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ABSTRACT. We introduce angles between two subfactors of a type I, factor
to study their relative position. We calculate angles for certain pairs. We
also determine when fixed point algebras form a commuting square.
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1. INTRODUCTION

We introduce the notion of angles (and opposite angles) between two subfactors by
using the relevant Jones projections, and relative positions between two subfactors
are studied. The existence of gaps in angles is shown for a certain pair of subfactops.
We also characterize pairs of subfactors for which (sets of) angles and opposite
angles reduce to'{ g—}

After recalling standard facts on angle operators in Section 2, we define (the
set of ) angles between two subalgebras as the spectrum of the angle operator of the
- corresponding Jones projections in Section 3. A quadrilateral (L, M, N, K) of type
I, factors, where L is generated by M, N and K = M N N, forms a commuting
square if and only if Ang (M,N) = {g'} Therefore, our angle measures how far
the quadruplet is from being the commuting square. We establish basic properties
to make angles computable. We show that Ang (M, N) is a finite set when the
Jones index [L : K] is finite. We also define opposite angles by looking at the
basic extensions. In Section 4, we show a kind of duality of angles between a
quadrilateral and its second basic extensions. Let P be a type 1I; factor with an
outer action of a finite group G with two subgroups A, B. Angles for the quadruplet
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(P, PA, PP PS) are analyzed in Section 5. In Section 6, we investigate angles for
a quadrilateral (L, M, N, K) of type II factors satisfying [L : M] = [L: N] = 2,
[L:K]<o0,and LN K' = C. We show that angles in this case have some gaps.
(such a quadrilateral is described by the dihedral éroup.) In Section 7, we deal
with a quadrilateral (L, M, N, K) with Angr(M,N) = {g—} We obtain several
characterizations for opposite angles to be trivial (= {%}). We also find a pair of
sequences of projections satisfying the Jones relations.

We would like to thank H. Araki, H. Kosaki, and V. Jones for several dis-
cussions and comments.

2. ANGLES BETWEEN TWO SUBSPACES

Relative positions of two subspaces M and A in a Hilbert space H have been
investigated by several authors with interesting applications ([1], 2], [5], [7], [8].
[9], [12], [16], [18], [33]). Refer to the introduction of [29].

In general, H is the direct sum of four subspaces M NN, MNNL, MENN,
MLNANL, and the rest. The subspaces M and A (or the corresponding projections
p and q) are in generic position (“position p” in [9]) if all of the above four subspaces
are trivial. In this case one can find a Hilbert space K and positive contractions
s and ¢ on K such that s? + ¢ = 1, Ker (s) = Ker (¢) = 0, and p, ¢ are unitarily

equivalent to
1 0 ) ( e es )
0 0/’ cs s°

respectively (for instance see [12]). In general, the following projections po and go
are in generic position: pp=p—pAg-pAgt,qo=g¢—pPAg—p* Ag. Hence, p
and ¢ look like

10
P=I(p/\q)7i®(0 0)@1(10'\9*)“@0@0'

2 ¢s

¢
3= lpagn ® ( ) S0 Iipragn 0.

cs 52

Notice that ¢ can be also defined as the restriction of

0
vVrgp—pAg=08 (; 0

to ppH = MO {(MNN)® (MnNL)} (and s = V1 —c?). By the functional

calculus, there exists a unique positive operator 8 (0 € © < %) on po™ such that

)@0@06‘90

c=cos® and s=sno.

The spectrum Sp © of @ is contained in [0, -g—] , but 0 and I are not eigenvalues.
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DEeFINITION 2.1. The above operator © is called the angle operator between
p and ¢, and we define the set of angles Ang(p, ¢) between p and ¢ by

Ang (p, q) = {Spe, ifpg#ap

’ {2}, ifpg=gp

REMARK. H. Araki ([1], [2]) studied a slightly different angle operator.
Connes ([5]) used the following operators defined by

s(p)=lp—ql, clp,)=IpVe—p—d=s(pVeg-p,9).

C. Davis ([8]) also introduced the closeness operator pgp + p*¢*p* and the sepa-
ration operator pgtp + ptgpl to investigate two subspaces.

We can describe our angles in terms of these operators (cf. Corollary 3.1):

LEMMA 2.1. Let p and q be projections with pq # qp, then we have the
following: '
(i) Ang(p,¢)\ {0, 5} = Sp {arcsins(p, )} \ {0, 5},
(i) Ang (p,9)\ {0, £} = Sp {arccos c(p, )} \ {0, 5},
(i) Ang (p,9)\ {¥} = Sp {arccos vip=p A0} \ {2},
(iv) Ang(p,q)\ { %} = Sp {arccos(c(p,9) ~p A} \ {5}

Proof. These equalities easily follow from the explicit expressions of s(p, q),
¢(p, q), etc. For instance,

) 0
s(pg) =08 ((S)

The following lemmas are easy to check and their proofs are left to the

)@I@I@\O. ]

S

readers.

LEMMA 2.2. Let M; and N; be subspaces of o Hilberi space H; (i = 1,2).
Then the set of angles between M = M, @ My and N = N1 © N> is as follows:
(i) If Ang (M1, M) = { &} = Ang (M3, N2), then

Ang(M, ) = {7},
(i) If Ang (M, N1) = {Z} # Ang (M2, N3), then
Ang (M, N) = Ang(M2, N3),
(iii) If Ang (M1, M) # {Z} = Ang (M3, N2), then

Ang (M, N) = Ang (M, M),
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(iv) If Ang (M1, M) # {g—} # Ang(Ma, Ny), then

Ang (M, N) = Ang(My, N1) U Ang (M3, N?).

LEMMA 2.3. Let M be a Hilberl space. Consider two distinct one-dimen-
sional subspaces M and N spanned by non-zero elemenis e and f respectively.
Then the set of angles between M and N satisfies

Ang(M,N) = {a %8 Tlell - Ilfll} '

At the end of this section, we give a formula of angles for a tensor product.
PROPOSITION 2.1. Let H; be a Hilbert space and M;, N; be non-trivial sub-
spaces of H; with the orthogonal projeciion p;,q; respectively (i = 1,2). Sup-
pose that neither My N\ My nor Ny N Ay 15 0. Then the set of angles between
M=M; @M3 and N = N, ® N is as follows:
(i) If Ang (M1, M) = {£} = Ang (M3, N), then
T
Ang(M,N) = {5} ,
(ll) IfAng (MI’NI) = {g-} '-lé Ang(M2INZ)t then
Ang (M, N) = Ang(M2, N?),
(iii) If Ang (M1, M) # {E} = Ang (M2, N2), then
Ang (M, N) = Ang(M,, M),
(iv) If Ang (M1, My) # {%} # Ang(M2, N3), then

Ang (M, N) = arccos{cos(Ang (Mj, 1)) - cos(Ang (M3, N2))}
UAng(Ml,Nl) UAng(Mz,Nz).

Proof. The orthogonal projections p; and g; are represented by
pi=lepele060, ¢=10¢600160

on Hi = (M NAG) @ Li ® (Mi NN & (MENN) & (M NANH) (1=1,2). We
consider the “generic” subspace £ of the tensor product space H; ® Ha:
L=MNM)QL, & (M, NN L2 ® (Mi M) L,
O (MI NN L2 L1 @ LB L1 ® (MaNN) _
® L1 ® (M2NNF)D L1 @ (Mg NN B Ly @ (Mg NNG).
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The restrictions of p; ® p; and ¢; ® g2 to the subspace £ have the following forms:
P1®P2lc = Lim,nn) © P3 @ Lia,aws) ® P @91 ® Py
@ P} ® Lim,nns) D PS ® L manng))
g1 ® gale = 1(myams) ® 45 ® Linn,) @ 3 © 41 © 43
® 4} ® Lmanas) ® 47 ® Lmznny):
The assumption of case (iv) implies that £, # 0 # 2. Hence, we get that

Ang (p1 ® p2,q1 ® q2) = Ang(p3, ¢3) U Ang (p, ¢) U Ang (5} ® p3, 47 ©® ¢9)-

The projections p? ® p3 and ¢) ® ¢3 are -

‘T 0 ® 1 ¢
0 0 0 0
and N o o
( cos? @ cos Osin © ) ( c0s? O cos Osin @ )

cos Osin ® sin?© cosOsin © sin? ©

where © (resp. ) is the angle operator between p; and g; (resp. p2 and g2). Since

\/ (# ® 1349 ® 49)(P} ® Pl (poep9)(cr0c2) = €05 O @ cos 6,

we get Sp /(80 ® p9)(a8 ® 19)(PY @ Plsopsyiciacs)) = Sp(c0s©) - Sp (cos ®).
Therefore, we get the conclusion of (iv). Other statements can be proved more
easily. B

3. ANGLES BETWEEN TWO SUBFACTORS

Let L be a finite von Neumann algebra (with a normalized trace tr ) with von Neu-
mann-subalgebras M, N. The trace tr determines the normal faithful conditional
expectations Eyy = Efy : L — M and Ey = E§ : L — N ([34]). They extend
to the orthogonal projections epr = ek, and ey = e% on the GNS representa-
tion space L2(L,tr). Let n: L < L*(L,tr) be the canonical injection. The von
Neumann algebra (L, ear) generated by L and ey is called the basic consiruction

([14]).
DEFINITION 3.1. The set of angles Ang (M, N) between two subalgebras
M and N of L is defined by ‘
Ang (M, N) = Ang(em,en).

For many examples angles will be calculated, and sometimes a set of angles
reduces to a singleton. (See Corollary 3.1.(ii), Lemma 5.3, etc.)
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REMARK. Minimal and maximal angles seem to be important. In fact, we
have cos(min{Ang r (M, N)}) =sup{|{{&,n); e Me(MnN))),ne(No(Mn
N1} ([5), pp- 391), and cos Ang (M, N) can be considered as the canonical
partial correlation coefficients in statistics (cf. [29]).

ReMARK. Several authors study the following inclusions:

M c L
U U
K Cc N

([11], [21], [22], [24], [25], [26], [37]). They form a commuting square if and only if
Angr(M,N) = {g—} and K=MnNN,

REMARK. Although Ang (M, N) depends on the choice of a trace on L, we
do not worry about this because we will mainly consider the factor case.

It is straightforward to check:

LEMMA 3.1. Let L be a finite von Neumann elgebra with a trace tr and
M, N be von Neumann subalgebras of L. Then we have the following: .
(i) Ang (M, N) = Ang (N, M), } )
(i) For a finite von Neumann algebra L{D L) with a irace tr such that
tr |L = tr,
Ang ; (M, N) = Ang 1 (M, N).
In fact, (ii) follows from ef, = e, 0, and ek = ek ® 0 on L%(L,tr) =
L*(L,tr) @ L*(L,tr)*.
This lemma justifies the notation Ang(M, N). By Proposition 2.1 we have
ProprosITION 3.1. Let L; be a finite von Neumann algebra with a trace tr;
and M;, N; be von Neumann subalgebras (i = 1,2). The sel of angles between
M=M @M, and N = Ny @ Ny is as follows:,
(i) If Ang (M1, N1) = { £} = Ang(M3, N3), then

Ang(M,N)={Z},
(ii) If Ang (M1, Ny) = {2} # Ang (M, Ny), then
Ang (M, N) = Ang (M2, No),
(iii) If Ang (M, N1) # {Z} = Ang (M3, N3), then

Ang(M, N) = ADg(Ml,Nl),



ANGLES BETWEEN TWO SUBFACTORS 215
(iv) If Ang (M, Nv) # {5} # Ang (M3, N3), then

Ang (M, N) = arccos{cos(Ang (M1, N1)) - cos(Ang (M2, N2))}
U Ang (M, N1) U Ang (M3, N2).

The well-known description of the Jones projection for an inclusion of crossed
product algebras shows:

LEMMA 3.2. Let L be a finite von Neumann algebra with a trace tr, and
M, N be von Neumann subalgebras of L. Suppose that a trace-preserving ouler
aclion o of a countable discrete group G leaves M and N invariani. Then we
have

Ang 1y c(MXxoG,Nx,G) = Ang (M, N),

where angles in the lefi-side are relative to the trace on LxoG canonically deter-
mined by tr. '

In this paper we will study the case that L, M, and N are factors of type II;.
It is easy to image that angles vary continuously and take any values in ]0, %] . (See
Example 5.6). But if we make some restrictions, a different stage seems to appear.
When we restrict our attention to the fundamental case, that is, L = M v N and
M O N are factors, and moreover if we assume that [L : M] = [L : N] = 2, and
the relative commutant (M NN) NL = C, we will show that the possible values
of angles have gaps. (In detail, see Section 6). This is analogous to the fact that
Jones index have gaps.

DEFINITION 3.2. Let L, M, N, and K be von Neumann algebras. (L, M,
N;K) is called quadrilateral if L is generated by M,N and K = M N N. Two
quadrilaterals (L, M;, N1, K1) and (La, Ms, Na, K3) are isomorphic if there exists
a x-isomorphism ¢ from L; onto Ly such that ¢(M;) = Mz, p(N1) = Na, and
50(1{1 = 1{2.

LemMa 3.3. If (L, M, N, K) is a quadrilateral of finite von Neumann alge-
bras (with a trace tr ), then ((L,ex),(L,em), (L,en), L) is also a quadrilaleral.

Proof. 1t is well-known that (L,ex) = JpK'Jr, (L,epr) = JpM'JL, and
(L,en) = JLN'Jg on L%(L,tr) ([14]). Since K = M N N and L is generated by
M and N, I’ = M'N N’ and K’ is generated by M’ and N’ thanks to the double
commutant theorem. &

From now on, we will concentrate on the case that involved algebras are
factors of type II;. If [L : K] is finite, then we can define opposite angles between
M and N as “vertical angles” of angles between (L,en) and (L,en).
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DEFINITION 3.3. Let (L, M, N, K) be a quadrilateral of factors of type I];
satisfying [L : K] < oo. The sel of opposite angles Op-ang (M, N) is defined as
Ang (L,EK)((L’ CM)! (L’ CN))'

DEFINITION 3.4. Let

M C L
U U
K ¢ N

be a quadruple of factors of type II; satisfying [L : K] < oo. We call it a co-
-commuting square if their commutants (on L?(L))

M C K'
U )
LI‘ C Nl

form a commuting square.

REMARK. The above definitions does not depend on representation spaces.
(See Proposition 4.1). For a quadruple

M c L
U U,
K C¢ N

the co-commuting condition is equivalent to that Op-angp(M,N) = {g—} and
L=MVN.

PROPOSITION 3.2. Let (L, M, N, K) be a quadrilateral of factors of type I1;.
If [L : K] is finite, then Ang (M, N) is a finile sel. (Actually #Ang (M,N) <
[L:K)%)

Proof. Since epkn(z) = emn(kz) = p(Em(kz)) = n(kEm(z)) = kemn(z)
(ke K,z € L), em € K'N{L,ex). Similarly ey € K’ N{L,ex). Hence, the von
Neumann algebra generated by epr and en is contained in K’ N (L,ex) so that
the result follows from that dim{K’' N (L, ex)} < [{L,ex) : K] = [L : K]? ([14],
Corollary 2.2.3). 1

REMARK. If (L, M, N, K) is not a commuting square, with a little more
effort one obtains L KP_9
' #Ang (M, N) < [—4}—'—

REMARK. Proposition 3.2 shows that if [L : K] is finite, angles between
two subfactors behave like those for two subspaces of a finite-dimensional Hilbert

space.

From the construction, we know that {L,ex) contains (L, ep) and (L,en).
In terms of a Pimsner-Popa basis ([22], [35]), the projections ey and ey are
represented explicitly in (L, ex).
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LEMMA 3.4. Let L D M D K be factors of type 11, with [L : K] finite. Lel
{u1,us,.. .,u,,e} be a Pimsner-Popa basis of M over K. Then we have

m
= E u,ef{u,
=1

Proof. Since E%;(z)€ M for z € L, the conclusion follows from that Ef(z)=
Zu EM(ut Bl (2)) = S wEM(EL (W 2)) = Y wi Bl (ufz). 1

The following subtle fact is due to C. F. Skau ([28]):

LEMMA 3.5. For a quadrilateral (L, M, N, K) of factors of type 111, we have
exg =epm Nen.

By Lemma 2.1 and Lemma 3.5, Ang (M, N) can be represented simply as
follows:

COROLLARY 3.1. Let (L, M,N, K} be a quadrilateral of factors of type I1y.
Suppose that [L : K] is finite.
(1) If the diagram

M Cc L
U U
K C N

is not a commuting square, then Ang (M, N) contains neither 0 nor £. And we
have

Ang (M, N)=Sp (arccoseprener ~ eK)\{g}::Sp (arccos |eM-—eN|)\{O, 22!_} )

(1) Let s = eprenepr —ex. If s =0, then Ang [ (M,N) = { } Ifs’ =as #
0 for some scalar «, then Ang (M, N) consists of one point and Ang (M, N) =

{arccos /a}.

Proof. (i) Assume that 0 (or T) € Angr(M,N). Since #Ang (M,N) is
finite, 0 (or %) is an eigenvalue of the angle operator. But this contradicts the
property of the spectrum of the angle operator. These equalities follow from
Lemuma 2.1.(1), (iil), and Lemma 3.5.

(i1) The diagram is a commuting square (i.e., epreny = eg) if and only if
s = epenem —ex = 0, because (epreny —ex)(emen — ex)* == s. Suppose that
the diagram is not a commuting square and that s> = as # 0 for some scalar «.
Thanks to Lemma 3.5, s has the following expression:

cos?® 0

0 )@OEBOEBO

s:eMeNeM—eK——-OGB(
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Hence, the spectrum Sp (s) = {0} U Sp (cos? ©). Because @ # 0 and 0 is not
an eigenvalue of cos ©, {a} = Sp(cos? ©). Therefore,

Ang (M, N) = Sp© = {arccos /o). 1

Besides angles, there are other invariants (for subspaces) introduted by
C. Davis ([8], Theorem 5.1). In our setting they are tr{eg), tr{en), tr(en),
tr(ear Aex), tr(efy Aen), tr(es Aey), and the values of traces of the spec-
tral projections of the angle operator. (These are invariants for a quadrilateral
(L, M, N, K) of type Il factors.)

LEMMA 3.6. Let (L,M,N,K) be a quadrilateral of factors of iype 11, satis-
Jying [L : K] < co. By seiting r = epr — epg Aeny — eps Aejy, we have:
() [L: M) = [L: K7 +tr(r) + tr(ear Aery).
(i) [L:N]7P = [L: K7 4 te(r) + tr(epy Aew).
(1ii) If Ang 1.(M, N} consists of one point 8 £ %, then

tr (CMCN)—U' (BK) )é
tr(ep) — tr{ex) —trear Aegy) ‘

(iv) [L: M} =[L: N} if and only if tr (eas Aef;) = tr (ep; Aen).

Ang (M,N)=6= {arccos (

Proof. (i) is clear from Lemma 3.5.

(i) follows from the fact that r is equivalent to ey —ep Aey —ex; Aen in
the Murray-von Neumann sense.

By Corollary 3.1.(i1), tr (epen) — tr(ex) = cos? § - tr(r) so that we obtain
(ii).

(iv) is an immediate consequence of (i) and (ii). 8

4. DUALITY FOR ANGLES

In this section, we give a kind of duality for angles between a quadrilateral (L, M,
N, K) and that of the second basic construction. Simultaneously, we also show
that the set of angles Ang g (A’ N’} between commutants does not depend on
the Hilbert spaces on which L acts. More precisely,

ProrosiTioN 4.1. Let (L, My, N1, Ky} and (L2, Ma, No, K3) be two quadri-
laterals of factors of type I on M,y and H, satisfying that [L; : K;] and [Lo : R3]
are finite. Assume that K| and K} are finite. If two quadrilaterals are isomorphic,
then we have

Ang gy (M7, N{) = Ang ; (M3, N3).

Proof. Since angles are invariant under a spatial isomorphism and an ampli-

fication thanks to Proposition 3.1, the result follows from the next lemma. B
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LEMMA 4.1. If (L, M,N,K) is a quadrilateral of factors of type 11, with
[L: K) finite and e is a non-zero projection in K, then

Ang (M, N) = Ang (M., N,).
Proof. Since there exist an integer n € N and a projection ¢ € K. ® B(C")
such that
L= (L@ BC),,
it suffices to show

Ang(M,N) D Angr (M., N.) (e €K).

If the quadrilateral (L, M, N, K} is a commuting square, the conclusion is obvious.
In another case, by Corollary 3.1, the inclusion is equivalent to

L. L.
Sp (exr. eN €af, — eK ) C Sp(efyefels — k).

This follows from

L L. e — L L.L L
eM ex: exs, — ex’, = eleprenens — exlelrar,). 1

Let (L, M, N, K) be a quadrilateral of factors of type II; with [L: K] finite.
We have the basic constructions Ly = (L,ek), My = (L,ef&,), Ny = (L,ef‘\,). Put
Ky = L. lterating the basic constructions, we also get Ly = (Ll,ef‘), M, =
{Li,e M}) Ny = (Ll,ell(,‘l) and K3 = L;. We find a kind of duality of angles for
two quadrilaterals (L, M, N, K) and (La, M2, Na, K3).

PROPOSITION 4.2. In the above situation, we have
Anng(Mz, Ng) = AngL(M, N)

Proof, Let J = Jr and Jy = Ji,, be the canonical involutions on L?(L) and
L%(Ly). Two quadrilaterals (JLyJ, JMyJ,JN1J, JKJ) and (J1L1J1, Ji My Jy,
JiNyJ1, J1KyJy) are isomorphic, and their commutants are (L, M,N,K) and
(La, M3, Ny, K3) so that we get the conclusion by Proposition 4.1. 1

COROLLARY 4.1. Let (L, M,N,K) be a quadrilateral of factors of type I
with [L « K] findte:

(i) Ang x(M',N') = Op-ang (M, N),

(it) Ang (M, N) = Op-ang g (M', N').

Proof. Since Op-ang (M, N) = Angr,(My, N1) = Ang jr,1(JMyJ, JNLJ),
where J is the canonical involution on L?(L), and the commutant of (L, M, N, K)
on L*(L) is (JL1J,JM1J,JN{J,JLJ). Hence, (i) follows from Proposition 4.1.
Clearly (1) implies (ii). #
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5. EXAMPLES

Let P be a factor of type II; with an outer action a of a finite group G with
subgroups A, B. In this case two quadruplets (PxG, PxA, PxB, P) and (P, P4,
PB PCY are naturally considered. While the former has trivial angles, the latter
gives nontrivial angles. In fact, there appear several angles. In order to explain
this, we prepare several lemmas.

Let H be a subgroup of G.'Set L = PxG and M = PxH. The action v of
G on £°(G/H) is defined by

v(f)sH) = (g7 sH) for f € £2(G/H), s€G.

Let x, € £°(G/H) be the characteristic function on sH. Consider the action p
of G on P ® £°(G/H) defined by

ne(d® f) = ag(d) @ vy(f) for g€ G, d€ P, f € £°(G/H).
LEMMA 5.1. There ezisis ¢ x-isomorphism
¢ {L i) = (PR L°(G/H)»,G

such that ((zAs)ek (yhe)) = (zas(y) ® xsi)Ast for 2,y € P and 5,1 € G, where
the Ay’s are the implementing unitaries of the crossed products.

Proof. Thanks to the fact that {L,e%) = L ®p L by V. Jones ([15]), ¢ is
well defined. It is easy to see that p is a x-homomorphism. Let us consider the
following linear mapping:

¥ (PR LP(G/H))X:G — (L, ek
defined by
P((z ® xs)Ag) = (2As)(efr(Ae1g) (z € P).

Then we can easily check that ¢ is precisely the inverse of . Hence ¢ turns out
to be an isomorphism between {L,ef;) and (P ® £2°(G/H))*muG. #

Let A and C be subgroups of G with A D C. Weset L = PXG, M = PxA,
and K = PxC. By Lemma 5.1, there exist x-isomorphisms

p1: (L, efy) — (P @ £2(G/A)G,

and

w2 1 {L,ek) = (P ® £°(G/C))xG.
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We also have natural inclusions:
I:(Lyefy) = (L,ek),
and
J (PR L°(G/A)YNG — (PR E7(G/C))NG.

In fact, let {uy,..., 4m} be a Pimsner-Popa basis of M over K. Then by Lemma 3.4,
I is given by
I(zekyy) = qu;eﬁgu}‘y for z,y € L.

Also, J is induced by the natural quotient map G/C — G/A. More precisely, let
m
A = | t;C be the coset decomposition with t; = e, then {A;;j=1,...,m}isa
=
Pimsner-Popa basis of M over K. Hence,
I(zekw) = Z z/\;).ef’(A;‘jw for z,w € L.
J
~J is also written exphicitely as

J((p®Xsa)Ag) = D _(P®Xst;c)ry forpE P, 5,9€G.
;

We then have the following relation among these maps whose proof is left to the
reader as an exercise:

LEMMA 5.2. The following diagram
(L,ek) 22, (PRL(G/C))xG
I IJ '
(Lek) 25 (P@I®(G/A)XG
s commulative.

The following pi'oposition gives a possibility of explicit computation of the
angles.

PROPOSITION 5.1. Let P be a factor of iype 11, with an ouler action a of
a finite group G generaled by subgroups A and B. Set L = Px,G, M = PX A,
N = Px4B, and K = Px,C (C := ANB). Then (L, M,N,K) is a quadrilateral '
and we have ‘

Ang1(M,N) = {7},
Op-ang (M, N) = Ang = (g/c)(£*(G/A), £°(G/ B)).
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Proof. The only nontrivial assertion is the last one. By Lemmas 5.1, 5.2,
3.2, and Proposition 3.1, we have

Op-ang 1 (M, N) = Angz cx)({L, em), (L, en))
= Ang (per=(c/c)nc((P @ £°(G/ANXG, (P ® £2(G/B))xG)
= Ange(6/c)(€7(G/A), £°(G/B)). 1
By taking the commutants, we also have the following:

PROPOSITION 5.2. Let P be a factor of iype II; with an ouler action o of o
finite group G generated by subgroups A and B..Set L= P¢, M = PA, N = PB,
and K = PC, where C = ANB. Then (L,M,N,K) is a quadrilateral and we
have B

Ang (M, N) = Ang r=(c/c)(€°(G/A), £°(G/B)),

Op-ang'L(M, N)= {%} .

Proof. By [20], we have the isomorphism (P¢)’ = P'xG, (PA) = P'xA,
(PB) = P'%B, and (PC) = P'\C, where the commutants are taken on L2(P, tr).
Then the conclusions follows from Corollary 4.1 and Proposition 5.1. 1§

Now we compute Ang se(g;cy(£°(G/A), £°(G/B)). First we study a suffi-
cient condition that Ange(c/c)(£°(G/A),£°(G/B)) reduces to a singleton.

LEMMA 5.3. Lei G be a finite group and A, B be subgroups with C = An
B = {e}. Assume that |[A\GJ/A| = 2, A # {e} # B. Then G = ABA,
Ang te(G10)(EP°(G [ A), £°(G/ B)) reduces to a singleton, and we have

|BI(IG] - |Al)

Proof. Let G = AeA U AbyA be the double coset decomposition for some
bo € B\ {e}. Clearly G = ABA. Set L = £°(G), M = {f € £2(G); f(za) =
f(z),a € A} = £2(G/A), N = {f € £°(G); f(zb) = f(z),b € B} = £°(G/B),
and K = C. We identify L2(L,tr) with CI®l. Then the projections e}, %, and
ek are given by |G| x |G|-matrices; ef; = (el (g, h))gneq, ek = (eX(9,h))g e,

Ang o(61c)(EP(G/A), £2(G/B)) = {arccos (M) :} .

lgA N hA|

CIL{ = ‘(C}L-{(g,.h))g,hec such that Cf’{ = I‘é"l', ef{,(g,h) = ,|—1]1_I69A'h‘4 = ——W'
BnhB

and ex(9,h) = hdmrs = l-g-l—gf*z—j Put s = elekely — ek and o =

-}'—gi-(ll(—;—llf—l%. If s = 0, then Ang (M, N) = {g—} by Corollary 3.1. Then by

Proposition 7.1, which will be shown later, |G| = |A||B| s6 that & = 0. Hence, the
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conclusion holds in this case. Therefore, we may assume that s # 0. By Corollary
|zANyB|

3.1.(ii), it is sufficient to show that s = as. Since (efek)(z,y) = |A||B|

(z,y € G), we have

s(z,y) = (efrefers)(@,y) = ek(z,9) = D _(ehrei )z, 2)efs (2, ) *ex(x v)

2€G
— Z lzAnzB| 1 Z lzAnyaB| 1
e 14llBl 4]~ Gt [A2|B] |G
- Z Hy 'z} naiBas| _l_ - z Hy 'z} n{ajbas} 1
61,82€A lAllel lGl a1,02€A0€B lAlszI IGI

To continue further we need to look at the map
p:Ax BxA—G suchthat ¢(a1,b,a) = arbas.

Then for ¢ € G, a1,¢z € A, l¢~} a1zaz)| = fp~}(z)], and ‘<p“1(x”1)| = g~ 1(z)|.
Since ¢~ (e) = {(a,e,a) € Ax B x A;a € A},

e~ a)i=le )l =4l (a€A).
If z € AbgA, then

|A]°]B] - 4%

e @)1= o™ G0l = S

=: f.
Therefore, we have

I P s I T e G R
@V="TeE "ielT ArBl G

Moreover, we get that

s)(z,y) = s(z,2)s zv = e~ =712 _1 ‘P-I(Z;ly)| _1
e = 3 e = 3 (P ;Gz)( AP[B] i)

z€G 2EQ

I U ) | o) A W »
_@; LR ) [APIBIIG] (z;’“’ “') MG
- le~ = e~ eyl ) _ 2147218 | 1

”(‘2 |AI*BI? ) VEETERE

_ o G | G )) A W
B (Z ERER ) e

ZEG
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Now we need to consider two cases.
Case 1: z7'y € A. We get that
o< TG L WAL 1 (G- 1AIB
' {A|?]B] IG| ~ |A]*|B] le jAl1BlIGI
We also have that

2 _ lo~ (=" yh)[le~ (A~} 1 le 12y 1
T = (Z A" BF ) (Z AT BI ) BE

hed heG
_ AP+ (G- 14D 82 1 _ (IGI — |Al1B])
|4141B|? Gl ~ |AlIBI2(IG] - |ADIGI"

Hence, s%(z,y) = es(z, y).
Case 2: z7'y ¢ A. We get that

o iz"ly)| 1 B 1 |G| - 1A]1B]

@9 ="em 16T ARl 16 ICHBIGAl - [G)
Put u = 7'y & A, then we have that

R el R Gl s A N
Sy = (Z AT B ) " el

zeG
_ ke~ (u2)] lo~ 1 (2)] e ezl () 1
- (E AP ) + (E (A7 ) &
_1Al-B8-14] “_1__’_ |A]- 8- |A]l+ (IG| — 2|Al]) - 72
[AlB)2 |G| |A|*B)?
_ —-(IG] - JA|1B))?
[BI2(|G| - |A])?|G)’

because {uz;z € AbgA} = AU Gy (disjoint union) for some Go C AbgA. Hence,
we also have that s%(z,y) = as(z,y). This completes the proof. 8

H. Kosaki showed us the following powerful method to compute angles. By
Lemma 3.1.(ii}, we have

Ang teo(6/c) (€7 (G/A), £°(G/ B)) = Angre(6)(£7(G/A), £2°(G/ B)).
The orthogonal projection eseo(g/4) is 47 2 pla), where (p(g) f)(k) = f(hg)
a€ A

for h € G, f € £2(G). Since p = 5 ®(dimH, )7, we have
wE(;’

Eeoo(GJA) = z (dimH,) (|A| Z w(a)

at A

ereicimy = 3 (dimHy) (‘ 5] Zn(b))

beB
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Let {%W}A = {6 € Hx;"r(a)E = §,a € A}, {Hr}B = {6 € ’H«;ﬂ’(b)ﬁ =

§,b € B} be the ranges of the orthogonal projections k7 3_ 7(a) and g7 3° 7(b).
aEA beEB

Hence, in order to compute Ang sw(q/c)({°(G/A),£°(G/B)), it suffices to com-

pute angles between two subspaces {H,}4 and {Hr}p in each irreducible repre-

sentation space H,. Therefore, combining with Proposition 5.2, we have shown
that:

PROPOSITION 5.3. Under the same assumption as Proposition 5.2, we have
T
Angr(M,N) = | J Ang ({(He}a, (H}e)\ {5},
L{3¢e)

if there exists an irreducible representation my such thal

Ang ({Fs,}a, (M) # {5}

Otherwise
T
Ang(M,N)= {-2-}
EXAMPLE 5.1. Let P be a factor of type II; with an outer action of an
abelian finite group (G generated by two subgroups A, B. Put C = AN B. The

orthogonal projections eses(g/a) and es(g/p) clearly commute. Hence, for the
quadrilateral (P, P4, PB, P%), we have

Ang pc (P4, PP) = Op-ang pc (P4, PB) = {g—}

For example G = Za & Z9, A= Z2®0and B=0& Z;.

EXAMPLE 5.2. Let G = S3 be the symmetric group on {1,2,3} generated
by two subgroups A, B defined as thé symmetric groups on {1,2} and {2,3} re-
spectively. Then AN B = {e} and |A\ G/A] = 2. Let P be a factor of type II;
with an outer action of G. Then for the quadrilateral (P, PA, PB, P%), we have

Ang p(P4, PB) = {g} , Op-ang p(P4,P%) = {%}

ExAMPLE 5.3. Let G = S4 be the symmetric group on {1,2, 3,4} with two
subgroups A, B defined as the symmetric groups on {1, 2,3} and {3, 4} respectively.
Then ANB = {e}, G is generated by A and B, and |A\G/A| = 2. Let P be afactor
of type 11, with an outer action of G. For the quadrilateral (P, P4, PB, P%), we
have

A pBy _ 1 A pBy_ [T
Ang p(P4, P )—{arccos\/;}, Op-ang p(P4, P )_{2}.
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EXAMPLE 5.4. Let G = D, be the dihedral group of order 2n for n 2 3
(cf. [31], [36]). Then D, has the following presentation:

Dn = (z,y;2" = y? = (zy)? = e).

Let H, A, and B be the subgroups of D, generated by z,y, and z = zy respectively.
Then we have that H =2 2, A= B = Z,, and D, = HxA. Let P be a factor
of type II; with an outer action of G. For the quadrilateral (P, P4, PB, P%), we
have )

k n—1 s
A pBy _ )N 4 _ A pBy .. ]
Ang p(PA, P )_{nvr,k_l,,..,[ - ]} Op-ang p(P*, P?) = { T},

where [z] is the greatest integer not exceeding z.

Proof. The irreducible unitary representations of the dihedral group D, are
well-known: there exist [“—;1] irreducible unitary representations wy of degree 2
such that for 1 € k € [“?l]

wk(z)=(o((: a(z")’ wk(y)=(? (1)) (@ =),

And other irreducible representations are degree 1. For each wy, wi(zy) and wi.(y)
have *(1,~*) and (1,1) as an eigenvector respectively. Now we can calculate
angles in each representation space Hy by Lemma 2.3: we obtain that the angle
in My is 0 = f}w for 1 £ k< [ﬂ?l] Hence, we get the conclusion thanks to
Proposition 5.3. #

We give an example of two subfactors with non-trivial angles and non-trivial
opposite angles by making use of the formula of a tensor product for angles, that
is, Proposition 3.1. The following example is suggested by V. Jones.

EXAMPLE 5.5. Let G; = S3 be the symmetric group on {1,2,3}. Let A,
and B; be the symmetric group on {1,2} and {2,3} respectively. Let K; be a
factor of type I with an outer action of G;. Put Ly = K{xG,, My = Ky xA;,
Ni = K{xB,. Let G3 = §4 be the symmetric group on {1,2,3,4}. Let A; and B,
be the symmetric group on {1,2,3} and {3,4} respectively. Let Ly be a factor of
type Il; with an outer action of G3. Put M; = Lf’, Ny = Lf’, Ko = L-f,;’. For
the quadrilateral (L, M, N, K) = (L1 ® Ly, M1 ® M3, N; ® N2, K1 ® K3), we have

1 "
Ang (M, N) = {arccos \/;} , Op-angr(M,N)= {-:-3-}
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thanks to Proposition 3.1, Examples 5.1, 5.2.

EXAMPLE 5.6. First we recall the CAR-algebra ([27]). Let H be a separable
Hilbert space over C with inner product {-,-}. Consider a linear mapping @ from
H to B(K) for some Hilbert space K such that the following anticommutation
relations hold: for f,g € H

a(f)a(g) + a(g)a(f) = 0,

a(f)a(g)” + a(g) a(f) = (f,9).

The CAR-algebra A(H) is a UHF algebra with the unique normalized trace .
By the GNS construction {7, H, = LZ(A(H)),&}, we obtain the von Neumann
algebra generated by m,(A(H)) and we denote this by A(H)".

Now we give an example via the CAR-algebra and subalgebra. We would
like to express our thanks to H. Araki for his suggestion of this example.

First let us consider a two-dimensional subspace H with an orthonormal
basis €; and es. For the two one-dimensional subspaces H;, Ho spanned by e; and
f1 = (cosB)e; + (sinf)ez, 0 < 6 < Z, then the set of angles between .A(M1) and
A(H>) is given by

Ang (A(M1), A(H2)) = {8, arccos(cos? 8)}.
Proof. Remark the following orthogonal decomposition:

L*(A(H)) = [a(er), a(f1)] @ [aler)", a(fx)*]
@ [a(er)a(er)”, ale1)"a (61) (fi)a(f1)*,a(f1)"a(f1)] ® Ho,

where [z;] denote a linear subspace spa,nned by z; and Hy is the remainder. By
Lemma 2.2,

Ang (A(H1), A(Hz)) = Ang ([a(er)], [a(f1)]) U Ang ([a(e1)"], [a(f1)"])
U Ang ([a(e1)a(e1)", a(er)"a(er)), [a(f1)a(f1)", a(f1)" a(f1)])-

We compute
Ang([a(e1)], [a(f1)]) = Ang([a(e1)"}, [a(f1)*]) = {6}

by Lemma 2.3. Thanks to the anticommutation relation, we can express

K1 = [afer)a(er)*, aler1)*aler)] = [1,u = a(er)aler)” — a(er) aler)],
K2 = [a(fi)a(f1)", a(f1)"a(f1)] = [byv = a(fr)a(f1)" — a(f1)"a(f1)]-
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Because (1,u) = (1,v) =0, it follows from Lemma 2.3 that

. Ang (K, K9) = Ang([u],{v]) = i{-arccos(cos2 #)}. ®

We also get the following result: Let M be a separable Hilbert space with
an orthonormal basis {e,}. For a fixed n € N and parameters 8 (0 < 8, < £
k =1,...,n), we consider two subspaces H; and H; spanned by {ezi_1,€5;1 <
kE<n,2n41< s} and {fi = (cosBe)ear—1 +(sin O )ear, e, 1 £ k< n, 2n+1< s}

respectively. Then the angles between A(H,)” and A(H3)" is as follows:

Ang (A(H1)", A(H2)") = {a§ccos{]](cos 8,8 e(k) = 0, 1,2}} \ {0}.
k

Proof. This result follows from the previous one for the two-dimensional case,

the following general fact, and Proposition 2.1. @8

Generally speaking, consider a separable Hilbert space H with an orthogonal
decomposition H; and M. Suppose that each subspaces H; contains two subspaces
M, Ni. Put M = My @ My, N = N1 ® N,. Thanks to the product property of
trace 1, that is, 7(zy) = 7(z)r(y) for 2 € A(H,) and y € A(H2) ([27]), we can
identify L2(A(HM)) with L2(A(M1)) ® L*(A(H)) and simultaneously L2(A(M))
(respectively L?(A(N))) with L2(A(M1))® L2(A(M>)) (respectively L2(A(MN )@
L?(A(N?2))) as Hilbert spaces in the following way:

Zx.- ® yi — Z iy (zi € A(Hy), w € A(H3)).

Therefore, we obtain a formula of angles for CAR-algebras:

PROPOSITION 5.4. In the above sel-up, we have

Ang (A(M), A(N)) = Ang(L*(A(M})) ® L (A(M2)), L*(AM)) ® L (A(N3)).
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6. GAPS OF ANGLES

We will discuss the distribution of the possible values of angles by examining
quadrilaterals whose upper sides have length 2. The following theorem shows the
possible values of angles in this case have gaps.

THEOREM 6.1. Let (L, M, N, K) be a quadrilateral of type II, factors. Sup-
pose that [L : M] = [L : N] = 2, [L : K] is finite, and LN K' = C. Then
either

Ang (M,N) = {-Evr;k: 1,2,..., [n;l}}

for some integer n 2 3, or

b
AngL(M, N) = {5} .
In addition, we have
7
Op-ang(M,N) = {—2-} .
It suffices to show the next dual version (Corollary 4.1).

THEOREM 6.2. Let (L, M, N, K) be a quadrilateral of type 11y factors. Sup-
pose that [M : K] = [N : K] = 2, [L : K] is finite, and LN K' = C. Then
etther

Op-ang (M,N) = {f—ln‘;kz L2,..., [n;l]}

for some integer n > 3,' or
T
Op-ang 1 {M,N) = {5} .

In addition, we have
T
AngL(M,N) = {5} .

Proof. By [10], there exist outer automorphisms # and v € Aut(K) such
that 82 = 92 = idg, M = KxpgZy and N = Kx,Z3. Consider the quotient
map ¢ : Aut (K) — Out(K). Let G be the subgroup of Out (K) generated by
e(B) and £(y). Let B and ¥ be implemented by u € M and v € N; § = adu,
¥ = adwv. For each element g E'G, we can choose a unitary operator wy € L
and an automorphism 6, € Aut (K) such that 8, = adwy, €(8,) = g, we = e,
fe = 1d, weg) = U, We(yy = v, and wy is a word consisting of v and v. For
any distinct elements g,k € G, €(0;8,) = £(6n)"'e(8,) = h™'g # e, hence,
0,0, is outer. And the definition implies that (656, )(z)wiw, = wjwyz for
z € K so that (6510, )(2)EL(w}w,) = E&(wjwy)z. Since 6510, is free ([3], [17]),
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E%(whw,) = 0. Hence, wyL?(K) and wy L2(K') are mutually orthogonal for any
distinct elements g and h € G, because tr (y* whw,z) = tr (y" £f (wjhw,)z) = 0 for

z,y € K. Therefore, the operator p := ZG wgei‘(w; converges strongly in (L, e%).
g€
Since 1 2 tr(p) = thr (ek) = f}’%{,—], G is finite and |G| € [L : K]. Next we show
that wywy € ng:E(g, h € G). In fact, since £(8,0,) = e(8;)e(0n) = gh = €(bgn),
there exists a unitary w € K such that 6,0, = (adw)fgs, which is equivalent
to that wywpzwiw) = wwgnzwy,w* (z € K). Hence, we get that wi, w wow, €
K'nL C C. By ([13], Corollary 4.1.7 or [30]), we can find a unitary representation
y of G on L*(L) such that y € Kwy, that is, y, = hyw, for some unitary hy € K.
Using this unitary representation, we introduce an outer action o : G — Aut (K)
defined by ay = ady,. In fact since oy = ad hy - 8y, e(ay) = €(;) = g, hence, o
is outer. Now we define the map ¢ which gives a *-homomorphism from Kx,G

into L by
SO(Z -""9'\9) = Z zeyy (24 € K).
geEG g€G

Since a is outer,  is injective. Because L is generated by M = K xgZ; and
N = Kx,2, L is generated by K and {wg}sec. Since y, = hyw, (hy € K), L is
generated by K and {yg},ec. Hence, ¢ is surjective.

Let A and B be subgroups of G singly generated by (3} and £(7). Then ¢ in-
duces a *-isomorphism between two quadrilaterals (L, M, N, K} and (KxG, K xA,
KxB, K). Since the finite group G is generated by two elements z = ¢(f) and y =
€(7) of order 2, G has the following presentation: G = {z,y;z? = y* = (zy)" = 1)
for some integer n ([31], Theorem 6.8). Suppose that n = 1. Then z = y, so
M = N = K. This contradicts that [M : K] = [N : K] = 2. Thus, the case
n = 1 does not occur. Hence, the group G is isomorphic to the dihedral group D,
of order 2n for some integer n > 3, or Z» @ Z3. These cases are already studied
and angles and opposite angles are calculated in Examples 5.1, 5.4. Therefore, we

conclude the proof. B

REMARK. Theorem 6.1 is a Goldman’s type theorem for a quadrilateral
whose upper sides are index 2. Such a quadrilateral is explicitly characterized
by the dihedral group D,. The following corollary is obtained from Theorem
6.1 and the complete classification of outer actions of finite groups on hyperfinite
factors by V. Jones ([13]).

COROLLARY 6.1. For each integer n 2 2, there exists a unique quadrilateral
(L, M, N, K) of hyperfinite II -factors such that [L: M]=[L:N]=2,[M : K] =
[N:K]=n,and LNK' =C.
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REMARK. The similar fact corresponding to Theorem 6.2 also holds.

7. OPPOSITE ANGLES, INDEX, AND WORD LENGTH
Let (L, M, N, K) be a quadrilateral of I1I;-factors with [ : K] finite. The equation
Ang (M, N) = Op-ang 1 (M, N)

may or may not hold. In this paper, by Example 5.5, we will only consider
the special case that Angp(M,N) = {ZT}. Under this assumption, we have
Op-ang (M, N) = {g—}, if and only if the quadrilateral (L, M, N, K} is a par-
allelogram, if and only if L is a linear span of words of length 2 consisting of
elements in M and N. Denote ((L,ek), (L,ef,),{L, ek}, L) by (L1, M1, N1, L).

LEMMA 7.1. The conditional espectation Egf : Ly = (L,ek) — My =
(L,eky) satisfies

[L: M]

- K]xeMy (z,y€ L)

Ejf, (zefy) =

Proof. 1t suffices to check that Ef2 (ek) = [L[J—E-]leﬁl, that is, tr (e zel y) =

[L K] tr (efyzefry) (z,y € L). In fact,

R L
and
tr (efzefry) = tr (efyefzefyy) = tr (eK-'”eMyBM) = tregzEf(y))
1
|}
[L I{}tr (.’BFM(y)) [L I,]tl‘(EM(-'B)EM(y))
LEMMA 7.2. The following are equivalent:
(5) Op-ang (M, N) = {}.
(1) B2, (ek) = @i
(it) B (efr) = -

(ii) Eff(ek)€C
(ili) EX} (ef)€C.
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Proof. From the assumption (i), EII({‘.EII(,: =.E‘!‘T(,i Ef,,‘l = Efl. (ii) follows
from Lemma 7.1, since

Bl (k) = B, ({7 Bk k) = E ey
L:k] 1 1

TL:NLK T LN

Conversely (ii) implies that

Bl BL: (seky) = BY, (285 (ch ) = Eﬁ( {ﬁ ?;}EN!I)
(L]

so that we get (i). Because tr (E,f’,’l(ef‘v)) = [fth_]’ (i) and (ii)’ are equivalent.
Other equivalences are proved similarly. 1

LEMMA 7.3. The following are eqm'v'aleni:
(i) (L, M, N, K) is a parallelogram, that is [L : M] = [N : K] and [L : N] =
M :K].
(i) [L: M] = [N : K].
(ii) [L: N] = [M : K].
Proof. They immediately follow from [L : K] = [L : M|[M : K] = [L :
N[N :K]. &

LEMMA 7.4. If Ang (M,N) = {’21}, (L,M,N,K) s a parallelogram, and
L=M-N"*"" then Op-ang (M, N)={z}.

Proof. By Lemma 7.2, it suffices to verify that EL‘ ( M) = [L > that is,
tr (ek (o)) = — e (sekyy) (2,9 € ).
[L:N]

From the assumption, we may put z = nym;, y = man, for n;,ny € N,
my,my € M. Then

tr (ek (zefyy)) = tr (eknimiek many)=tr (ngnle}'(,ef(,mlmg)ztr (noniekmyms)
1 -,
= ——t ——t
Lk (remmma) = = K] r(=v),

and
1

1 1
mtr(zeﬁ,y) [L N][] M]tr( y) = (L K]tr(:z:y) '



ANGLES BETWEEN TWO SUBFACTORS 233

LEMMA 7.5. Let (L, M,N,K) be a quadrilateral of 11, -factors with [L : K]
findte. Let {u1,...,u,} and {vi,.. v,,,} are Pimsner-Popa bases of M and N
over K. Then the operator a = Zu,v, exviu; have the following properties:

i3
(i) tr(a) = [AL[IEI}I?;_K]'

(i) If Ang (M, N) = {%}, then a is a projeciion.
Proof. (1)
tr(a) = tr (Ef' (Z u;vjef‘{v;u;)) =tr (Z u;vjEf‘(ef{)v}u:)
i,j i

eyt = M KN : K]
tr (g UiV Y5 u,-) = TT

T LK)

(ii) By Lemma 3.4, ef, = Y- vjekvf, hence, @ = Juieful. a is clearly
i

positive and idempotent. In fact,
a’ = Z quﬁ’,(u;uj)ef{,u; = Z(Z u;E%(u:uj))e%,u; = Zu,'ell(,u}' =a,
ij J i i

by the commuting square condition. 1

LEMMA 7.6. IfL=M - N""""® and Ang (M, N)={%}, then (L, M, N, K)

is a parallelogram.

Proof. We shall show that the operator a of the previous lemma is identical
on L2(L). Since L3(L) = q(M - N)! I?

by the assumption, it suffices to show that
an(mn) =n(mn) (meM, neN).
In fact, thanks to the commuting square condition,

an(mn) = Zu;efvu: n(mn) = ”(Z u;Eﬁr(u;‘m)n)
= n( 3 wEH (uimjn) = n(mn).

Hence, 1 = tr(a) = ‘M-[IZ{]I}{V—KJ' by Lemma 7.5.(1). Combining this with the
equation [L : K] = [L : M][M : K], we get [L : M] = [N : K]. By Lemma 7.3,

(L, M,N,K) is a parallelogram. #
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LEMMA 7.7. If Ang(M,N) = {£}, then [L : M] > [N : K], [L: N] 2>
M : K]

Proof. Since (L, M, N, K) is a commuting square, EX (2) = E¥ (z) (:n € N),
hence, the restriction of the Pimsner-Popa inequality ([22], Theorem 2.2) implies

Therefore, by ([22], Theorem 2.2), [L: M] 2 [N : K]. 1

The following theorem shows that there exists a close relation among index,
angles, and the degree of the non-commutativity of M and N measured by word
length.

THEOREM 7.1. For any quadrilateral (L, M, N,K) of I11;-factors with [L :
K] finite and Ang (M, N) = {;—}, the following are equivaleni:
(i) Op-ang (M, N) = {Z}.
(ii) (L, M, N, K) is & parallelogram {i.e., [L: M] =[N : K]).
(i) L=M-N := 3 omyn; mi €M, EN}.

finite
(i) L=N-M.
(iv) L =M - N"*""8,
(lV)' _ "-—AZV strong

Proof. (1)=>(ii) Since Ang (M, N)={%}, [L: M] > [N : K] by Lemma 7.7.
Similarly Op-ang (M, N) = { ¥} implies that [N : K] = [Li1 : M] 2 [M; : L] =
[L : M]. Thus, [L : M] = [N : K]. Therefore, (ii) follows from Lemma 7.3.
(n)=>(m) By Lemma 7.5.(1) and the assumption (ii), tr (a) = L[Izl%—m =1
Hence, 1 = a = Zu,v,eﬁv uf, by Lemma 7.5.(ii). Therefore, H(z) = an(z) =
i

n(z wv; ER(viulz )) (x € L), thatis, z = Y u;v; Ef (vjujz) € M- N.
55 ij

(11i)=>(iv) is clear.

(iv)=(i) It follows from Lemma 7.6 that (L,M,N, K is a parallelogram.
Hence (i) follows from Lemma 7.4. 1

REMARK. In Theorem 7.1, we only think of quadrilaterals, hence, we assume
L = M V N by definition. But, with a little care, we get that the above proof
simultaneously gives the following, without the assumption L = M V N.
COROLLARY 7.1. Lel
M C L
U U
K C N
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be a commuting square of factors of type 11, satisfying [L : K] < co. Then the
following are equivalent:
(i) The quadruple

M C L
U U
K ¢ N

is co-commuting (i.e., their commutants (on L*(L)}

M Cc K'
U U
L' c. N

form a commauting square).
(ii) (L, M, N, K) is a parallelogram (i.e., (L : M] ={N : K]).
(iii)L:M'N:= Zm,-n,—:m,-EM,n,-EN}.

finite
(iii)' L=N M.
(v) L= M- N
(v)! L= NRs,

REMARK. Theorem 7.1 is analogous to the following known fact in Group
theory ([31], 3.13): Suppose that G, A and B are groups such that G DA, Band
|G : A| is finite. Then the following are equivalent:

()G=A -B={a-b:ac A b€ B},

(i) |G: Al=|B:ANB|

The following proposition is a generalization of {[11], Proposition 4.2.8):

PROPOSITION T.1. Lel P be e factor of type I} with an outer aclion « of
a finite group G generated by subgroups A, B. Pui C = AN B. Then for the
quadrilateral (L, M, N, K) = (PC,PA, PB PC), the following are equivalent:
() Ang (M, N) = (2},
(i) (L, M, N, K) is a parallelogram,
(iii) G=A-B={ab:a€ A, be B}.

Proof. Applying Theorem 7.1 to the quadrilateral of commutants
(K',M',N', L") = (P'%G,P'xA,P'xB, P'xC)

on L2(P), (i) and (ii) are equivalent. And by the previous Remark, (iii) is equiv-
alent to that (K’, M’, N', L'} is a paralielogram, which is equivalent to the condi-
tion (it). ®
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REMARK. There exists a finite group G such that G is not semi-direct prod-
uct of A and B, but satisfies the condition (iii) G = A - B in Proposition 7.1. For
instance, G = Sy, A = S3 and B = Z4 where G acts on {1, 2,3, 4} as permutation
and A on {1,2,3} and B as shifts on {1,2,3,4}.

Under the same assumption of Proposition 7.1, we have the following:

COROLLARY 7.2. If[G : A] is relatively prime to [G : B], then (PC, P4,
PB PG is a commuting square.

Proof. See ([31], 3.13).

Theorem 7.1 treats the case that any element of L can be represented as a
sum of the words of at most length 2. We shall consider the case that any element
of L should be represented as a word of length one. But there exist rio non-trivial
cases as follows:

ProPosITION T7.2. Let (L, M,N,K) be a quadrilateral of II;-factors with
[L: K] finite. The following are equivalent:
-strong

() L=M+ N
(i) L=MorL=N.

Proof. (ii) implies (i) clearly. Conversely, assume that the condition (1)
Then L*(L) = L2(M) + LX(N)' "
en —epm Ven, 1 = tr(es Ven) = tr(ey) + tr(en) — tr(em Aen). Thus by
Lemma 3.5, 1 = phr + (L}N] - [LfK}. Assume that L # M and L # N. In this
case, [L : M] and [L : N] > 2. Thus by the above equality, 1 < 2+ 1 — [—ELE}- < 1.
This leads to a contradiction. Hence L=Mor L=N. 1

,or 1 = ep Ven. Since epy Vey —en ~

Theorem 7.1 provides us a non-trivial quadrilateral with Ang r (M, N) # {%}
such that the length of sides is not integers as follows:

ExaMPLE 7.1. Jones’ two-sided seqﬁence of projections has been studied
by several authors ([6], [L1], [21], [22] etc.). M. Choda [4] investigated index for
subfactors generated by Jones’ two-sided sequence of projections. Let {e; : i =
0,+1,...} be a family of projections with the properties

(a) ejeirr€; = Ae;, for some A < 1,

(b) €icj = €5¢€;, ]i-— ][ = 2,

(c) the von Neumann algebra L generated by the family {e; : 4 =10,+1,...}
is a hyperfinite II)-factor with the trace tr,

(d) tr(we;) = Mr(w)ifwisawordon l and ¢; (j € i—1). Let M, N, K be
von Neumann subalgebras generated by {e; : i€ Z\ {0}}, {e:: 1€ Z\ {1}}, and
{es :i € Z\ {0,1}} respectively. She showed that if A = Lsec? I for some integer
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m (> 3), then the index [L : M] = Zcosec? . We will show that (L, M, N, K)
is a quadrilateral and Ang (M, N) = {g—} Let A and B be algebras generated
by 1 and {e; :i = —1,—-2,-3,...}, 1 and {e; : i =1,2,3,...} respectively. Then
A-B= {z a;b; ra; € A b; € B} is o-weakly dense in M. Thus in order to show

that El (o) = A, it is enough to verify that tr (eqab) = Atr(ab), a € A, b € B.
By Markov trace property, ([37], 3.1), tr (egab) = tr(epa)tr (b} = Atr(a)tr (b) =
Atx (ab). On the other hand, { & #seos + 2 : 2, 3:, 2 € Alg {1, 1§ € 2\ {0, 111}
is o-weakly dense in N, where‘Ang means an algebra generated by X. Since
EE (zeoy) = 2Ef(e0)y = Aay € K, for z,y € Alg{l,¢; : i € Z\ {0,1}}, we get
EL(N) C K. Hence, by ([11], Proposition 4.2.1), (L, M, N, K} is a commuting
square, that is, Ang ;(M,N) = {Z}.

If A = Lsec?Z, then [L : M] = [L : N] = Zcosec’Z and [M : K] =[N :
K] = 4cos? . Since Zcosec?L # 4cos’ & as m > 5, Op-ang 1 (M, N) # {z}.
Hence, the basic constructions ((L,e%), (L, ek), (L, ef), L) = (L1, My, Ny, L) is
a quadrilateral with Angp,(M;, N;) # {g—} This quadrilateral is the desired
one. (For m = 4, the quadrilateral (L, M, N, K) is a parallelogram. Thus, by
Theorem 7.1, Ang £, (M1, N1) = {%}))

Finally we shall consider the iteration of basic constructions of quadrilaterals.
Let (L, M, N, K) be a quadrilateral of type I1; factors with [L : K] finite. Define
the increasing sequence (Ln, Mp, No, Kp), n = 0,1,2,... of quadrilaterals by the
relations

Lo=L, My=M, Ne=N, Ky=K,
L1 = (L,ef’(), M1 = (L,ef,), Nl = (L,ef{,) 1{1 = Lo,

Ln+1 = (Ln,ef(’;), Mﬂ+1 = (Ln:eili;)a Nn+1 = (Ln,efv‘:‘), I\,n-e-l =L,.
Put p=[L: M|, v=[L:N]"}, r=(L:K]! and

L L L
Pntt = €31, Gnit = €N, Tngl = €K

for n = 0,1,2,.... Then it is clear that {r, : » = 1,2,...} satisfies the Jones
relation that r;r; = rjry (|i—j| 2 2), 7ireg1ri = 77y We also get that if li—-jl 2 2,
then pip; = pjpi, 49 = ¢;¢, Pi¢; = ¢;pi- But the other commutation relations
seems to be complicated. Hence, we shall consider only the special case that
Ang (M, N) = Op-ang . (M, N) = {%}. The Jones relations appear again if we
take cross terms:
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PRroPOSITION 7.3. Suppose that Ang (M, N} = Op-angr(M,N) = {g—}

Lel
Pn, nisodd gn, © i o0dd
€n = ‘ . , fn = . -
gn, N is even Pn, N is cven
Then {e, 1 n = 1,2,...} and {fn : n = 1,2,...} satisfics the following
relalions:

(i) eiej = ejes (Ji — j} > 2),
(ii) eieix16; = pey,
(i) fif; = fifi (i-3122),
(iv) fifir1 fi = vfi,

(V) emfa = fnem, foranyn,m=1,2,....
Proof. We have

) _[[L:M], niseven _ __{[L:N], n is even
[L"'M”]_{[L:N], nisodd ’ (L ] = [L:M], nisodd ~

We note that p, € M,, C L, and ¢, € N, C L,. Thus p, commutes with
{pr 1k =1,2,...,n—1} and {qx : k = 1,2,...,n — 2}. Similarly, ¢, commutes
with {pr : £ =1,2,...,n—2} and {q; : k = 1,2,...,n— 1}. By the assumption
that Ang (M, N) = Op-ang L(M, N) = {£}, pngn = gnpn for n =1,2,.... Thus,
(1), (iii) and (v) are proved. For (ii) and (iv), we get

Gn41Pndns1 = B (Pa)gn+1 = [Lac1 i Ma_1] 'gnt1  (by Lemma 7.2)

HGn41, nisodd
~ \ ¥gn41, mniseven’

Similarly, we have
YPn+t, nisodd

Pn41nPnyt = {I—ﬁpn+1s n is even

Next we shall show that p1gap1 = ppi, that is, efyef? ek, = pely. Let {ug, ..., um}
be a Pimsner-Popa basis of M over K. Then ef, = Y wekul € My C L,

%
by Lemma 3.4. We may assume that these operators act on the Hilbert space
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L3(L,tr). For n(zeky) € LE(Ly,tr) (z,y € L), we have

L
eM‘le eMU(“Ky) = cMC

- ehe}"v‘ln((zuzexu Jock)
= ehekin(S wBk(uz)eky)

( (Zu,EK ule) eKy))

= on(5 I )

), ekn(Bly(2)esy) = EMntel, B (2)eky)
T K) LK)

= ’['[A‘Ll—‘}%’]lﬂ(eﬁl{Eﬁ]( )EN"/) = N'l?(eMz:e eNy)

X ’i(eM“‘eKy)

= pn(efrzeky) = peyrn(zeiy),

thanks to Lemma 7.1 and 3.4, Theorem 7.1, and Ang (M, N) = {725} This shows
that pygap; = pp;. Similar arguments complete the proof of (ii) and (iv). 8
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