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ABSTRACT. In the previous paper, when measurable functions «,2 and a

weight function W satisfy some conditions, we gave the necessary and suffi-

cient condition of the boundedness of singular integral operators o Py 4 fP_

in the weighted norm of L?*(W), where P4 is an analytic projection and P_

is a co-analytic projection. In this paper, we give it completely in general.

KEYWORDS: Hardy spaces, singular integral operators, analytic projections,
weighted norm inegualities.

AMS SUBIJECT CLASSIFICATION: Primary 45E10; Secondary 46J15, 47B35.

1. INTRODUCTION

Let m denote the normalized Lebesgue measure on the unit circle T = {¢; || = 1}.
Let A be the disc algebra, that is, A is the algebra of all continuous function f on
T whose negative Fourier coefficients are zero. For 0 < p < 0o, the Hardy space
H? = HP(T) is the closure of*A in L? = L?(T), and H® = H>(T) is the weak-*
closure of A in L*® = L*®(T). A function Q in H* is an inner function if |Q| = 1.
A function k is an outer function if there exists a real function ¢ in L' and areal
constant ¢ such that h = e!+i+i¢ where { denotes the harmonic conjugate function
of t. Let Ag be the subspace of all functions f in A whose mean value is zero, and
let Ag be the subspace of all complex conjugates f of functions f in Ag. Let S be
the singular integral operator defined by

550 = % [ by
T
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(cf. [4], p- 12), the integral being a Cauchy principal value. If f is in L!, then
Sf(¢) exists for almost everywhere ¢ on T', and Sf(() is a m-measurable function.
We shall define the analytic projection Py and co-analytic projection P— by
I+S I1-5
'P+ - 2 3 P— - 2 1
where I denotes the identity operator. Then Py maps A + Ay to A, P_ maps

A+ Ag to Ag, and
| (P — PL)F(C) = S1(¢) = if(¢) + / f dm.
T

For a non-negative function W in L!, L2(W) is a Hilbert space of m-measurable
functions equipped with the norm

i = { [ 177w em}*
T

Arocena, Cotlar and Sadosky [1] gave a refinement of the Helson-Szegd theorem
(cf. [5]) and the Koosis theorem (cf. [6]). They characterized those weights W
for which § = P, — P_ is bounded in terms of the norm of S. For functions o
and 4 in L, singular integral operators a Py + SP- have been studied (cf. [4]).
Nakazi and the author [7] gave the necessary and sufficient condition of o, # and
W satisfying the weighted norm inequality

l(aPy + BP)fllw < Ifllw  (f € A+ Ad),
when W1 — afﬁ|eS is in L', where s is the argument of 1 — af. In this paper, we
shall make a further development of the results in [7]. We shall not distinguish
between an operator’s being bounded and being densely defined and extendable by
continuity to a bounded operator. The above inequality implies that a Py + SP_
is bounded in L%(W) with norm one.

The main theorem is Theorem 1 in Section 2 which gives the necessary and
sufficient condition of a, 3 and W satisfying the above inequality using an inner
function @, even when W[l — orEles is not in L'. In Section 3, we shall obtain
several corollaries of Theorem 1. We shall give another proofs of the Helson-Szego
theorem and the Koosis theorem using Theorem 1. Feldman, Krupnik and Markus
[2] obtained the connection between the norms of the operators aPy 48P and P,.
In Corollary 6, we shall give the another proof. Theorem 2 is the main theorem
in [7) which gives the necessary and sufficient condition of the boundedness of
aPy + BP_ in L?*(W) with norm one which does not use an inner function @
when W|1 — afle’ is in L!. We shall give the another proof of Theorem 2 using
Theorem 1.

The author wishes to thank Prof. T. Nakazi for many helpful conversations.
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2. THE MAIN THEOREM

The proof of Lemma 1 requires the Cotlar-Sadosky theorem (cf. [1], [9]). The
proof of Theorem 1 requires Lemma 1 and the inner-outer factorization theorem
(cf. {31, p. 74).

DerFiniTION 1. For given functions o and £ in L, put

E={CeT; a(() # B}

LEMMA 1. (cf. [7]) Suppose o and B are in L™, and W is a non-negative
function in L' satisfying [ W dm > 0. Then o, 3 and W satisfy the weighted norm
E

inequalily

(aPy + BP)fllw <l (f € A+ Ao)

if and only if fo| € 1, |B] € 1, log(|1 — @B|W) is in L} and there ezists a k in H'
such that
(1 - aB)W — k> < (1= |of?)(1 - |B")W*.

Proof. We shall prove the “only if” part. The proof is reversible. Put Wy, =
(1= |a )W, Waa = (1 - |B]2)W and Wiz = Way = (1 — af)W. Then |Wi,|? -
W11 Wag = |a — B12W?, and

3 /f,-?ijkdm >0 (fi €A fre ).

jrk=1:2T

By the Cotlar-Sadosky theorem, Wiy > 0, Was > 0 and there exists a k in H! such
that |Wia — k[? < Wi Was. Since dem > 0, this implies & 1s non-zero. Since
E

|k| € (W11 Wa)/2 4+ |Wia| < 2|Wia|,log|Wis| isin L. Hence W > 0, |a| < 1 and
|| € 1. This completes the proof. W

DEFINITION 2. For given functions o and 8 in L* satisfying |1 — a8| > 0,
put '
_ la—81
= =,
[1—-af|
THEOREM 1. Suppose a and B are functions in L™ satisfying m(E) > 0.
Suppose W is a positive function in L. Then o, and W salisfy the weighted

norm inequality

(@Py + BP-)fllw < Ifllw  (f € A+ Ao)
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if and only if |o| < 1, |8} € 1,|1 - aﬁ—l > 0 and there exisis an inner funciion Q
and real functions t,u,v in L' such that

1— C'E it = 6
——— = Qe¢", 1—af|W =etuty,
=2 —q 1~ o) ,
[v| € cos™tr, rle* +e7¥ £ 2(cosv).

Proof. We shall prove the “if” part. Put k£ = (1 — an)We'““'i", then k& =
Qeif+t+6—iu’ and

(1~ aB)W = kf* — (1 - |a*)(1 - |81")W?
=[1—afPW2{1 —e " "> - (1 - r?)}
= |1 — aff|*W2e ¥ {r2e" 4 ¥ — 2(cosv)} < 0.

Since |a| € 1 and |B| € 1,]k| < 3W. Since W is in L}, kis in H?! (cf. [3], p. 74).
By Lemma 1, o, 8 and W satisfy the weighted norm inequality. We shall prove
the “only if” part. By Lemma 1, log(|]1 — aE|W) isin L' and there exists a'k in
H?! such that

(1 —aB)W — k|? < (1 - |e|>)(1 - |8 )W?2.

Hence )

k £1-r2

e

Since m(E) > 0 and r > 0 on £, k is non-zero. By the inner-outer factoriza-

tion theorem, there exists an inner function @ such that

k = Qeloslkl+itlog k)™

Put u = log |1 — af|W —log |k|, then u is in L!. Put v = Arg {(1 - a8)/k}, where

—7m € Argz < m. Then

l—e Pl -72

Hence |v| < cos™! r (let the reader make a diagram, cf. [7]). Put ¢t = log k| — &,
then ¢ isin L', and { = (log |k|)~ 4 v — ¢, for some real constant ¢. Hence

(1-aB)W =" (li—l) 11— aBiW

- Qei(z‘+c)|1 _ aﬁ|W - Qei(:’+c)+t+u+ﬁ_
Hence (Qe'¢)e = (1 — of)/|1— af] and |1 — aB|W = e'++7 Then
r2e¥ 47 —2cosv) = e*{[1—e P~ (1 -r})} 0.

This completes the proof. 1



BOUNDEDNESS OF SOME SINGULAR INTEGRAL OPERATORS : 247

3. COROLLARIES OF THEOREM 1

We shall prove Corollary 2 and Theorem 2 using Theorem 1 and the Neuwirth-
Newman theorem (cf. [8]). In [7), we proved the Helson-Szegd theorem (cf. [5])
and the Koosis theorem (cf. [6]) using Theorem 2. In Corollary 3 we shall give
an another proof of the Helson-Szegd theorem using Corollary 2. In Corollary 5
we shall give an another proof of the Koosis theorem using Corollaries 2 and 4.
In Corollary 6, we shall give an another proof of the Feldman-Krupnik-Marcus
theorem (cf.[2]) using Corollary 2.

COROLLARY 1. In Theorem 1, e!/{|1 — aB|W) is in L.

Proof. Tn Theorem 1, |1 — af|W = e!*%*% and =¥ < 2(cosv). Hence
et . .
———=— = %Y < 2cosv)e” .
11— aB|W
Since |v| € cos™ r € /2, (cosw)e™? isin L' (cf. [3), p. 161). This completes the

proof. 1

COROLLARY 2. Suppose o and f are functions in L™ satisfying m(£) > 0,
and of3 is a complex constant. Suppose W is a posilive funciion in L. Then o, f8

and W satisfy the weighted norm inequality

l(aPy + BPfllw < Ifllw  (f € A+ Ao)

if and only if |o| € 1, 18] €1, af is not equal 1o one, and there exisls a constant

C and real functions u,v in L' such thal
W = Ce*¥?, fv] € cos™ 7,

rle¥ + e < 2(cosv).

Proof. We shall prove the “if” part. Since 1 — af is a non-zero constant,
there exists a real constant y such that (1 — af)/[1 — aff| = ¢7. Put t = logC —
log |1 = af|, then

W = Ce®t? = |1 — affle!t**7.

By Theorem 1 with Q = ', this implies the weighted norm inequality. We shall
prove the “only if” part. By Theorem 1, there exists an inner function @, and
real functions t,u,v in L' satisfying the condition in Theorem 1. Since afl is a
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constant, by Lemma 1, 1 - ‘aE is a non-zero constant. Hence there exists a real
constant 7y such that

- Qeii.

Hence Qe'*+i—1Y = ¢! > 0. By Corollary 1, e!/Wisin L', Since W is in L!, ¢
is in L1/2. Hence Qe!*+*~17 is a non-negative function in H/2, By the Neuwirth-

Newman theorem, @ = €' and there exists a constant  such that e = C. This
completes the proof. B

COROLLARY 3. (Helson-Szegd) For a positive funclion W in L', the follow-
ing condiiions are mutually equivalent.
(1) There ezist & and B in L™ saiisfying ess inf o — ] > 0, and

(@Ps + AP )fllw < (lflw  (f € A+ Ao).
(i1) There ezists a constant M such that
1P+ fllw < MlIfllw  (f € A+ Ao).
(iii) There ezist real functions u and v in L™ such that

W = e+, Mh<§

Proof. We shall show that (i) implies (ii). Put & = ess inf | — f]. Since
(a = BYPy = (aPy + BP_) — BI, (i) implies
1Py fllw < (e = B)Py fllw < (1 + [1Bllco )l fllw -
This implies (ii). The converse is clear. We shall show that (i) implies (iii). Put
a=M"tand #=0. Then m(E)=1,r = a= M~! and aff = 0. By Corollary 2,
there exists a constant C and real functions u,v in L! such that
W = Ce“*?, [v] € cos™H (M) < %,
M~%¥ 4e ¥ 2(cos v).
Hence u is in L. This implies (iii). We shall show that (iii) implies (ii). Since u
is in L™ and ||v[|infty < m/2, there exists a constant M such that M > 1 and
e +e7% < 2M(cosv).
Put v’ = u 4 log M, then
MW = Met+? = ev'+9,
IM~ g M2t + et < 2(cosv).
Hence |v| € cos™!(M~!). By Corollary 2 with @ = M=}, =0and r =
M~ we have
WM Py fliew < Ifllew  (F € A+ o).
This implies (ii). This completes the proof. i
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COROLLARY 4. Suppose o and 3 are functions in L™ satisfying m(E) > 0.
Suppose W is a positive function in L'. Then,

(aPs + BP)fllw = lIfllw  (f € A+ Ag)

if and only if o] = 18] = 1, |a — 8] = |1 — afB| > 0 and there ezists an inner
function Q and a real function t in L' such that

_L:i_ it — B ._‘t
il——am_Qe’ 11— af|W = ¢,

Proof. We shall prove the “if” part. Since (1 — o)W = Qe+ (1 - af)W
is in H!, Since |o| = |3] = 1,

171y = @y + 8P) 1y = 2Re. [ (PLA(PT)(L = aB)W ém =0.
T

We shall prove the “only if” part. Since

J1pasia=tafywam= [P - 60w am =o,
T

T

le] = |8] = 1. By Theorem 1, |o — 8] = |1 — af| > 0 and there exists an inner
function @, and real functions ¢, u,v in L! satisfying the condition in Theorem 1.
Hence » = 1 and v = 0. Since

2< e +e7% = rle” e g Ycosv) € 2,

u = 0. This completes the proof. 1

CoroLLARY 5. (Koosis) For a non-negative funciion W in L, the following
condilions are mulually equivalent:
(i) There exist o and B in L™ satisfying [ W dm > 0 and
E

(P + BP)fllw < [Ifllw  (f € A+ Ag).
(ii) There ezxists a non-zero function U such that
1P+ fllv € ifllw  (f € A+ Ag).

(iii) W= is in LL.
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(iv) There ezist o and B in L*® satisfying [ W dm > 0, and
E

I(aPy + BP)fllw = Ifllw  (f € A+ Ao).

Proof. We shall show that (i) implies (i1). Since (@ — )Py = (a Py +P_)—
A1, (1) implies
l{e = BYPy fllw < (14 |IBllco )| fllww -

This implies (ii) with U = |a = B|2°W/(1 4 ||B|les ). We shall show that (ii) implies
(iii). By (ii),
Allv € lAllw (L € A).
This implies U € W. Put G = {¢;U(¢) > 0}, then m{G) > 0 and W > 0 on G.
Put o = (U/W)'/?xg and # = 0. Then £ = G and hence m(E) > 0. By Lemma
1, log W is in L'. By Corollary 2, there exist real functions « and v such that
jv] € 7/2 and
Wl =Clem* % < 20 M cosv)e™".

Since (cosv)e~? is in L' (cf. [3], p. 161), W' is in L'. We shall show that (iii)
implies (iv). Since W1 is a positive function in L', W=! 4+ i(W~1)"is an outer
function (cf. [3], p. 68). Put h = 2/{W~1 +i(W~')"}. Since |h| < 2W, his an
outer function in H'. Hence there exists a real function ¢ in L! and a real constant
¢ such that h = et+i#+e Pyt o = h/h and g = —1, then |a — 8| = 2(Reh)/|h| =
[hl/W > 0. Since (1 — af)W = h, we have

it-+ic: ’_": I_CEE
[hl 11— afl’

[1—aBlW = |h| = ¢

By Corollary 4 with @ = e'°, this implies (iv). It is clear that (iv) implies (i). This
completes the proof. &

DerFINITION 3. For given functions a, # in L® and a positive function W in
L', ||aPy + BP-||w denotes the infimum of the constant C satisfying
l(ePy +BP ) fllw < Clifllw  (f € A+ Ao).

CoROLLARY 6. (Feldman-Krupnik-Markus) Suppose o and 3 are complex
consiant. Suppose W is a posilive function in L'. Put M = ||aPy + BP_||lw and
N = ||Psllw. Then

20 = {Jo— BN = 1)+ (lod + 1)} + {Ja = BE(N? = 1) + (jal ~ 1B1)7}
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Proof. We assume a # f. Since

(P +BP)fllw < Mfllw  (f € A+ Ao),

by Corollary 2, af is not equal to M2, M > max {|a|,|8]} > |aB|’/2, and there
exists a constant C and real functions u, v in L’ such that

W = Ce¥t?, lv] € cos™ (M), (M) +e7¥ € 2cosv),

where r(M) = |e = B|M/|M? —af. Since M > max {le|, ||}, 0 < r(M) < 1. By
Corollary 2, this implies

1P+ fllw < o(MYHfllw  (f €A+7o).
Hence N € r(M)~1. Since
1P+ fllw < Nlifllw  (f € A+ Ao),

by Corollary 2, N > 1 and there exists a constant C and real functions u, v in A
such that

W = Ce¥t?, [v] € cos™! N1, N~2%¥ +e7* < 2(cosv).

Put D = (2Re (af)+|a—B|2N?)>—4[af)?. Since N > 1, D > (|a|*—[8]*)* 2
0. Put K = {(2Re(efB) + | — B|2N? + D'/2)/2}1/2, then

— {2Re(af) + o — B’ N} K? +.|afﬁI2 =0.
This implies N = r(K)~!. Since
la|* — {2Re (aB) + la — BPN?}el® + Bl = laf*|la - A°(1 - N?) <0
and
181 — {2Re (aB) + lo = BN?}B + afl® = 18| — BIP(1 - N*) <0,
we have K > max{|e|,|8|}. By Corollary 2,

(aPy + BP-)fllw < Kllfllw  (f € A+ Ap).
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Hence M € K. By the calculation,

N2 = r(M) 2= w(K)" 2 = »(M)?
_ 1K —op?  IM?-ap)?
T K(a- B [M(a—p)I?
M?|K? — aff|? — K2|M? - af|?
|KM(a - B)]?
(K- M) (K2M2 —af)?)
- [KM(a - B)2

= 0.

Hence N = r(M)~! when o # . Hence |a — B|MN = |[M? - of|. This implies
M* = {2Re(af) + o — PN} M2 + el = 0.

Put ¢ = 2Re(af) + o — B|*N?. Since M > max{|a|,|8]}, M? > ¢/2. Since
(2M? — ¢)? = ¢ — 4]af|?, we have 2M? = c + (c® — 4]ef|?)}/2. Hence

L
2

oM = {2c +2(e - 4|aﬂ|2)§}% = (e +2l08]) g (- 2le8])

This equality holds even when a = B, since [|af|lw = |a|. This completes the
proof. N

THEOREM 2. (cf. [7]) Suppose o and f are funclions in L™ satisfying
m(E) > 0 and |1 — afB] > 0. Suppose W is a posilive funciion in L'. Suppose
there exists a real function s in [? such that |1 — afB|We® is in L! and

e'u _ ]L—a’ﬁ
I1—ap|

Then the following conditions are mutually equivaleni:
() l(aPy + BP)fllw < lIflw  (f € A+ A).
(11) There ezists a positive constant C, and two real functions u,v such that
11— aB|W = Cevti=3, |v| € cos™!r,
rZe¥ +e7¥ < 2(cosv).
(iii) There ezisls a positive constant C and real funciions u’, v such that
W= C (ke e b en'tod,

[v] € cos™r,

|’} € cosh™ {{cosw)/r} on E,
—~log(2cosv) < u' on E°.
These conditions imply that {|1 — af|We'}~! is in L!.
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Proof. We shall show that (i) implies (ii). By (i), there exists an inner
function @ and real functions ¢,u,v in L' satisfying the condition in Theorem 1.
Since (1 — aB)/|1 — af| = Qe®, &* = Qe''. Since |1 — af|W = et+u+?

Qet+5+i(f—a) = lti — |1 = Ot—,B—]Weguu_'j.

By Corollary 1, e™¥~% is in L'. Since |1 — af|We' is in L!, Qe'+i+i(i=9) g 4

non-negative function in H/2, By the Neuwirth-Newman theorem, there exists a

constant C such that e'+? = C. This implies (ii) and that {|1 — a8|We’}~! is in

L', By Theorem 1 with @ = /¢ where ¢ = [ sdm, (ii) implies {i). We shall show
T

that (i) implies (il1). Put
r'=1-xg+ryg and « =u+logr'.

Then

e¥ e [1-xg XE u'
{:1~aﬁ|+la—m}e '

11— of| - 1 —af]
Since r2e 4 e™* < 2(cosv), r(e* +e*') < 2(cosv). Hence
|u'| € cosh™'{(cosv)/r} on E,

—log(2cosv) L u=vu' on F°.

This proof is reversible. This completes the proof. #
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