even in situations where V is bounded.

THEOREM 4.2. Assume that {Vo # V} admits a total decomposition (S,)
with 8, := dist (Sn, {Vo # V}) > b0 > 0 and generalized area on. If 3 ope ™% <
n
oo for every e > 0, then oac(H) C 0eas(Ho).

There are two general types of total decompositions, which we consider to

be of interest in applications: honeycombs and conceniric shells.

Figure 2. A honeycomb decomposition.
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Figure 3. Concentric shells.

Starting from a decomposition as in Figure 1 one gets a honeycomb decom-
position by “blowing up” the S,. This will typically improve the chances for
3 ane~¢%* to be finite, because the growth of ¢, will be overcompensated by the

gnrowth of 6,. Therefore the need of a total decomposition is not a severe restriction
and it is this fact, which actually makes us consider Theorem 4.2 as our “better”
result.

An advantage of decomposing by concentric shells (5,) is that every subse-
quence (Sy,) again yields a total decomposition. In such a situation we have the
following corollary of the proof of Theorem 4.2.

COROLLARY 4.3. Assume that every subsequence (Sn, ) of (Sn) yields a total
decomposition of {Vo # V} and

liminf o,e™*%* =0 for every € > 0.

n—0o0

Then oac(H) C 0ess(Ho).

Before we come to the proof of these results let us illustrate how they can
be used to prove absence of absolute continuity at all energies for a potential V
which can be compared with a sequence of potentials Vo(k). Assume that these
potentials are bounded below by the same C, and that I nam(—%A+ Vo(k)) =9,



SCHRODINGER OPERATORS WITH POTENTIAL BARRIERS 107

k € N, where the I} are intervals such that {C,00) C |JI:. If we divide N into
£
a disjoint union of countably many infinite sets A, by a diagonal procedure, for
instance, and set V(z) = V{)(2) for n2 < Jz|? < (n + 1)%, n € Ay, then we end
up with oac(—1A+ V) =0.
In the rest of this section, we give the
Proof of Theorems 4.1, 4.2 and Corollary 4.3. Fix J CC p(Hy). Let Hy, :=
n
—31A +V on R*\ |J S, ie. the operator with Dirichlet boundary conditions at
k=1
the first n of the Si. Further let Fy, := {z;dist (z, Sn) € 6,/2} and xn := xF,.
n—1
Using Proposition 2.5 with © = R4\ |J S and S = S,, we get
k=1

| (e=H=1 —e=Ha) (1 = xp)llee < (_Z'ui',,e_"'(ﬁ"“)2I

where C and # > 0 only depend on V_. An appeal to Proposition 3.2 and Propo-
sition 2.5 (6 = 0) gives

| (==t —e™72) xn Eg (H) [l < lle™2 — e {|er (|xn B (H)|
5;(ja"e‘ﬂ%?,
with C and 5 > 0 depending on V_, & and J.

Putting this together, we conclude

o (=]
(10) Z | (e Hrr —e #Y Ep(H)|lee < C Za’ne‘"‘i" < o0.
n=1 n=1

(9]
With the Dirichlet operator H? := —éA +V on R\ |J S, we have H, — HP

n=1
in strong resolvent sense (monotone form convergence, see [10]). In particular,
e~Hn 2, e=H" Therefore (10) implies

(e’H - e'"D) E;(H) e B;.

Pearson’s theorem and the invariance principle guarantee the existence of the wave
operators

Wi(H?, H,Es(H)Poc(H)) = s- lim &*” ® el £ (H) Poc(H),

which are partial isometries from the range of E;(H)P,.(H) to a subspace of
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With R4\ (JS, = U; we have H? = @ Hy, in @ L2(U;). The same is
n s [ [
true for HY = ~31A+V; on R4\ |JS,. Since V # V; only on those U; which have

n
finite measure and the corresponding Hy, have purely discrete spectrum,
Oac(HP) = 0uc(HP) C [inf duas(Ho), 00),

where the latter is a consequence of the minimax principle and the (form sense)
inequality HPY > Hy. If (S,) is a total decomposition, then we even have

6,,_-(HD) =0.

Therefore the conditions of Theorem 4.2 imply that E;(H?)Py(H”) and thus
Ej(H)Py(H) are trivial for every J CC p(Ho). We get oac(H) C o(Hp), but
isolated points in o(Hy) can not contribute to oac(H), which proves Theorem 4.2.
Under the conditions of Theorem 4.1 we get E;(H)Pa.(H) = 0 only for
J CC p(Ho) N(—0c0,inf cess(Ho)), leading to gac(H) N (—0co,inf ess(Ho)) = @, ie.
the assertion of Theorem 4.1.
With (S,) as in Corollary 4.3 we have for a given J CC p(Ho) that

[| (-1 — &™) Es(H)|| < Cone™"

for all n and some 1 > 0. Applying the above proof of Theorem 4.2 to a subse-
quence (S, ) with 3" 0,779 < 0o, we again arrive at Ej(H)Poc(H) = 0.
E

This completes the proof of our results. 8
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