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ABSTRACT. If X is a Hilbert space it is shown that very general subalgebras
A of £(X) contain the holomorphic functional calculus in several variables
in the sense of J.L. Taylor. In particular, Taylor’s holomarphic functional
calculus applies to ¥*-algebras (c¢f. {12}, Definition 5.1), and so gives a useful
tool for the investigation of certain algebras of pseudo-differential operators
and of Fréchet operator algebras on singular spaces. Taylor’s holomorphic
functional calculus applies also to algebras of n x n-matrices with elements in
¥ *-algebras and even more general algebras. Furthermore, an example shows
that Taylor’s holomorphic functional calculus for at least three commuting
operators on a Hilbert space is, in general, richer than any other multidimen-
sional holomorphic functional calculus in commutative subalgebras of £(X).
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1. INTRODUCTION

Taylor’s joint spectrum or(a, X) of a commuting system a = (ay, ..., a,) of oper-
ators acting on a Banach space X was introduced in [24] by J.L. Taylor in 1970.
Also in 1970 he gave in [25] a construction of the corresponding holomorphic func-
tional calculus in several variables ©, : O(or{a, X)) — £(X). In this context the
following question posed by B. Gramsch is interesting:
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e When does a subalgebra A of £(X) contain its holomorphic functional
calculus in the sense of J.L. Taylor, i.e. is f(a) := Oq(f) € A for every f €
O(o7(a, X)) and all commuting systems a € A"? Algebras with this property are
briefly called T-algebras.

It is easy to see that a T-algebra is necessarily spectrally invariant in £(X),i.e.
AN L(X)™' = A~! holds for the groups A~! respectively £(X)~! of invertible
elements in A respectively £(X). If X is a Hilbert space, then it will be shown
in Theorem 5.3 that for symrmetric, sequentially complete, locally convex, and
continuously embedded subalgebras A of £(X), the spectral invariance of 4 in
L(X) is also sufficient for A to be a T-algebra. '

In particular, every ¥*-algebra in £(X) is a T-algebra. This result was first
obtained in joint work with B. Gramsch. ¥*-algebras, i.e. spectrally invariant,
symmetric, continuously embedded Fréchet subalgebras of £(X) - X a Hilbert
space — , were introduced by B. Gramsch in 1984 (cf. [12], Definition 5.1). Already
in the early eighties B. Gramsch first stressed the importance of spectral invariance
in Fréchet algebras of pseudo-differential operators (cf. [11]).

Since then, the concept of W*-algebras has developped into a useful tool
in structural analysis of certain algebras of pseudo-differential operators, Fréchet
operator algebras on singular spaces and C®-elements of C*-dynamical systems.
Subsequent to the work of Gramsch ([11], [12]), in this connection should be re-
ferred among many others to the work of Cordes (cf. [5]), Gramsch, Kaballo (cf.
(13]), Gramsch, Ueberberg, Wagner (cf. [14]), Lorentz (cf. [16]), Schrohe (cf. [18],
(19]), Ueberberg (¢f. [26]) and the recent work of Bony,.Chemin (c<f. [2]) and
Schrohe (cf. [20], [21]).

If X is a Hilbert space and A is only a symmetric, sequentially complete,
locally pseudo-convex, continuously embedded subalgebra of £(X), the spectral
invariance of A is still a sufficient condition for A to be T-algebra, if there is - in
addition — a separating submultiplicative system of continuous psendo-seminorms,
generating the topology of A (¢ef. 5.11).

As a simple corollary of Theorem 5.3 and Theorem 5.11 one gets the follow-
ing:

If X is a Hilbert space and A is as in 5.3 or 5.11, then the algebra My (A)
of N x N-matrices with elements in A, is a T-algebra in £(X") which may be
identified with My (£(X)), in an obvious manner (cf. 5.5 and 5.12). A similar
result, concerning the ordinary holomorphic functional calculus in one variable,
was recently proved by L. Schweitzer in {22].
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Now it is well known (cf. [24], Lemma 1.1) that for every unital subalgebra
A of L(X) containing a1,...,a, in its centre, one has

or(e,X) C cala) = {/\ = (A.1,...,An) eC": Zn:(ljidx —-a,-)A;é A} .

i=1

Further, an example of E. Albrecht in [1] shows that Taylor’s holomorphic func-
tional calculus is rich in the following sense: For every n 2 2 there is a Banach
space and a commuting system a = (ai1,...,a,) € L(X)", such that the algebra
O(o4(a)) of germs of functions analytic on ¢4(a) is strictly contained in the al-
gebra O(or(a, X)) of germs of functions analytic on er(a, X), for every unital
subalgebra A of £(X) containing ay,...,an in its centre. In particular, Taylor’s
holomorphic functional calculus on Banach spaces is in general richer than the
holomorphic functional calculus for commutative Banach (cf. [4], Chapter I, Sec-
tion 4) or Fréchet (cf. [32], VI Proposition 4) subalgebras of £{X) containing
a1,y ...,0n.

A suitable modification of an example of J.L. Taylor in [24], Theorem 4.1
shows in 4.2, that also in the case of Hilbert spaces, there is for every n 2> 3, a
separable Hilbert space X and a commuting system a = (ai,...,a,) € L(X)",
such that the holomorphic functional calculus of J.L. Taylor is rich in the above
mentioned sense. To the best of the author’s knowledge the question, whether
there is also a pair of commuting operators acting on a Hilbert space X, such that
even only or(a, X) is strictly contained in 0 4(a), where A = (a)’ is the commutant
of the system a = (ay, ..., an), remains still open (cf. [8]).

Summing up, it may be said that Taylor’s holomorphic functional calculus
applies to ¥*-algebras, and hence ¥*-algebras are algebras with a rich' holomorphic
functional calculus in several variables. This improves, for example, a result of
E. Schrohe in [21], Theorem 4.4. ‘

If X is only a Banach space the situation is completely different and almost
nothing is known about T-algebras in £(X) in this context. Using an idea of [11],
it was possible to prove that any non trivial left — or right ~ ideal 7, contained
in the ideal of compact operators on X, generates a T-algebra A by adjoining a -
unit to J,i.e. A= Cidx @ J (cf. 5.13). The main difference between the Banach
space and the Hilbert space setting is the existence of an integral formula in the
Hilbert space setting, the so-called Martinelli-formula for Taylor’s holomorphic
functional calculus, proved by F.H. Vasilescu in 1978 (cf. {27]). The absence of
such a formula and hence the use of Taylor’s original construction in [25] or [30],
Chapter III makes it extremely difficult to investigate the operators f(a) in the
case of arbitrary Banach spaces.
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2. SPECTRAL INVARIANCE, ¥*-ALGEBRAS AND MATRIX ALGEBRAS

DEFINITION 2.1. Let B be an algebra with unit e. A subalgebra A of B with
e € A is called spectrally invariani in B — sometimes also called a full subalgebra
in B, if ANB~! = A~! for the groups A~! respectively B~! of invertible elements
in A respectively B holds. The pair (A, B) of algebras is called a Wiener-pair by
Naimark.

The following lemma - due to B. Gramsch (cf. [12], Lemma 5.3) - gives a
necessary and sufficient condition for spectral invariance, sometimes much easier
to verify,

LEMMA 2.2. Let B be a C*-algebra with unit ¢, and A C B be a symmelric
subalgebra of B - i.e. a € A implies a* € A. Assume further thate € A. Then A
is spectrally invariant in B if and only if A is locally speciral tnvariant in B, i.c.
there is an open neighbourhood U of e in B with ANU C A~L.

Proof. Since A is a symmetric subalgebra of B, the closure R := A° of A
in B is a C*-subalgebra of B, hence one has RN B~! = R~! by the well-known
spectral invariance of C*-subalgebras.

Now let bea € ANB~! C RNB~! = R~!. Consequently there is an z € R,
such that az = za = e. By definition there is a sequence (z,)neN in A, such
that 2, —> z in B, hence az, —> az = e¢. Since ® # UNA C A is an open
neighbourhood of e € A, one obtains an n € N, such that az, €e UN A C 471

1

thus there exists y € A with az,y = e, hence a™* =z =z,y€ 4. 1§

DEFINITION 2.3. [GRAMsCH, 1984]. Let B be a C*-algebra with unit e.
A subalgebra A of B with e € A is called a ¥*-algebra in B, if the following
conditions are fulfilled:

(1) There is a topology T4 on A which gives (A4, 74) the structure of a Fréchet
algebra.

(2) The natural inclusion j : (A, 74) < (B, | - [|8) is continuous.

(3) A is symmetric, i.e. a € A = a* € A.

(4) A is spectrally invariant in B.

In the sequel let M,(B) be the algebra of n x n-matrices over an algebra B
with unit e. If B is in addition a topological algebra, then let M, (B) always be
equipped with the product topology. Recall that M,(B) is a topological algebra,
with jointly continuous multiplication, an open group M,(B)~! of invertible ele-
ments and continuous inversion, if B is such an algebra (cf. [3], Proposition A.1.1
or [23], Corollary 1.2).
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Using, for example, the GNS-construction one obtains for every C*-algebra
B with unit and for every n € N a unique norm on M, (B) which generates the
product topology on M,(B) and gives M,(B) the structure of a C*-algebra.

ProrosiTiON 2.4. Lel B be a C*-glgebra with unit ¢ and A a symmetric,
specirally invariant subalgebra of B with e € A. Then for alln € N, M,(A) is a
symmetric, specirally invariant subalgebra of the C*-algebra M,(B).

Proof. Because of 2.2 one has to show only local spectral invariance. Using
the Gauss-Jordan-elimination as in [23], Lemma 1.1, one sees that there is an open
neighbourhood V in M,(B)~! of the unit matrix £ € M,(B), such that for every
T € VN M,(A), there are at most n{n — 1) elementary row and column operations
in My, (A) reducing T to an invertible diagonal matrix with elements in A. Now
the spectral invariance of A in B gives T € Mp(A)™!. 1

COROLLARY 2.5. Let B be a C*-algebra and A a U*-algebra in B. Then for
cach n € N, M, (A) is a U*-algebra in the C*-algebra M, (B).

In [22], Remark 2.4 the proof of Proposition 2.4 is attributed to B. Gramsch.
It is not hard to see that the same argument still works if B is reblaced by a
topological algebra, with jointly continuous multiplication, an open group of in-
vertible elements and continuous inversion, and A by a spectrally invariant, dense
subalgebra in B. This was also noticed by R.G. Swan in [23], Lemma 2.1 and
J.-B. Bost in 3], Proposition A.2.2.

3. TAYLOR’S JOINT SPECTRUM, TAYLOR'S HOLOMORPHIC FUNCTIONAL CALCU-
LUS AND T-ALGEBRAS

3.1. THE KoszuL-CoMPLEX. In the sequel let ¢ = (01,...,0,) be a sys-
tem of indeterminates, A{o] be the exterior algebra generated by the system
o = (01,...,04) and S; : Alg] — Afo] : w — 0 Aw be the creation opera-
tor,7=1,...,n. ]

The space A[o] has a natural Hilbert space structure in which the elements 1
and oj, A---Aoj,, where 1 < j; <--- < j, £n, 1 < ¢ < n, form an orthonormal
basis. The adjoint S} of the creation operator S; with respect to this Hilbert space
structure is given by S} : Alo] — Alo] : w = w1 + 0; Awy — w2, where w; and
wy do not contain ¢;. Further, let X be a vector space over the complex numbers
C, and a = (a;,...,a,) be a commuting system of linear operators on X. On

Alo, X] := X ® A[o] one defines a coboundary operator 8, by 6, := 3 a; ® S;.
. =

The commutativity of the system a = (a,, ..., a;) gives then 8, 0§, = 0, therefore
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K(a,X) := (Ao, X], 8,) is a cochain complex, the so-called Koszul-complex of the
commuting system a = (@i, ..., a,). Further one defines for A = (A;,...,A,) €C?
the commuting system le — @ by Ae — a := (Aidx —ay,..., Anidx — an).
Now let X be a Banach space. After fixing a basis of A[e] the space Afc, X]
can be identified with 2" copies of X, and hence the algebra L(A[r, X]) of all
bounded operators on Afo, X] with the matrix algebra M2.(£(X)) in an obvious
" manner. ‘
If X is a Hilbert space, then clearly A[c, X] also has a Hilbert space structure.
The adjoint of 6, € L(A[z, X]) with respect to this Hilbert space structure is given
n

by 65 =3 aj®5;.
j=1

3.2. THE TAYLOR SPECTRUM. Let X be a vector space and a = (a1,...,a,) a
commuting system of linear operators on X. The set or{a, X) of all A € C™, such
that the Koszul-complex K(Ae — a, X) is not ekact, is called the Taylor spectrum
of the commuting system a = (ey, . .., an)-

If X is a Banach space and a = (a1,...,a,) € L{X)? is a commuting system
of bounded linear operators on X then it is well known (cf. [24], Theorem 3.1,
Corollary 3.2) that or(a, X) is a nonvoid, compact subset of C*, which is con-
tained in ﬁ o(a;), where o(a;) denotes the usual spectrum of a; (j = 1,...,n).

Jj=1
Furthermore, the Taylor spectrum satisfies the projection property, i.e.

If m € nand a = (a1,...,84) and @’ = (8y,...,am) are commuting sys-
tems of bounded operators on a Banach space X, then ap(a’, X) = mno7(a, X),
where 7, : C* — C™ is the projection onto the first m components (cf. [24],
Theorem 3.2).

A proof for the following theorem on the holomorphic functional calculus can
be found for example in [25], Corollary 4.4 or [30], Corollary III 9.10.

THEOREM 3.3. [TAYLOR, 1970). Let X be a Banach space anda = (ay, ...,
a,) € L(X)" a commuling system. Then there exisis an unital algebra homomor-
phism

Oa : O(or(a, X)) — (a) CL(X) with ©alz = (21,---, 2a) — 25) =05, 5 = 1,...,n.

Here O(or(a, X)) denotes the algebra of germs of analylic functions, in neigh-
bourhoods of the compact set ar(a, X), and (@) = ((a)')’ is the bicommuiant of
the commuting system a = (a1, ..., 6,). The hoemomorphism ©, : (o7(a, X)) —
© L(X) is called the holomorphic functional calculus of J.L. Taylor with respect {0
the commuting system a = (@, ...,an).
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The construction of the homomorphism ©, is rather complicated in the gen-
eral Banach space setting, but, in 1976, Vasilescu (cf. [27]) gave a significant
improvement and simplification of the construction of the homomorphism in the
Hilbert space setting. Vasilescu’s construction uses a certain differential form, the
so-called Martinelli kernel.

3.4 THE MARTINELLI KERNEL AND THE CONSTRUCTION OF THE APPLICATION
©Oa. Let X be a Hilbert space and a = (a1, ...,a,) € £(X)" a commuting system.
Put @ := C" \ ¢r(a, X). By a result of Vasilescu (cf. [28], Corollary 2.2) one has
z € Q if and only if (6,06 + 85._,) ! exists in L{A[c, X]), hence the mapping
§o : Q@ — L{Alo, X]) = A%dz, L(Alo, X])] : 2 > (bsema + 6Foyg) ™) is well
defined and continuous. Using an appropriate form of the Neumann series (cf.
{28], Lemma 2.8), one can see that & is in fact real-analytic, in particular of the
class C*°, and so the construction of the following differential forms makes sense.

nj : Q55 A dz, L(A[o, X)) : 2 — (BE)(2), §=0,1,...,n—2,

Eiv1 1 QS5 Mz, L(A[o, X])] : 2 = £o(2)m3(2), §=0,1,...,n—2.

Further let §:=5; ... Sp 1 Ao, X] — Ao, X] :w+—— 013 A -Aoy Aw. Then
by {30], p.143 one has for all z € Q:

(*¥) f €n1(2) = fj ArdZy A+ Adzg A - AdZ, with Ag = Ax(z) € L(Alo, X]),
k=1

. then one has
ArS|aoo,x)(A%[0, X]) C A%[0, X] forall k=1,...,n.

Since A%[¢, X] = X in a canonical way, €n-15|a0fo,x] gives a C®-mapping M, :
Q — A"~![dz, L£(X)]. The differential form M, is called the Martinelli kernel
attached to the commuting system a = (a1,...,a,). Fixing the canonical basis
for Afo], one gets the following matrix representation for Ax(z), using the same
notation as in (*).
.- Ao, X]
b(z)\ Ao, X]
* 0 Al[cr, X]
0 Ao, X]
with some b € C®(£2, £(X)). Hence one has
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Ma(z) = Z be(2)dzi A+~ Adzg A -~ Adzp for all z € Q.

Now let U C C” be open with or(a, X) C U, and f € O(U) be a repre-
sentative for the germ [f] € O(o7(a, X)). It is then possible to find a relatively
compact open set A D o7(a, X) with A C U, such that the boundary £ := dA of
A is a smooth surface (cf. [29], p.484). In this case T is said to be an admissible
surface surrounding or(a, X) in U, Now let

0u([f]) = O (f) = /f Y Ma(z) A dz € £(X),

(2mi)?

where M,(z) A dz := My(z) Adzy A -+ Adz, is a continuous (2n — 1)-form with
values in £(X).

A proof for the following theorem can be found for example in [30], Propo-
sition I11.11.1 or [6], Theorem 5.18.

THEOREM 3.5. [VAsiLEscu, 1978]. Let X be o Hilbert space and a =
(a1,...,@s) € L(X)™ a commuling system. Then the application ©, : O(or(a, X))
— L(X) from 3.4 is well-defined and ezactly the holomorphic functional calculus
of J.L. Taylor in the sense of 3.3. In the following for f € O(er(a, X)), f(a) is
always wrilten instead of ©.(f).

DEFINITION 3.6. Let X be a Banach space. A subalgebra A C L£(X) is
called a T-algebra, if one has f(a) € A for all f € Oor(a, X)), and all commuting
systems a = (ai,...,a,) € A”, where n € N.

REMARKS AND ExamPLES 3.7,

(1) A T-algebra in £{X) is necessarily spectrally invariant in £(X).

(2) An arbitrary intersection of T-algebras is also a T-algebra.

(3) Let X be a Banach space. Then A := {Midx : A € C} is a T-algebra;
in fact one has f(Aidx) = f(A)idx forall A = (Ay,...,2) € €* and all f €
O(or(a, X)). Note that ep(Aidx, X) = {}A}.

(4) Let X be a Banach space and a = (@1,...,8,) € £(X)" a commuting
system. Then :

Ar(a) := {f(a) € L(X) : f € O(or(a, X))}

is a commutative T-algebra. This follows directly from the composition formula
(f 0 9)(a) = f(g(a)) due to M. Putinar (cf. [17], Theorem 2).
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4. THE RICHNESS OF TAYLOR'’S HOLOMORPHIC FUNCTIONAL CALCULUS ON
HILBERT SPACES

DEFINITION 4.1. Let X be a Banach space and a = (a4,...,85) € L(X)"
a commuting system. For every subalgebra A of £L(X) containing ai,...,a, and
idx in its centre, the joint spectrum of @ = (a1,...,a,) in A is defined by

ga(a)i= A= (A, M) €C7 1Y (Vyidx —aj)A # A};

ji=1

It is well known (cf. [24], Lemma 1.1) that o7r(a, X) C o(s)(a) C oa(a), where
(a)’ is the commutant of ¢ = (a),...,ay), i.e. the norm-closed subalgebra of all
b€ L£(X) satisfying a;b =ba; for j=1,...,n.

The following theorem is proved by a suitable generalization of an example
of J.L. Taylor in [24], Theorem 4.1.

THEOREM 4.2, For every n 2 3 there exisis e separable Hilbert space X
and a commuting system a = (ai,...,a,) € L(X)", such that or(a, X) is strictly
contained in o(qy(a). Moreover, the algebra O(o(ay(a)) of germs of functions
analytic on o(ay(a) is strictly contained in the algebre O(or(a, X)) of germs of
functions analytic on or(a, X).

In particular: Taylor’s holomorphic functional caleulus for a commuting sys-
tem a = (a1, ..., an), of at least three operators acting on a Hilbert space X, is in
general richer than the holomorphic functional calculus in any commutative sub-
algebra conlaining ay, ..., a, and idy in the sense of [§], Chapter I, Section 4 or
[82], VI Proposition 4.

The proof of the theorem is divided into a few steps.

NOTATIONS 4.3. For z = (z1,22) € C? let ||z|2 := /|21]? + |22{2. Further
put G1 = {z €C? i |lzlla < 3}, G2:={z€C?: 2 < ||zl < 1} and D := {2z €
C? :||2||2 < 1}. Then G := G1 UG, € C? = R? is an open bounded subset with a
smooth boundary. Choose s > 2 and put

e By := H*(G) — C(G).

o E, := H*t1(G) — C!(G).

o Ey:={f€E :0:f=08f=0)COQG).

Here the spaces H"(G),r € R are the usual Sobolev-Hilbert spaces, and
the imbeddings are given by the well known Sobolev imbedding theorem. Recall

further that §; := ﬁ.: = %(ﬁj + iayj)’j = 1,2 as usual.
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Then X := E; ® Eq @ Ey is a separable Hilbert space and one is now able to
define for j = 1,...,n operators a; : X — X by
(z;j_’,z,-g_,z_,-h) , 3=1,2
aJX'—'X(fag)h)’_" (0161f182f) 3 j=3
' 0 , J=24
One easily checks that @ = {a, ..., a,) is a commuting system of continuous linear
operators on X. '

LEMMA 4.4. or(a,X) =G x {0"" %} = {z=(z1,...,2) € C" : (21, 22) €
G,z; =0 forall j 2 3}.

Proof. An easy computation using Lemma 1.1 in [24] shows that
or((ay,as), X) = G. Since a? = 0 for all j > 3, one has o(a;) = {0}.
79 : C" — C? is the projection onto the first two components, the projection prop-
erty of the Taylor spectrum (cf. 3.2) gives mo(or(a, X)) = or({a1,a2), X) = G. (%)

Hence or(e, X) C (G x C*~3)n [] o{a;) € G x {0}, where 3.2 is used, and

j=t

a further look at () completes the proof. 8

LEMMA 4.5. Let A == (a) be the commutant of the sysiem a = (ay,...,an).
Then

D x {0"‘2} ={r=(z1,...,2) EC" : (21, 22) € D, z; =0,j > 3} C cala).
Proof.
o If X; := N(a3) = E2 ® Eo ® Eg, then Xy is a hyperinvariant subspace for
the commuting system a = (@1,...,an), i.e. bX; € Xy forall b€ A = (a)".
s Assume that (A, 0) := ()q,).z, .,0) € D x {0} and (A, 0) ¢ oala).

Hence for j = 1,...,n there exist b; € A, such that idx = Z ajb; = Z djb; with
=1

@; = Ajidx —aj,j=1,...,n. In particular, one gets for (1 0,0) € X C X
2

(1,0,0)="3 "d;b;(1,0,0) - b3aa(1,0,0) = Za,-(r,-,s,-,t,-)

i=1 j=1
with (r;, 55,1;) == b;(1,0,0) € X; for j = 1,2.
¢ Thus one has r; € O(G),j = 1,2 with 1 = Z(/\ —z;)ri(2z) for all z € G.
e By Hartog’s theorem (cf. [30], Theorem II 8 4) there ex1st (uniquely de-
fined) R; € O(D) with Rjlg, = rjlg, for j = 1,2. Therefore, 1 = Zl()‘j—z,-)}?.j(z)
i=

for all z € D, in contradiction to A € D.
+ Consequently, it follows that D x {07~?} C oa(a), by the compactness of

oa(a). 1
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Proof of Theorem 4.2. The preceeding lemmata have proved that ar(a, X) is
strictly contained in o4(a). The germ [p] represented by the function
oz {1 , z€G x {0}

0 . otherwise gives an element in O(or(a, X)) that is not

in O(o(ay(a)) and the proof is completed. &

5. THE MAIN THEOREMS CONCERNING T-ALGEBRAS

It is quite useful to collect some technical properties by the following;:

DEFINITION 5.1. Let B be a C*-algebra with unit e. A subalgebra A of B
is called suitable, if the following conditions hold:

() ee A

(2) A is symmetric, i.c. a € A => a* € A.

(3) A is spectrally invariant in B, i.e. ANB~1 = A~L.

(4) There is a topology 74 on A, which makes (A, 74) into a locally convex
algebra, with jointly continuous multiplication, an open group A~} of invertible
clements, and continuous inversion.

(5) The natural inclusion js : (4,74) — (B, ]| - [|8) is continuous.

REMARKS 5.2.

(1) Every ¥*-algebra in a C*-algebra is a suitable algebra.

(2) Is B a C*-algebra with unit e and A a suitable subalgebra of B, then for
all N € N, My (A) is also a suitable subalgebra of the C”-algebra My (B).

Proof. (4) is shown for example in (3], Proposition A.1.1 or [23], Corollary 1.2
(cf. 2.3), (1), (2) and (5) are then obvious and (3) follows from 2.4 N

THEOREM 5.3. Let X be a Hilbert space and let A C L(X) be a sequentially
complete, suitable subalgebra of L(X). Then A is a T-algebra.

COROLLARY 5.4. Let X be a Hilbert space. Then every ¥*-algebra in £(X)
is a T-algebra.

COROLLARY 5.5. Let X be a Hilbert space and let A C L£(X) be a sequentially
complete, suilable subalgebra of L(X). Then Mn(A) is, for every N € N, a T-
algebra in L(XN).

Proof. By 5.2 the algebra My(A) is a suitable subalgebra of the C*-algebra
My (L(X)), which may be identified with £(X") in an obvious manner. Since
My (A) is clearly sequentially complete, a look at Theorem 5.3 completes the
proof. §
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Before proving the theorem, there are some technical lemmata concerning
the Martinelli kernel given.

NoTaTION 5.6. Let X be a Hilbert space. Then let & be the mapping

7 n

K L(X)" — L(A[o, X)) :a=(a1,.,0n) — Ba+ 85 =D 0;®S;+ 0] ®S].
i=1 j=t

In the following the algebra L£(A[o, X]) is identified after fixing the system

o = (01,...,0,) and the canonical basis of Ale] used in () of 3.4 with the matrix
algebra Maa (£(X)).

PROPOSITION 5.7. Let X be a Hilbert space, A C L(X) a sustable subalgebra
of L(X) and a = (ai1,...,a,) € A" a commuting system. Further, let Q :=
C*\ or(a, X), and consider the differential forms used to consiruct the Martinelli
kernel attached to the commuting system a = (ay,...,an):

o o £o: 2+ k(ze —a)~L.
O Ad n ! = e 31
§:QoNdz Mon(X)], J=0,1, =1 e (BE)(2).

n Q= AP dE Maa(X)],5=0,1,...,n=2
: (42, Mz (X)) Ein : 2m Eo(2)m(2).

Then one has:

) () C Az, Maa(A)] C A[dz, Man(L(X))], J§=0,1,...,n—1.
7;(Q) € AIti[dz, Maa(A)] C AIH[dE, Man(L(X))], 7=0,1,...,n~2.

(2) The mappings &' : Q@ — A[dz, Man(A)} : z— &;(2), and

r]f :Q — ATY[dzZ, Man(A)] © 2 — 5j(z)

are of the class C*™ for all j. Furthermore, one has nft = 5{54 and £fy; = €8 nf.

Proof. The proof is given by induction on j. First of all consider the case
1=0:

o Let ¢ be the mapping ¢ : @ — Maa{L(X)) : z — r{ze — a); since A Is
symmetric and idx € A, one has ¢(z) € Ma-(A) for all z € ; now 2z € Q implies
z & or(a, X), hence (cf. 3.4) one has p(z) € M (A)NM2n(L(X))™} = M2n(A)™?
by the spectral invariance of Man(A) in Man{L(X)) [cf. 5.2].

o The mapping ¢* : @ — Man(A) : 2+ ¢(z) is by construction linear in
z=1(z1,...,2,) and Z = (Z;,..., Z,), and is therefore of class C*. Since Man(A)
has jointly continuous multiplication and continuous inversion, the inversion in
Man(A) is also of the class £°°, as one can easily see using the resolvent equation.
Hence &4 is of class C* and the basis of the induction is proved.
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Assume now that (1) and (2) are shown for §; for some j with 0 < j € n~2.

e By (2) the mapping ¢ : @ — AT¥[dz, Man(A)] : 2 +— (DEL)(2) is of
the class C°°. Now the mappings (% ). : AI[dZ, M2n(A)] < AY[dZ, Man(L(X))],
induced naturally by j4 : A «— L(X), are continuous, linear and one-to-one.
Hence one obtains (757" )ai(2) = 8((7%)+£8)(2) = (8€;)(2) = 13(2), thus 7;(92) C
Ait1[dz, My-(A)] and 9 = ¢, consequently (1) and (2) are proved for 7;.

e Since £p(2) € Man(A) and 7;(z) € AITY[dZ, Maa(A)], one has &41(2) =
£o(2)nj(2) € MVFdE, Maa(A)] for all z € Q. The differential form £4,, is of class
€, since M3n(A) is a suitable algebra, and hence the M2~(A)-modul multiplica-
tion on A +1[dz, Man(A)] is of class €. 1

COROLLARY 5.8. Let X be a Hilbert space, A C L(X) a suitable subalgebra
of L(X),a = (a1,...,an) € A" a commuting system, and @ = C" \ or(a, X).
Then the following properties, for the Martinelli kernel attached to the commuting
system a = (a1, ...,an), are fulfilled:
(1) Ma(Q) € A1[dz, 4] C AP=1[dz, L(X)].
(2) The mapping M{ : Q — A~1dZ, A] : 2+ Mq(2) is of class C*°, and
in particular continuous.
(3) The following diagram is commutative:
Q ML An-10gz, 4]
id | [0
Q Mo pAn-ldz £(X))

Here jax : AP"1[dZ, A] — A""1[d%, L(X)] denoles the continuous, linear
map, induced naturally by ja @ A — L(X).

Proof. By 3.4, M, is the element in the right corner of the first row of £,-1. 1

5.9. PROOF OF THE MAIN THEOREM. Let a = (ay,...,a,) € A” be a commuting
system and U C C™ open, such that or(a, X) € U. Choose an admissible surface
¥ surrounding or(a, X) in U. Then for all f € O(U), one has:

e The mapping & — A" ~Y[dZ, A] : z +— f(z)M(z) is continuous.

Of(Z)A-‘fa(Z) = jA*f(z)M,f(z).
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Hence, for the operator given by the holomorphic functional calculus (cf.
3.5), one obtains:

fla) = ?zwl_o' E/ f(2)Ma(2) Adz

1 L
2m)» j i Ml 1 dz
Y

} 1 ,
=ja szf(z)Mf(Z)Adz €A

since the last integrand is converging in A. Note that the integral fMA is a
continuous function with values in a sequentially complete, locally convex space. 1

REMARK 5.10. Of course one can ask if the assumption of local convexity
of the algebra A may be dropped or replaced by a weaker one. The main problem
occurring in this context is the convergence of the integral in the last step of the
above proof; the existence of a continuous factorization M of M, does not suffice
to prove the theorem in the non locally convex case; in fact B. Gramsch has showm
in 1965 (cf. [9], Example 3.1) that there are continuous functions with values in
complete locally bounded (i.e. p-normed), non locally convex spaces, which are
not Riemann-integrable.

However, with the aid of an integration theory developed by B. Gramsch and
others in the sixties (cf. [9], [31]), the integration of a wide class of continuous func-
tions with values in a complete, locally bounded, or even locally pseudo-convex,
sequentially complete space {cf. [10]), is still possible.

Recall that a locally pseudo-convex space F is a topological vector space
E, on which the topology may be given by a separating system (gy)yer of py-
seminorms (0 < py < 1), i.e. gy : E — [0, 00] is a mappings, such that g,(z +y) <
g+(2) + ¢4(¥) and g, (Az) = |A]Pvg,(z) forall z,y € E and forall A € C."

In the following, let A be an m-suitable subalgebra of £L(X) — X a Hilbert
space; i.e. A is a suitable subalgebra of £{X), except that the condition (4) in the
definition of suitable 5.1 is substitueted by

4'. There is a locally pseudo-convex topology 74 on A, generated by a sep-
arating system (gy)yer of submultiplicative p,-seminorms (0 < p, < 1), ie.
gv(zy) € g4(2)g4(y) for all z,y € A and gy(e) = 1, which makes (A, 74) into
a topological algebra with jointly continuous multiplication, an open group A™?
of invertible elements, and continuous inversion.
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It is then possible to show that the Martinelli kernel M, attached to the
commuting system a € A™ allows a factorization M2 : O — A"~![dz, A] belonging
to an integrable class of functions with values in A. Thus it is easy to prove the
following theorem — a detailed proof is given by the author in [15], Chapter 9.

THEOREM 5.11. Let X be a Hilberl space, A C L(X) a sequeniially complete,
m-suitable subalgebra of L(X). Then A is a T-algebra.

The proof of the following corollary proceeds as the proof of 5.5, using the
fact that M (A) is an m-suitable subalgebra of My (L(X)), if A is an m-suitable
subalgebra of £(X) (cf. [15], Lemma 9.2.3. '

CoOROLLARY 5.12. Let X be a Hilbert space and A C L(X) a sequentially
complete, m-suitable subalgebra of L(X). Then My(A) is for every N € N @
T-algebra in C(XN).

The case of Banach spaces X is completely different, because there is no such
integral formula like the Martinelli-formula in the case of Hilbert spaces. Thus it
was only possible to give the following class of T-algebras in that case.

THEOREM 5.13. Lel X be an infinite dimensional Banach space and J <
L(X) a non trivial left — or vight - ia:eal in L(X) which is contained in the ideal
K(X) of all compact operators on X. Then the algebra with unit generated by
J,B:=Cidy & J, is a T-algebra.

Note that no convexity or completeness of the ideal J is required.

Proof,

eLeta=(as,...,as) € K(X)"* a commuting system, ¢ = (pt1,...,pn) € C?,
and b := pe + a € B". Then the Taylor spectrum ap(b, X) of the commuting
system b = (b1,...,b,) Is at most countable and has at most one limit point,
namely p (cf. [7], Example A.8 or [15], Corollary 4.4.6).

¢ Further, let f € O(U) be a representative of the germ [f] € O(ep(b, X)).

s Using Corollaries 111 8.16 and III 8.17 in [30], and an induction argument,
one obtains a system I'; C C (j = 1,...,n) of admissible contours (cf. [30],
III 3.3) surrounding o(b;) in 7;(U), where m; : C* — C is projection onto the
J-th components, such that the operator ©,(f) = f(b) is given by the integral
convergent in £(X)

1 . o . _
(QWi)ﬂf; A (zaidy = bn)™1 - (z1idx — ba) " f(2)d2y ... d2p.

e Now let J be a left ideal, and assume further that a = (a1,...,a,) € J™.
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e Since the identity

-1 )
(Ae—z)"lz%e+(e—;—:) o 0#XecC

is valid in every C-algebra with unit e, one obtains the following expression for the
n-dimensional resolvent p:

n

Q(Z) = H(z_,'idx - bj)—l

i=1

- 1 a; -1 a;
= H ldx + (ldx - L ) : 2
s\ %~ M zi—pi) (2 —ny)

i

+"§ > I 11 —l '(i(.jx_nitm)-l( -

2'
z (2 —
k=0 MAS(h-om) JEM te{1,.n]\Mx 3 H = )
| My =k

where z = (21,...,23) € I; x --- x ['x. Note that one has z; — u; # 0, because
z; & o(b;) implies that ((2; — p;)idx — a;)~! exists, and a; is a compact operator
on a infinite-dimensional Banach space,

e Hence with the abbreviation

f...dz::f f co.dzy .. dzg,
r F- l"l

and since all integrals exist because of continuity, one obtains:

1
5O)= G s

1 St .
= (2m) [(ﬁ (1:[1 % iﬂj) f(z)dz) dx

+Z > j{(H 1. ( _zzfﬂe)_l(sztﬂt)zdz”

k=0 |My|=k JEMx 1eh1,

= f(u)idx + Z Z

k=0 |My|=k
(21r1)" [f(

JEMr te M, teM

( —Ztitﬂz)_l (ze - #t)z) }H“b
e e

ec(x) €7
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where M} := {1,...,n} \ My for every subset My of {1,...,n} with k elements.

In particular, one has My #£@ofevery k=0,...,n—1,ie. [] ar € J, hence
. LEMy,
f(b)eCidx & J = B.
o In the case of a right ideal J the proof proceeds analogously using the
corresponding identity
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Note added in proof. Using an idea of Kordula and Miller ( Vasiescu-Martinelli formula
for operators in Banach spaces, preprint 1994) it was recently possible to
construct an integral formula analogous to the Martinelli formula (3.4) and
to prove an analogue to Theorem 5.3 valid in the case of Banach spaces and
¥o-algebras in the sense of Gramsch, ([12] Definition 5.1) — (R. Lauter, A
multidimensional holomorphic functional calculus for Uq-algebras with meth-
ods of J.L. Taylor, to apppear in: Proceedings of the 15th conference on
operator theory in Timigoara, June 1994, Birkhaduser, Basel).



