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ABSTRACT. We give a solution to the decomposition problem for completely
positive maps by generalizing Choquet’s theorem in the context of CP-conve-
xity theory, i.e., if A is a separable C*-algebra and H is a separable Hilbert
space, then every CP-state 1 € Qi (A) can be represented by a CP-measure
Ay supported by the CP-extreme elements D g (A) of @u(A).
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INTRODUCTION

The notion of completely positive maps for C*-algebras was introduced by '
W. F. Stinespring ([26)) with its representation theorem, and developed further
in its structure theory by W.B. Arveson ([3], [4]) with applications to operator
theory, and since then it found various applications in operator theory, opera-
tor algebras and mathematical physics (cf. e.g., [2], [6], [9], [10], [11], [22], [23],
[24], and also see more extensive references given in these monographs). However,
despite its proven importance, a fundamental problem, what is called the decom-
position problem, has remained unsolved, i.e., “How can completely positive maps
be decomposed into pure elements?”. The purpose of this paper is to provide
a consistent decomposition theory for completely positive maps by generalizing
Choquet’s theorem in the context of “CP-convexity”, which is a natural operator
convexity for complete positive maps introduced and developed in [12]-{16].

To illustrate the situation of our problem, we shall assume that A is a sepa-
rable C*-algebra, H is a separable Hilbert space, and let CP(A, B(H)) be the set
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of all completely positive maps from A to B(H) (the C*-algebra of all bounded
linear operators on H), and let us denote by Qx(A) the unit ball of the cone
CP(A, B(H)). Then Qgu(A) is a compact convex set with the BW-topology (cf.
Section 1), hence, as a naive approach, one may try to apply Choquet’s theorem
.to represent ¥ € Qu(A) by a boundary measure supported by the set 8,Qx(A)
of all extreme points of Qi (A) (see e.g. [1] for Choquet’s theorem). However, as
we can easily see, every representation 7 € Rep(A : H) of A on H is an extreme
point of Qx(A) in scalar convexity (see Appendix 1), while 7 may not be pure (or
irreducible) and so it may be decomposed into a direct sum of subrepresentations,
ie, 7 = eavr.._. = Epa‘ﬂ'apa where p, is the projection of Hy onto H, . Thus

even the dnrect sum decomposition of representations is beyond the grasp of the
scalar convexity theory, so we realize that the scalar convexity is not suitable for
describing the decomposition of completely positive maps.

As an alternative method, we may apply the decomposition theory of repre-
sentations to this problem. Let ¢ € CP(A, B(H)) be represented as ¢ = V*=V
by the Stinespring representation theorem where 7 is a representation of A and
V € B(H,H,) (cf. Section 1). From the construction of this canonical represen-
tation, we can assume that H, is separable (since A and H are separable), so that
it can be decomposed into irreducible representations, e.g.,

o - ®
= [ 700 wma = Qw0

Then, it would be quite natural to claim that % could be decomposed into pure
CP-maps of the form

b= [VOrVQ o).
z
where V({) could be defined by
V() h :=(VR)(() for he H.

Unfortunately, however, one can realize that V(¢) defined above is not bounded
in general, therefore the integrand V(¢)*7({)V({) may not be a pure CP-map in
CP(A, B(H)). In Section 3, we shall discuss a special class of CP-maps which
allows the above disintegration, where we shall have to assume some strong conti-
nuity of V € B(H, Hy).

The difficulties illustrated above seem to suggest that they are caused by
the lack of fundamental concept to describe decompositions of CP-maps. In our
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previous works ([12], [14]), we introduced the notion of “CP-convexity” for com-
pletely positive maps, where we defined that ¢ € CP(A, B(H)) is a CP-conver
combination of a bounded family of CP-maps (Yo )aca C CP(4, B(H)), if

¥ =) SivaSa with So € B(H) suchthat Y S35, < I,
a€A aEA

where the sum converges in the BW-topology. This convexity obviously includes
scalar convexity and the direct sum of representations as particular cases, and, as
we shall show in this paper, it indeed can describe all possible decompositions of
completely positive maps in the sense of a measure generalization of CP-convex
combination, which we shall call “CP-measure” and develop a theory of integration
with respect to this measure in Section 3. Thus the decomposition problem for
completely positive maps can now be solved by generalizing Choquet’s theorem in
the context of CP-convexity theory as we shall show in Section 4.

We should note that the CP-convex combination is a natural concept in the
C*-algebraic approach in quantum physics, where an interaction between phys-
ical systems can be described by a completely positive map 1, which is called
“operation”, and the coefficient “Sj(-)S,” in the above decomposition is called
“effect” which represents the weight of the operation represented by the CP-map
Yo (cf. [22], [23]). Therefore the decomposition of completely positive maps has
the natural physical meaning of decomposing the interactions into minimal ones.

We shall briefly summarize the content of this paper. In Section 1, we re-
view some basic definitions and results on CP-maps and CP-convexity. In Section
2, we first discuss particular decompositions, i.e., decompositions by CP-convex
combination (Proposition 2.1) and disintegration with respect to a scalar measure
(Theorem 2.4), which we shall use in Section 4. In Section 3, we develop a mea-
sure and integration theory inherent to CP-convexity, where the definition of our
integral is more simple and straightforward than the usual method in the vector
measure theory in Banach spaces, and it would be more suitable for operator al-
gebras. Based on this measure and integration theory, we shall prove our main
result, the CP-Choquet theorem, in Section 4.

We finally note that the CP-Choquet theorem is essentially used in [18]
{though not explicitly stated, but converted into the terms of irreducible decom-
position) to study the general Stone-Weierstrass problem for separable C*-algebras
which originally motivated our present work. We expect that the CP-measure and
integration and the CP-Choquet theorem will find further useful a.pphcatnons in
operator theory, operator algebras and mathematical physics.
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1., PRELIMINARIES. ON CP-MAPS AND CP-CONVEXITY

The definition and ble§ic properties of completely pos';ﬁ:ive maps are given in refer-
“ences e.g. [3], [24], [26], [27]. For our purpose in the present paper, it suffices to
recall the representation theorem. due to Stinespring [26] (which could be consid-
ered as our definition of CP-maps), and some basic properties.

Let A be a C*-algebra, and H be a Hilbert space, then every completely
positive map ¢ € CP(A4, B(H)) from A to B(H) can be represented as

w,b v* 7r(a) for all a € A,

where 7 is a representation of A on a Hilbert space K and V € B(H K) is a
bounded linear operator.from H to K ({26]). We can assume the minimality
condition K = [#(A)V H] without loss of generality, with which the Stinespring
representation is unique up to unitary intertwining operators {[3]). For topologies
in CP(A, B(H)), we consider the norm topology, where we note that ||¢|| = || V|2,
and also the BW-topology which is defined as the pointwise weak convergence
topology; thus a bounded net (¥o) C CP(A, B(H)) converges to ¢ € CP(A, B(H))
in the BW-topology if and only if 14 (a) converges to ¢{e) in the weak topology in
B(H) for each-a ¢'A. If A is a W*-algebra, we denote by CP(A, B(H))n, putting
the suffix n, the set of all normal (i.e., 0(4, A.) - ¢(B(H), B(H).) continuous)
CP-maps from A to B(H). Note that ¢ = V*xV € CP(A, B(H)) is normal if
and only if 7 is normal. In particular, when A = B(H), we write CP(B(H))n =
CP(B(H), B(H))n-

The cone CP(A, B(H)) has a natural ordering induced by the cone itself,
ie., ¢ < ¢ if and only if ¥y — ¢ € CP(A, B(H)). A CP-map ¢ € CP(4, B(H))
is deﬁned to be pure if 0 € ¢ < ¢ for ¢ € CP(A, B(H)) implies ¢ = ¢y with
0 < ¢ <1 Then, ¢ = V*xV € CP(A, B(H)) is pure if and only if 7 is irreducible
(cf. [3]) We denote by Py (A) the set of all pure elements.of CP(A, B(H)). We call
¥ = V*rV € CP(A, B(H)) to be approzimately unitalif V*V = Iy, and we define
Su(A) :={¢ =V*1V € CP(A,B(H)); V'V = Iy}. We denote by PSy(A) the
set of all pure approximately unital CP-maps, i.e., PSg(A) := PH(A) ﬂ Su(A) =
{¥ =V nV € Py(A); V'V = Iy}. For the scalar case, we denote by P(A) the
pure states ofA ie., P(A):= PSc(A)

We denote by Rep (A) [resp Rep .(A),Irr (4)] the set of all [resp. cycllc ir-
reducible] representations of A, and write Rep (4 : H) [resp Repc(A H),Irr (A:
H)) to specify the, Hilbert space H on whnch the representa,txons are confined. Note
that Rep (A H)= {n' € Rep (A) HeC, H } where H, denotes the essentlal sub-
space of m. For m € Rep (A : H), pr denotes the pro_]ectlon ‘of H onto H,. More
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generally, we define the support (or essential subspace ) Hy of ¢ to be the support
of Y(A) in H, or more precisely, if = V*7V € CP(A, B(H)), then Hy := [|V|H]
(the essential support of V), and we denote by py the projection of H onto Hy.
We also define the cyclic dimension a (A) [resp. irreducible dimension a;(A)] by

a.(A) [resp. a;(A)] := sup{dim H, ; 7 € Rep .(A) [resp. Irr (4)]}.

We next review some definitions and results on CP-convexity. A CP-map ¢ €
CP(A, B(H)) is called a CP-state if 9 is a contraction, and the CP-state space of
A for H is defined by Qg (A) := {¢ € CP(4, B(H)); {|#|| € 1}, which generalizes
the quasi-state space Q(A) in the scalar convexity theory. If ¢ € Qu(A) is a
CP-convex combination of (¥a)aca C @u(A4), which was defined in Introduction,
we briefly write

¥ =CP-)_ SitaSa,

aEA

assuming that the condition “S, € B(H) such that Y S;S4 < Ig” is implicitly
. aEA
satisfied. Note that the CP-state space Qu(A) is a CP-conver set, by which we

mean that it is closed under the operation of CP-convex combination. For a subset
D € Qu(A), the CP-convez hull of D, denoted by CP-conv D, is defined as the
set of all CP-convex combinations of elements in D, or equivalently the smallest
CP-convex set including D. For instance, if dimH 2 «.(A), then Qu(4) =
CP-conv Rep (A : H) ([14], Proposition 1.4.A).

The notion of extreme points can be generalized in this CP-convexity as
follows: A nonzero CP-state 1 € Qu(A) is defined to be a CP-eztreme state if
¢ = CP-3 SttaSs with Yo € Qu(A) implies that ¢, is unitarily equivalent to
P, ie., gbaa: UsepUL, and Sy = ¢als (ca € C) where U, is a partial isometry
such that ULUs = py and U,U; = py,. We denote the set of all CP-extreme
states by Dy (A). We have shown in [16] that Dy (A) can be characterized as

Dy (A) = {u*ru € Py(A); u*u = Iy with dimH < dim Hy,Ro})
U {w"ru € Pa(A); we’ = Iy, with dimH > dim H,},

i.e., the CP-extreme boundary Dy (A) consists of pure approximately unital CP:
maps (which appear only when H is finite dimensional) and irreducible representa-
tions of A on H. Note that it can be expressed according to the dimension of H as
Dy(A) =Irr(A: H)if dim H 2 inf{a:(A),Re}, and Dy(A) = PSuy(A)Ulrr (A :
H) if dim H < inf{a;(A), Ro}, and especially Dc(A) = P(A) (cf. [16]).
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As another different way to define CP-extreme states, we could assume that
S« (o € A) are all positive, and require that ¢, = ¥ and Sp = ¢opy (¢o € C) for
1 to be CP-extreme, then we have slightly different CP-extreme states

Ep(A) = {u"mu € Py(A);v'u=Iy or uu’ = Iy},

which consists of all pure approximately unital CP-maps and irreducible repre-
sentations of A on H, ie., Eg(A) = PSu(A)JIrr (A4 : H) (cf. [16], [17]). Note
that Dg(A) C Eg(A) in general, and the above subtle difference yields the facts
that Dy (A) is convenient for algebraic theory (cf. [16]), while Eg(A) is useful
for convexity arguments (cf. Section 2). However, if A and H are separable, then
Dy (A) satisfies the both needs (cf. Remark 1 in Section 2), and shall be used in
Section 4.

We shall briefly review duality theorems in CP-convexity. A function 7 :
Qu(A) — B(H) is defined to be CP-affine, if

% =CP-Y  SivaSs with $s'€ Qu(A) implies () =) S57(¥a)Sa-

We denote by AC(Qu(A), B(H)) the set of all bounded BW-w continuous CP-
affine functions from Qg (A) to B(H). Then the CP-duality theorem ({14], Theo-
rem 2.2.A) states that, if diim H > a.(A), we have

A= AC(Qu(A),B(H))  (*-isomorphism),

where the product is defined on Rep (A : H) (cf. [14] for details), which generalizes
Kadison’s function representation theorem with recovering the full C*-structure.
(We note that if dim H < a.(A), then the above isomorphism is reduced to just
an order isomorphism.) We can also generalize the Gelfand-Naimark theorem
for non-commutative C*-algebras on the CP-extreme boundary, i.e., if H is an
infinite dimensional Hilbert space with dimH 2> a.(A), then A is *-isomorphic
to the set of all those B(H)-valued functions on Dg(A) = Irr (A : H) which are
BW-w uniformly continuous and preserve the unitary equivalence relations. This
CP-Gelfand-Naimark theorem and the CP-duality theorem are connected by the
abstract Dirichlet problem, and we can also generalize the spectral theorem for
non-normal operators, which generalizes the same situation of the commutative
case (cf. [16]).
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2. SPECIAL DECOMPOSITIONS

We shall first consider the decomposition of CP-maps by a CP-convex combination
of pure CP-maps. We first note the following basic facts, where we shall call a
representation 7 to be subatomic if 7 is unitarily equivalent to a subrepresentation
of a direct sum of irreducible representations.

PropPosSITION 2.1. Let A be a C*-algebra, H be a Hilberl space, and let
= V*rV € Qu(A). Then the following conditions are equivalent:
(i) 7 is subatomic.

(i) ¥ = 3¢ with ¢; € Py(A).
(i11) ¥ € CP-conv Eg(A).
(iv) 4 € CP-conv Dyr(A) if dim H < Ro or dim H > as(A).

Proof. (i) = (ii) : Assume that 7 is subatomic, i.e., there exists a family
of irreducible representations (;) and an isometry U : H, — @ Hy, such that

T=U* (6? #;)U. Then, denoting by p; the projection of G') Ha, onto Hy,, we have
Yp=VrV = V*U*(e? UV = V*U*(é?p;)(é? m)(@pf) uv
=Y (BUV)'m(pUV) =) Vi'mVi,
¥ i
where we set V; := p;UV. Then ¢ = 3¢ with i := V;'mV; € Pu(4A).

(i) = (iii) : Assume that § = Y9 with % = VemV; € Pa(4). Let

]
Vi = v;|V;| be the polar decomposition of V;, and define a unitary extension ¥; :
H — H,, of v; such that #¥9; = Iy (if dimH £ dimH,), or %%} = IH-; (if
dim H 2 dim Hy,). Then, we have

Y= |Vilo;m|Vi| where ¥ mi; € En(A) and Y [Vil> € In,
. R £

where the last inequality holds since Y |Vi|2 = Y- V;*V; = V*V £ Iy. This shows
i i

that 9 € CP-conv Ex(A).
(iii) = (i) : Assume that ¢ € CP-conv Eg(A), i.e.,

¥ = S!S with ¢; € Eg(A) and S; € B(H) such that »  S7S; < In.
Let ¢; = V*m;Vi be the Stinespring representation of ¢;, where m; € Irr (A) since
¥; € Eg(A). Then
Y=V =) SIVImVSi = (@ ViS) (@ m) (@ ViS:) = W'pW
N 1 1 4 3
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where W := GBV.S' and p = &)w,[[(e; x:)(4)wH] is introduced to represent the

minimal representatlon Since the mmlmal representation is unique up to unitary
equivalence, there exists a unitary operator U : Hy — H, such that

m={U"pU  and V=U"W.

Hence, 7 = U*(® m;) U, so 7 is subatomic.

Gii) = (iv) : If dimH < Ro, then Dy(A) = Ex(A), so it is trivial. As-
sume that dimH 2 «;(A), then Dy(A) = Irr(A : H) (cf. Section 1). Let
@ € Eg(A), then ¢ = u*7u with 7 € Irr (A) and u*u = Iy or uu* = Iy_. Since
dim H 2 ai(A), there exists a co-isometry v : H — H, with vo* = Iy _, so that
¢ = (v u)*(v*mv)(v*u) where v*mv € Irr (A : H) = Dg(A) and v*'u € B(H)
with (v*u)*(v*u) = u*(vv*)u = w*Iyg_u = w*u < Iy. This means that ¢ €
CP-conv Dy (A), i.e., Ey(A) C CP-conv Dy(A). Hence ¥ € CP-conv Eg(A) C
CP-conv Dy (A).

(iv) = (iii), under the condition dim H < Rp or dim H 2> a;(A), is trivial
since Dy (A) C Ey(A). 1

We recall that a C*-algebra A is defined to be scatiered if the enveloping
WH.algebra A** is atomic, which can also be characterized by the above equivalent
conditions with letting H = C and ¢ € Q(A), replacing CP(A : B(H)) with (A*)*,
and especially by the fact that any representation of A is subatomic (cf. [21]). Then
observe that CP-conv Ey(A) generalizes o-cony (P(A)|J{0}) := {f: Aiwi; wi €

f=1

. -
P(A), Ai > 0 with Y A < 1}, which is the atomic part of the quasi-state space
i=1
Q(A). Hence, we immediately have the following.
COROLLARY 2.2. Let A be a C*-algebra and H be a Hilbert space. Then A
is scattered if and only if one of the following equivalent conditions is salisfied.
(i) Any ¢ € CP(A, B(H)) can be writlen as ¥ = 3 i with ¢; € Py (A).
(i1) Qu(A) = CP-conv Egy(A).
(iii) Qu(A) = CP-conv Dy (A) ifdimH < Ro erdim H 2 oi(A).

REMARK 1. Assume that A and H are separable, then o;(A) € Rg, so that
dimH < No or dimH = ¥y 2 «;(A). Hence, we can drop the condition “if
dimH < ®p or dimH 2> @;(A)” from Proposition 2.1 (iv) and Corollary 2.2 (iii)
in this case.

REMARK 2. If H is separable, then the decomposition by CP-convex com-

bination is a countable sum. In fact, let ¥ = CP- 3 S7¢;S: with ¥; € Qu(A) for
i€l
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t € I. Note here that B(H) is o-finite since H is separable, so that there exists a

faithful normal state wg € B(H ).. If A has a unit e (or if A is not unital, using an

approximate unit), we have 0 < wo(¥(e)) ;\wo(z St 1,&,-(6)5,—) Lwo (E S;*S,') =
‘ i€7 i€l

> wo(S7 Si) € wo(Ig) = 1, so that Y SIS; is a countable sum on the faithful

i€l il

normal wy, hence I is countable.

REMARK 3. K. Kraus ([22]) showed the above decomposition into pure CP-
maps for the particular case ¢ € CP(C(H), B(H)) = CP(B(H)),, where C(H)
denotes the C*-algebra of all compact operators on H, which is a typical example
of a scattered C*-algebra. '

‘' We shall next investigate a class of CP-maps which can be disintegrated
into pure CP-maps with respect to a scalar measure. We have to prepare some
definitions and notations of countably Hilbert nuclear spaces, for which we refer
to [20].

Let 2 C Hn C ' be arigged Hilbert space. Recall that the nuclear topology
of the countably Hilbert nuclear space € is defined by a chain of countably many
Hilbert spaces 2, with norms || - [|. (n = 1,2,3,...), such that

”'”1s”'lhs"‘QH'”nSH‘”n+1g"'

and
QC - Cp1 CR C---C R CQ C Hy.

Since the norm || - || of Hgq is continuous with respect to the nuclear topology on
by definition, there exists n € N such that the embedding 7" : @ — Hgq is a nuclear
(or trace class) operator with respect to the norm || - |[,. We shall denote by (£2)
the minimum of this integer =, i.e.,

7(Q) :=min{n € N; T': Q — Hgq is a nuclear operator with respect to || - ||},

and call the rank of the rigged Hilbert space @ C Hn C €. In the following, we
shall use the abbreviations Q. := Q.qy and |} ||y := |} - [|+(n). It is known that if
H is a separable Hilbert space, then there exists a countably Hilbert nuclear space
Q such that @ C H C ' becomes a rigged Hilbert space.

DeriNiTION 2.3. Let A be a C*-algebra and H be a Hilbert space, and let
P = V*nV € CP(A, B(H)), and assume that there exists a countably Hilbert
nuclear space § such that @ C Hy C Q' is a rigged Hilbert space. Then, 7 is
defined to be pre-nuclear if V € B(H,(Q,), i.e., V is a bounded linear operator
from the Hilbert space H to the Hilbert space €, with the || - [|,-norm. We also
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oo
define 9 to be nuclearif ¥ € B(H,Q,) forallneN,ie,, V:H - Q= ] Qu is

=1
continuous with respect to the nuclear topology. "

REMARK 4. As an example of nuclear CP-maps, we cite the class of finite

rank CP-maps, i.e., ¥ = V*7V where dimV H < co. One can take a countably
* Hilbert nuclear space € such that VH C Q and Q C H, C Q' is a rigged Hilbert
space.

REMARK &. If ¢ = V"7V is pre-nuclear, then V is a trace class (nuclear)
operator from H to H,, i.e.,, V € T(H, H,), since V can be decomposed as V :

H AR Q. l» H, where T denotes the nuclear embedding.

Now, we can prove the following decomposition theorem for pre-nuclear CP-
maps.

THEOREM 2.4. Lel A be a separable C*-algebra and H be a Hilbert space. Let
th = V*7V € CP(A, B(H)) where 7 is a represeniation of A on a separable Hilbert
space Hy, and assume that ¢ is a pre-nuclear CP-map with respect to a rigged
Hilbert space structure Q@ C Hy C Q. Then, for any mazimal abelian subalgebra
My of m(A), there ezist a standard measure space (Z,p) and measurable familics
of irreducible representations (m(¢})¢cez C Irr (A : H) and trace class (nuclear)
eperators (V(())cez C T(H, Hx({)) such that

v= [V HOVQau)  (BW-integral)
Z

i.e.,
(¥(a), p)= / (VO (@) V((),p)du(() forall ac A and pé€ B(H)..
zZ

Proof. From the standard disintegration theorem (e.g., [8], Theorem 8.5.2),
there exists a standard measure space {Z, i) corresponding to My, and a mea-
surable family (7(¢{))¢cz of irreducible representations of A on (Hx({))¢ez such
that

& @
m= [ a0 and He= [ B0 0.
Since Hy is equipped as a rigged Hilbert space § C H, € €, and H,
is represented as the direct integral of Hilbert spaces (H,({));ez, according to

Gelfand-Vilenkin’s theorem ([20], Section 4.4, Theorem 1'), there exists a family
of nuclear operators {P(C) : & — Hx({)}¢ez such that, for every f € Q,,

POy =1() for pae(€Z



DECOMPOSITION OF COMPLETELY POSITIVE MAPS 283

(The original theorem by Gelfand-Vilenkin is stated for 2 instead of Q,., however
it can be easily seen that their proof is true for §,, since it only depends on the
existence of a nuclear map T : Q, — H, as they remark after the proof.)
By the assumption that ¢ is pre-nuclear, V € B(H,,), so that we can
define
V() =PV : H— Hx((),

where note that V(() is a trace class operator from H to H,({), i.e., V({) €
T(H,Hx({)) C B(H, Hx({)), which ensures V({)*7({) V() € Pu(A). Then, for
any ¢ € A and f,¢g € H, we have

(¥(a)f,g) = (x(a)V £, Vg)
= [GO@E 1), (V)e) du(c)
Z

- ] (T (O@VQ)f, V(Qg) dlC)
4

= / (V(¢) (¢ @)V (C)F, 9) du(C)-
Z

Since any p € B(H), is of the form p(2) = _(zfi,g:) for z € B(H) with

i=1

OO o]
> £l < 00, 32 lgill? < oo (e.g., [25], Corollary 1.15.4), it follows that
i=1 i=1

(¥(a),p) = /(V(C)'W(C)(a) V{({), p) dp ().
z

This completes the proof. 1

3. CP-MEASURE AND INTEGRATICON

In this section, we develop a measure and integration theory inherent to the _iotion
of CP-convexity. To illustrate our motivation, we shall recall that a scalar o-convex
combination can be interpreted as the barycenter of an atomic probability measure.
In analogy, a CP-convéx combination

Y= Si¥aSe where Yo € Qu(A) and Sa€ B(H) with > 555, < Iy
a€A a€A

could be interpreted as a distribution of the weight of “effects” S3(-)Sa
€ Qu(B(H))n in the sense of the theory of operation. Therefore, in the scope of
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the CP-duality A = AC(Qu(A), B(H)), we could claim that 4 is the barycenter of
a Qp(B(H))n-valued measure, if the integral of the elements of AC(Qg (A), B(H))
with respect to this measure is meaningful. We thus realize that we need to develop
a CP-map valued measure and integration theory. In the following, we actually
formulate the theory for more general setting with P(A, B)-valued measure where
P(A, B) denotes the set of all positive lincar maps between order-unit spaces A and
B, and define the integral of A-valued strongly, and weakly, measurable functions
with respect to this P{A, B)-valued measure.

Let (X, B) be a measurable space, A be a (real) order-unit space, where we
shall denote the order-unit of A by e, and let B be a (real) dual order-unit space,
i.e., there exists a base-norm space B, such that B = (B,)*. (See [1], Chapter 1,
Section 1 for the definitions of order-unit spaces and base-norm spaces. More
generally, it would suffice to assume that B is an ordered real Banach space, and
there exists an ordered real Banach space in separating order and norm duality
with B, and that B is pointwise monotone o-complete with respect to this duality.)
We denote by S(X, A) the set of all (countable valued) simple functions from X
to A, i.e, f € 5(X,A) is a function f: X — A of the form

o
f= Z'xgl. a; with (E)2, C B (disjoint) and (a;)ie; C A,
i=1
where xg denotes the characteristic function of E € B. We denote by BS(X, A)
the set of all bounded simple functions from X to A. It is straightforward to
see that BS(X, A) is a normed (real) linear space with the sup-norm; j|f]] :=
sup{||f(z)ll;= € X}. :
Let A be a P(A, B)-valued BW-countably additive measure, i.e., A : B —
o3
P(A, B) is a map such that, if E = 5 E; with E; € B (disjoint), then ME) =

i=1
oQ
5 A(E;) converging in the BW-topology, i.e., for any a € A and p € B,, (AME)a,
i=]
=]
pY = Y (MEi)a, p). We first claim the following lemma.
i=l

LemMa 3.1. Let (Ey)2, C B be disjoint and (a;){2; C A be a bounded
e
sequence. Then the series 3 A(E;)a; converges in o(B, B, )-topology.

f=1

Proof. We first assume (a;) C At := {a € 4; a 2> 0} and set b= Y A(Es) e
1=1
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for n € N, then b, is an increasing sequence in B, Observe that

ba < Z;A(Ei)”ai“e < (ét:gnlla.-ll) E,\(E,-)e

= (sup fhal}) A3 5:)e < (sup lasl]) ACX)e

1€ig<n i=

Since (b,) is a bounded and increasing sequence in B, and B is monotone o -
complete, (bn) converges to 1. u. b.{(bs) = Z ME;)a; € B in o(B, B, )-topology.

In case that (a;) C A is more general we decompose a; = a( ) (2) with
a0 € A*, and we define

Z MEda; = Z M E;)a Z ME:)a?.

i=1

This definition does not depend on the way of decomposition a; = fl) (2)

indeed, if a; = a(l) af® = & = &% where af’),&(’) € At (j = 1,2), then
(l) +d(2) = a(l) + a( ) hence

Z MEN ) +&7) = Z MEN @D + ),

i=1

iLe.,

Z AE)a) + Z MENED = ZA(E Dalt + Z,\(E )al?,

i=1 =1

so we have

o0 o0 o0 o0
S oMEYe) =Y AE)D = 3 aENE - Y MENET . W
i=1 t=]1 i=1 i=1
REMARK 6. We note that the above lemma holds when A is finitely additive
at the order unit e.

We then define the integral of bounded simple functions as follows.

DEFINITION 3.2. Let A : B — P(A, B) be a BW-countably additive measure
and let f € BS(X, A) which is expressed as

f= Exg‘.a.- with (E;) CB (digjoint) and (a;) C A (bounded).

=1
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Then, we define the integral of f with respect to A by

o
/f dr:=)Y MEi)a €B.
X i=1
REMARK 7. The above integral is well defined, i.e., it does not depend on
any particular way of the expression of f € BS(X, A), which can be proved in
a straightforward manner (see Appendix 2). We note that the BW-countably
additivity of A is necessary for this proof of well-definedness.

Let T denote a topology in A, and 8, denote the Borel sets induced from
the r-topology in A. A function [ : X — A is defined to be 7- measurable if its
range f(X) is 7-separable in A, and f~!(E) € B for all E € B,. We denote by
M, (X, A) [resp. BM,(X, A)] the set of all [resp. bounded] r-measurable functions
from X to A. The following is a direct generalization of the well-known fact for
norm-measurable functions (see e.g., [7], II. Corollary 3).

LEMMA 3.3. Assume that any bounded pari of A is metrizable in the lopol-
ogy 7. Then BS(X, A) is dense in BM, (X, A) with the T-uniformly convergence
topology.

Proof. 1t is enough to prove our assertion for the unit ball of BM, (X, A).

We denote by d(-,-) the metric in the unit ball of A in the topology 7, and

we define Sy(a) := {b € A;d(a,b) < r} for r > 0. Let f € BM,(X,A) with

[|£]] < 1, and let (ax)§2, be a 7-dense subset of f(X'). For each n € N, define

Yk(") = f"(S*(ak)ﬂf(X)) € B and set Xf_‘") = Yk(n] \JUL Y,(") € B. Then,
Sk

[es)
for each fixed n € N, X,(c") are mutually disjoint and X = |J X,(b"). We define
k=1

©0
Jo = ) Xytmar € BS(X,A). Then f, converges uniformly to f, because, for
k=1 k

every n € N and z € X, there exists & € N such that z € J\'in) and we have
d(fa(z), f(z)) = dar, f(z)) < % W

We first define the integral of bounded norm-measurable functions, for which
we write 7 = 5. The proof of the following lemina is immediate from the definition.

LEMMA 3.4. The integral A(f) := [ fdA for f € BS(X, A) defined in Defi-
nition 3.2 is a bounded linear map from BS(X, A) to B with ||A[] = ||A(X)e]l.

DEFINITION 3.5. Let A be an order-unit space and B be a dual order-unit
space, and let A : B — P(A, B) be a BW-countably additive measure. Then,
by Lemmas 3.3 and 3.4, the integration map X : B5(X, A) — B has the unique
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bounded linear extension to BM,(X, A). We call this map the strong integration
of elements in BM,(X, A) with respect to A.

We next assume that A is a dual order-unit space, i.e., there exists a base-
norm space A, such that A = (A4,)*, and then we shall define the integral of
bounded weak* (i.e., o(A, A.))-measurable functions, for which we shall write
T = w. Since it seems hardly possible to formulate the general case for this weak
integral, we shall consider a particular case as defined below, which shall be enough
for our purpose in Section 4.

Let A : B — P(A, B), be a BW-countably additive measure where P(A, B),
denotes the set of all normal (i.e., ¢(A, A.) - ¢(B, B,) continuous) positive linear
maps from A to B. For most of applications, for example W*-algebras and JBW-
algebras, this normality is equivalent to monotone continuity, so it would suffice

to restrict ourselves to these cases.

DEFINITION 3.6. Let A : B — P(A, B) be a BW-countably additive measure.
For each a € A, p € B,, and E € B, define A, ,(E) := (A(E)a, p). If there exists a
scalar measure v such that A, , <« v uniformly for @ € A and p € B., then we say

that A is BW-absolutely contlinuous with respect lo v.

LEMMA 3.7. Let A : B — P(A, B), be a BW-countably additive measure
which is BW-absolutely continuous with respect 1o a scalar measure v. Let (f,) C
BS(X,A) be a Cauchy sequence in the uniform w*-convergence topology. Then
(bn) = ([ fadX) is a Cauchy sequence in o(B, B,)-topology.

X

Proof. Since A;, < v for any a € A and p € B., by Lebesgue-Radon-
Nikodym’s theorem, there exists a unique F(a,p) € L1(X,v) such that, for any
E € B,

daslB) = B0 = [ Fla,p)(o) do)
E

We note that, since A(E) is normal (i.e., (A, A.)-o(B, B.) continuous), for any

fixed p € B, and E € B, themap a € A — [ F(a, p)(z)dv is 6(4, A.)-continuous.
E

Moreover, from the above definition, for each fixed p € (B,)*, the mapa € 4 —

F(a,p) € L}(X, v) is positive linear and monotone continuous, so that F(-, p)(z) €

A, for v-ae. z e X.
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o0
Let fo = 3~ x&,a; with disjoint (£;) C B and bounded (a;) C A, and observe
i=1
that, for each p € B,,

(bm - bﬂ)p) = (/(fm - fn)d)‘:l’)
X

-3 (N8 (4 -). 1
1) .
=% [ R -, 0) @) vt

b E; nEj

/F(fm(:c) - f,,(:r),p)(z)dv(a:).

X

il

Since (fm(z) ~ fu(z)) — O uniformly as m,n — oo in o(A4, A, )-topology, from

the above remark, F(fm(z) — fa(z), p)(z) — 0 for v-a.e. z € X, so we conclude

that [ F{fm(2) — fa(z),p)(z)dv(z) — 0 as m,n — co. Hence (by — by) — 0
b's

as m,n — oo in o(B, B, )-topology, i.e., (b,) is a Cauchy sequence in o(B, B, )-
topology. B

Since B is weak* sequentially complete, the Cauchy sequence (b,) of the
above lemma converges to a unique element in B. We then have the following
definition of the weak integral.

DeriNITION 3.8. Let A and B be dual order unit spaces, and assume that
any bounded part of 4 is w*- metrizable, and A, consists of all monotone contin-
uous linear functionals on A. Let A : B — P(A, B), be a normal BW-countably
additive measure which is BW-absolutely continuous with respect to a scalar mea-
sure. Then by Lemmas 3.3 and 3.7, the integration map X : BS(X, A) — B has
the unique extension to BM, (X, A). We call this map the weak integration of
elements in BM,, (X, A) with respect to A.

REMARK 8. Note that the weak integral is an extension of the strong inte-
gral, and that, from the proof of Lemma 3.7, the weak integral of f € BM,, (X, A)
with respect to A is given by

(f rar0) = [ FU. P anta) for pe ..
X e

REMARK 9. It is straightforward to extend the integrals defined in this sec-
tion for a complex space valued measurable functions. Let A€ [resp. B¢} be
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the complex vector space generated by a real order unit space A [resp. B), ie.,
A€ = A +iA [resp. B® = B+iB), and let f € BM, (X, A®)(= BM,(X, A)®) be
written as

f=fi+ifa with fi, fo € BM, (X, A),

and assume that the integrals of fy, f» with respect to a P(A, B) valued measure
A exist. Then, we can define

)[fcu :=!f1dx+i!f2d)\.

In Section 4, we shall apply the above integral to the situation where AC =
B¢ = B(H) and X is a Qg (B(H))n-valued measure where H is a separable Hilbert
space, so that every bounded part of B(H) is w*-separable and metrizable (cf.
[27], Proposition 2.7). In this particular case, we shall call it CP-measure and
inlegration.

NoTE. Inthe present paper, we have only given the definitions of the integral
of bounded measurable functions, which is enough for our purpose in Section 4,
however, we can also discuss the integral for unbounded measurable functions
(¢f. [12]). The strong integral for unbounded measurable functions has some
advantages compared with the usual method in vector measure theory in Banach
spaces which uses semi-variations as a generalization of Bochner integral (cf. (5],

(12], [19)).
4. CP-CHOQUET THEOREM

We shall prove the generalized Choquet theorem for the CP-state space Qu(A)
using the CP-measure and integration defined in Section 3, where we set X =
Qu(A) and B = Bpw (the Borel sets induced from the BW-topology on Qx(A)).
If H is separable, then by the duality A = AC(Qn(A), B(H)), every element
a € A defines a w*- measurable function & : ¢ € Qu(A4) — p(a) € B(H), so we
can define the weak integral [ @dX with respect to a CP-measure A on Qu(A).
We first prepare the followir?gnl(:rzama.

LEMMA 4.1. Let A be a separable C*-algebra and H be a separable Hilberd
space. Then the CP-exireme boundary DH(A).is a BW-measurable set, i.e.,
DH(A) € Bpw .
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Proof. We first note that o;(A) < R since A is separable. If dim H > a;(4),
then Dy (A) = Irr (A : H) (cf. Section 1), which is BW-measurable since Irr (4 :
H) is a Gs-subset of Qg (A) (cf. [8], 3.7.4).

If dim H < a;(A), then Dy(A) = PSy(A)UIrr (A : H) (cf. Section 1), We
already know that Irr (A : H) € Bpw, so we have to show PSy(A) € Bpw .
Let h € H with [|h]| = 1, and define the following map

On : ¥ € Qu(A) — On(¥) = (¥(}h, h) € Q(A),

which is obviously BW-w* continuous. Recall that P(4) is G5 subset of Q(A)
([25], Corollary 3.4.2), so ©;(P(A)) € Bpw, and note that

;1 (P(A)) = {V*7V € Qu(4); (n(-)Vh,Vh) € P(4)}
= {V*7V € Py(A); |Vh|| = 1}.

Let (h;){2, be a dense sequence in Sy := {h € H;||h|| = 1}, then we have

PSy(A) = {V*nrV € Py(A); (V*Vh,h) = (h,h) forall he H}
={V*aV € Pg(A); (V'Vh,R)=|Vh|?=1 forall he S}
= {V*"7V € Pg(A); |[Vh]| = 1 for all : € N}

= ﬁ @;}(P(A)) € Bew. 1§

=]

Now we shall prove our main theorem.

THEOREM 4.2. Let A be a separable C*-algebra and H be a separable Hilbert
space. Then, for any CP-state ¥ € Qu(A), there ezists a CP-measure Ay which
is supported by Dy (A) such that

YP(a) = / adhry  forall a € A
Qu(4)

(In this setting, we shall say that ¢ is the CP-barycenter of Ay, or ¢ is represented
by the boundary CP-measure Ay.)

Proof. Let ¢ = V*xV be the Stinespring representation, where we can as-
sume that H, is separable since A and H are separable (ef. {3], [26]; remember
that, in the canonical construction, Hy is isomorphic to the completion of a quo-
tient space of A ® H, and since A and H are sepatable by our assumption, we
conclude that Hy is separable). By the decomposition theory for representations,
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there exits a measurable space (Z, ) and a family of irreducible representations

(7(¢))cez on (Hx({))¢ez such that

] )
r= [ 7@ wmd Ho= [ EQd0)
Let us define a partial 1sometry
U: Hy — L¥Z,p, H)

where U := fg’ u(¢)du(¢) and {u(C) : Hx({) — H}¢ez is a measurable field
of isometries or co-isometries which are defined as follows. If H is an infinite
dimensional Hilbert space, then it is known that there exists a measurable field of
isometries {u({) : Hx(¢) — H}¢ez, sothat U = f; u(¢) dp(¢) defines an isometry
from H to L*(Z, p, H) (cf. [27], p.273). If H is finite diménsional, then ¢ is finite
rank, so pre-nuclear, hence, by Theorem 2.4, it has a decomposition of the form

v=[VOROVQ A0 (BW-integral),
zZ

where V(¢) = PV € T(H,Hx(Q) C B(H,H:(0). Let V() = v(Q)IV(C)|
be the polar decomposition of V(¢), then (v(¢))¢ez is a measurable field of par-
tial isorhetries from H to H,(¢). Then, we can take a measurable field {u({) :
Hx(¢) = H}¢ez of isometries or co-isometries, where u(() is defined by a unitary
extension of v(¢)* such that u(¢)*u(¢) = In, () or u({)u(()* = Iy, according to
dimH > dim H,(¢) or dimH < dim H,(¢) respectively. The existence of such
a measurable field (u(¢))¢ez, which extends (v(¢)*)¢ez, can be proved by the
technique given in [27], Lemma 8.12 (the Gram-Schmidt orthogonalization of fun-
damental sequences), which was used to show the existence of the measurable
field of isometries (u(())¢ez for infinite dimensional H. Then U := fZ@ u(¢) du(C)
defines a partial isometry from H, to L?(Z, p, H).
Now, let us define

7(Q) := w(Q)r(Qu(()" for (€ 2.

Then it is obvious that #({) € Dy (A) for each ¢ € Z, and we note that the map
#:¢€2Zw— 7)) € Du(A) C Qu(A) is BW-measurable, i.e., for any a € A
and f € H, the fanction ¢ € Z — (#(()(@)f, f) = ((Q)(@)u(()" f,u(C)" ) is pr-
measurable, which follows from the fact that the fields (7(¢))¢ez and (u({)* f)cez .
are pu-measurable. For our later use, we shall define

#HE):={C€Z; 7)€ E} for E € Bpw,
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which is a Borel set in Z for each E € Bgw .
We next define a representation « : B(H) — L*®(Z, », B{(H)) on L?(Z, u, H)
by

@ @
K(b) h = /Z bh(¢)du(¢) for be B(H) and h= [z h(¢) du(C) € L¥(Z, p, H).

Note that  is normal, i.e., o( B(H), B(H).) - 0(L®(Z,p, B(H)), L}(Z, p, B(H).))
continuous (cf. [25], Proposition 1.22.13). We also define a projection Pg on
L*(Z,p, H) by

Iy for €7 Y(E),
0 for (¢ 7 YE).

We then define a CP-measure Ay : E € B— Ay(E) € Qu(B(H))a by

=]
Pg :=/z Pg(¢)du(¢) where Pg(() :={

M(E) = (PeUV) k(PgUV)=V'U*Pg x PgUV,

where it is immediate to see the BW-countable additivity of Ay.

We shall show that Ay is BW-absolutely continuous with respect to a scalar
measure. Note first that, for any b € B(H) and weq := (- €,9) € B(H). with
£,n€ H, we have

(M(E) b,we ) = (U* Pes(b) PEUVE, V)
= ] (#(Q) b u(OVEC), (Va)(Q)) du0),

#-1(E)

so that, noting ||u(¢)]| = 1, we have

(A (E) by we,n)| € ] [ (u(€) b u(CHVEC), (VM du(<)
zZ

]

< IIbII/EII(VE)(C)II IVaXOIl dp(0)
z

< bl ( [iwexor dp(o) ( / II(Vn)(C)HZd#(C))
¥4 ¥4

< IBIIVER IVl < NBl VI 1EN Tl

Since any p € B(H), is of the form

L
2

00 =] oo
P= Wen. Where D [[6al®< oo and ) (Il < oo,
=1 n=1

n=1
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we have

IO (E) b, ) < DI (BN, wen)l < 3 1B IVEZHER llmal

n=1 n=1

< [IBiHvi® (ZH&H"‘) (lem“z) < oo,
n=1 =1

so that we can define
o0

Fy(b,p)(¢) = D_((¢) bu(O)(VE)(Q), (V1)(C)) € LNZ, ),

ne=1
and ‘
O ialB) = u(BYD) = [ Fols,9)(O) au(0)
: #-1(E)
Let us define v := po#™!, then v is a scalar measure on Qg(A) supported by
#(Z) C Du(A), and the above equality ensures that (Ay)s,, << v uniformly for
b€ B(H) and p € B(H)., i.e., Ay is BW-absolutely continuous with respect to ».

We can now apply Definition 3.8 to define the CP-integral [ ady for
Qu(A)
any a € A. We first note that, since (Ay)s, << v, for any b € B(H) and

p = wgn € B(H)., there exists Fy(b,we,) € L (Qu(A),v) such that, for any
E € Bpw,

O0bsen () = Qu(Brtsgn) = [ Fulbwen)e)dv(e),
E
from which we can deduce in particular that

[ Rt @ )= [ Fulbwen)© auc)
E #-1(E)

It now follows from the proof of Lemma 3.7 (cf. Remark 8 after Definition 3.8)
that for any a € A and w¢,, € B(H)., we have

([ advwea)= [ Futola)oenednte)

Qu(A) 7(Z)

= / Py (7(¢)(a), we,n)(€) dp(C)

(40 HO@uOTEQ), (V)(©)) au(0)

(MO@u(©) w(OVENQ), w(O) wOVn)C)) du(C) -

N NN
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We note here that, if H is infinite dimensional, then u({)*u({) = Iy (), and if H
is finite dimensional, then u(¢)*u(¢) 2 P () from our definition of u(¢), where
Prv(¢yn) denotes the projection of Hx(() onto [V(()H] = [P({)VH] = [(VH)()]

Hence, we have

([ adxi0e) = [GO@VOQ. V2)Q) (0
Qn(A) z
= (+(a)VE, V1) = () we.) -

Since £, € H are arbitrary, we have proved

P(a) = / adAy,
Qu(A)

where Ay, is supported by Dg(A) from our definition. This completes the proof. 1

REMARK 10. In the above theorem, if H is infinite dimensional, then
Dy (A) = Irr (A : H), hence, in particular, if p = 7 € Rep(A : H), then this
CP-Choquet theorem provides an analytic expression of the algebraic decomposi-
tion 7 = fg’ 7(¢) dp(¢). On the other hand, if dim H = 1, then Dy (A) = P(A),
and the CP-measure Ay reduces to the usual Choquet’s boundary measure. Thus
the CP-Choquet theorem interpolates the gap between the algebraic decomposi-
tion and Choquet’s theorem.

REMARK 11. From Corollary 2.2 and Theorem 4.2, a separable C*-algebra
A is scattered if and only if every ¥ € @ (A) can be represented by an atomic
boundary CP-measure.

REMARK 12. We note that Ay(-)I defines a POV (positive operator valued)
measure such that 0 < Ay (E)Ig < V*V for E € Bpw, where Ay(Dy(A)) Iy =
V*V and Ay(0) Iz = 0. If we put the weight I — V*V at the origin 0, then
this provides a resolution of the identity Iy into positive operators (effects) on

Dy (A)U{0}.
APPENDIX

1. Rep(A : H) C 8.(Qu(A)): Let 7 € Rep(A : H) and assume that
7= cith with ¢; € Qu(A) and ¢; > 0, 3_¢; = 1. Since ¢;¢h; < 7, by Arveson’s
i Tt
theorem ([3], Theorem 1.4.2), ¢;9; = T;w with T; € 7(A)",0 < T; < py, and, since
¥i € Qu(A), il = lleT Timfl = |le7 ' Tl € L so | Tl S ¢iy ie,, 0 T € cipar. If
A has an identity e (or if A is not unital, using an approximate unit), p, = 7(e) =
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Zc,l/).(e) = ZTw(e) = ZT,p,, (Zc,-p,,)p,, = py. Hence we have T; = c;py,
11
1. e P = .
2. Definition 3.2 is well defined : It suffices to prove this for f € BS(X, A)*

from the definition of the integral. Suppose that f has two different expressions

oQ o0
f=) xpai= Z Xr;bj where X = U E; = | F (disjoint)
i=1 i

i=1 i=1
and (a;),(b;) C AT (bounded).

[ev]
We set Gij == E;i[ | F; and ¢ij := a; = bj (on Gij). Then, E; = U1 G;; (disjoint)

and Fj = U Gij (disjoint), so that, for any p € (B.)*, we have

oo

(EA(E)a,,p) Z( (f:j )a.,p) i(Z(A ,,)c,,)p)

=1 \j=

i(i(’\(Gn)cu) ) = i(!‘(@ Gij)”jiﬂ)

Jj=1 \i=1 j=1 i=1

(g

since A is BW-countably additive and the sums Z and z are exchangeable as
i=1 i=1
all terms are positive. Hence, noting that p € B, is arbitrary, we have shown

D A(Ei)a; = ZA(F )b;.

=1 i=1
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