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ABSTRACT. Starting from the question of what are the possible values of the
constant of hyperreflexivity for subspaces of B(H), where H is a separable
complex Hilbert space, the paper considers the continuity of the function « :
B(H) — R, defined by «(T) = K(Aw(T)), Aw(T)) denoting the unital weakly
closed algebra generated by T". As a consequence, it is shown that any number
bigger than or equal to one is a constant of hyperreflexivity of a subspace.
Besides several results concerning the continuity of the function &, the paper
contains also more general results, like those determining the closures (in the
norm topology) or the set of reflexive, respectively non-reflexive, operators.
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Let H be a (complex) Hilbert space, B(H) be the algebra of all (bounded linear)
operators on H, and P(H) be the lattice of all (orthogonal) projections in B(H).
For asubset S of B(H ), denote by Lat (S) the lattice of all (closed linear) subspaces
of H that are invariant under all operators in &, and for a subset £ of P(H) denote
by Alg (L) the (unital weakly closed) algebra of all operators in B(H) that leave
invariant all subspaces corresponding to £. A subalgebra A of B(H) is called
reflezive if AlgLat(A) = A. An operator T in B(H) is called reflezive if A, (T),
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the unital weakly closed algebra generated by T, is reflexive. A subalgebra A of
B(H) is called hyperreflerive if there exists a (positive) constant K such that

(1) dist (T, A) € Ksup {||P*TP||: PcLat(A)}, VT € B(H).

Similarly, an operator T' € B(H) is called hyperreflezive if Ay, (T') is hyperreflexive.
The smallest K such that (1) holds is called the constant of hyperreflezivily for A
and it is denoted by A (.A). We write K(T') for K'(Ay(T)). By convention, if there
is no K such that (1) holds, we set K(A) = co.

The notion of hyperreflexivity was introduced by W.A. Arveson in [2] (where
he also gives an alternate definition that offers, sometimes, a more tractable way
of calculating K), generalizing his result about nest algebras: the well-known
distance formula ([1]).

Obviously, hyperreflexivity is a stronger condition than reflexivity (in general,
strictly stronger') see [6]). But we are not interested in the relation between these
concepts in this paper. What we are investigating here is the continuity of the
function

£ B(H) —[1,00],
K(T) = K(Ay(T)), where we consider on B(H) the norm topology.

This seemed to be a quite hard problem since the values of the function  are
not calculated at too many points, even for operators on finite-dimensional spaces.
And when the values are calculated, a complicated machinery — different in each
case — is used. Even for von Neumann algebras (which are all reflexive, by the von
Neumann double commutant theorem, but not all known to be hyperreflexive) the
constant of hyperreflexivity K has not been computed in all the cases it is known
to be finite. Or even in the case when H is finite-dimensional space (in which case,
reflextvity coincide with hyperreflexivity), there is no general way of calculating
K, and the work of K. Davidson dnd M. Ordower 5] shows the difficulty of getting
such a “recipe”.

We have been, thus, obliged to avoid any attempt to think about the values
of K — except for those T”s for which K(T') = co — in trying to solve the problem
of continuity of K. A consequence of this is that we obtained some results that are
interesting in their own right: the description of the (norm)-closures of reflexive,
respectively, non-reflexive operators (Theorem 1.1, Remark 1.2 and Theorem 2.1).
The main problem of this paper is completely solved in the finite-dimensional case
(Theorem 1.6), and it is narrowed down quite a bit in the infinite-dimensional case
(Theorem 2.14 and Theorem 2.13).

We should mention that in [23], a paper with a title similar to ours, another
stability problem for the constant of hyperreflexivity has been discussed. In the
last section, we will present a parallel between the two problems.
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1. THE FINITE-DIMENSIONAL CASE

Throughout this section, H will denote a finite-dimensional Hilbert space. In this
case, the notions of reflexivity and hyperreflexivity coincide, an obvious reason
being that, on a finite-dimensional space, any two seminorms with the same null
set are equivalent (In particular, for the two seminorms appearing in the inequality
(1) defining K.) Recall that there exists a characterization of reflexive operators
on finite-dimensional spaces (i.e., for reflexive matrices) obtained in [7]; namely, a
matrix is reflexive if and only if in its Jordan canonical form, for each eigenvalue,
the two biggest blocks are either of the same size or their sizes differ by one. )

The goal of this section is to describe all the points of continuity for K in
case H is a finite-dimensional Hilbert space. The main result, Theorem 1.6, states
that this set is the union between the set of non-reflexive matrices and the set
of matrices with distinct eigenvalues. In the process of obtaining this result, we
show, also, that the closure of the set of non-reflexive matrices is the complement,
in B(H), of the set of matrices with distinct eigenvalues (Theorem 1.1). Notice
that the set of reflexive n x n matrices is dense in M,, (Remark 1.2).

THEOREM 1.1. Let H be a finite-dimenstonal Hilber! space. 'Consider the

sel

E ={T € B(H):T has dim H distinct eigenvalues }.
Then
(2) {T € B(H) : T is non-reflexive } = B(H)\ £.

Proof. Notice that all the operators in £ are reflexive. So {T" € B(H) :
T is non-reflexive} C B(H) \ £. Thus, to justify the inclusion “C” in (2), it is
sufficient to prove that the set £ is open. Let T' € £. Herrero’s result about the
semi-continuity of the spectrum ([15}, Theorem 1.1), implies that there exists an
€ > 0 such that, if X € B(H) and ||X — 7| < €, then the spectrum of X, ¢(X),
has also dim H distinct eigenvalues, i.e., X € £. Thus £ is open.

To show the other inclusion in (2), let X € B(H)\ £. If X is a non-reflexive
operator, then there is nothing to prove. If X is reflexive, then, from (7], in the
Jordan canonical form of X, for every cigenvalue, the biggest two blocks have either
the same size or their sizes differ by one (the last case including, by convention,
the case of eigenvalues of multiplicity one). Because X € B(H) \ &, there exists
a A € o(X) that has multiplicity bigger than one. Then, for every & > 1, define
X € B(H) to be the operator that has, with respect to the basis in which X
has Jordan canonical form, the same matrix as X with the exception of the part
corresponding to the eigenvalue A, where we replace the 0’s on the second diagonal
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with L’s. It is easy to notice that all X;’s (k > 1) are non-reflexive and that
Jim X, = X. Thus X € {T € B(H) : T is non-reflexive JI |
E oo

REMARK 1.2. The set of reflexive operators on a finite-dimensional Hilbert
space H is dense in B(H). Even more, with the notation in Theorem 1.1, £ is
dense in B(H). (This last assertion is made by P. Halmos in [13].)

From Theorem 1.1 we conclude that the only possible points of continuity
for the function & are the non-reflexive operators and those in £. In the sequel, we
will show that, in fact, all of these are points of continuity for £ (Theorem 1.6).

First, we have to make use of some results that are true in an arbitrary Hilbert
space, and we will state and prove them in their full generality. We recall that the
notions of reflexivity and hyperreflexivity are defined in general for (closed linear)
subspaces of B(H). A subspace § of B(H) is called reflezive if T € S whenever
Tz € [S:r:]—, for every £ € H. A subspace S is called hyperreflezive if there exists a
constant K (> 1) such that

dist (T, 8) < K sup {dist (Tz,Sz) : X € H,||z}| <1}, VYT € B(H).

The initial definition of hyperreflexivity for subspaces was given in [18]; the one
we use here is due to D. Larson ([20]). We define K(S) to be the smallest i
that satisfies the above condition if S is hyperreflexive and to be co otherwise. In
case S is a unital algebra, the definitions above coincide with those given in the

introduction.
PRoOPOSITION 1.3. Lel H be a separable Hilbert space, S be a subspace of
B(H) and A and B be invertible operators in B(H). Then

3) iK(S) < K(ASB) < aK(S),

where o = [|A[[JJA=*|[1| B[ |B~]I.
Proof. On one hand,
dist (X, ASB) = inf{[|X — ASB||: S € S}
= inf{||A(A7*XB~! - $)B|| : S € §}
< | AllIBllinf{}A7'XB™" - 5| : S € 5}
= ||A|| || B(|dist (A~ X B~!, S).

(4)
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On the other hand,

sup{dist (Xz, ASBz) : z € X, {|z|| € 1}
= sup{inf{|[Xz — ASBz||: S € 8} :z € X, [lz]] £ 1}

1
(5) HB gy P linf{IXB™1y ~ ASy| : S € S}y € X, iyl < 1)
HB 1Ilsup{mf{“A(,/li IXB 1ty - SYl:SeS8}:ye X, |yl €1}
1 ) B ~
> oy any S ldist (A7 XB7y, S) sy € X, flwll <1).

From (4), (5) and the definition of X it follows that
K(ASB) < A AT BB~ HIK(S).

By applying the same reasoning to AS B instead of &, we obtain the other inequal-
ity in (3). &

COROLLARY 1.4. Let H be a separable Hilbert space, & be a subspace in
B(H), and {Ax}x and {B.}s be two nets of invertible operators in B(H). If
li{n dist (Ax,U) =0, and li)r‘n dist (Ba,i) = 0, where U is the set of unitary opera-
tors on H, then li,{nK(A,\SB,\) = K(S).

Proof. If {X}» is a net of invertible operators, it follows from [24], Theorem
3.4, that liPJ dist (X,U) = 0 if and only if li/:\n [|[ X[l = 1. So the corollary follows
directly from Proposition 1.3, applying (3) for A = Ay and B = B,, for all A’s
and taking the limit with A. 8

COROLLARY 1.5. If H is a separable Hilbert space, S is a subspace of B(H)
and {z — Az}s and {& — B}, are continuous funclions defined on a topological
space X with values in Z(H), the set of invertible operators in B(H), then {z —
K(AzSBg)}e s a continuous funclion.

Proof. For s,t € X, it is obvious that
(6) K(A,SB,) = K((A, A7) ASBy(B; ' B,)).

From the continuity of the functions {z — A;}; and {z +— B:}., it follows
that ll_l"l} |As A7 — I|| = 0 and 3‘3} [|B; ! Bs — I|| = 0, which, in turn, implies that
lim dist (A, A7Y,U)=0and lim dist (B! B,,U) = 0. To end the proof, use (6) and
apply Corollary 1.4 for {Ax}» = {4, A7 '}y, {Ba}r = {B; ! B,}, and S = A,SBy,
for an arbitrary, but fixed, t € X. 1
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The following is the main result of this section.

THEOREM 1.6. Let H be a fintte-dimensional Hilbert space and let T €
B(H). Then & is continuous at T if and only if T € £ or T is non-reflexive.

Proof. Theorem 1.1 implies that any point of continuity for « must either be
a non-reflexive operator or belong to £.

To prove that x is indeed continuous at any such point, we consider separately
cach case. First, let T € B(H) be a non-reflexive operator. In particular, k(T) =
©o. Assume that

(7) lim T = T.

k—co

We claim that ]lm &(T:) = o0, so & is continuous at T. Suppose not, 1.e. {Tk}rz1

has a bounded subsequence Without loss of generality, we can assume that there
exists an M > 0 such that

® K(T) <M, VE>1

Since any operator on a finite-dimensional space is algebraic, from [3] it follows that
AlgLat(T) N {T} = Au(T). But T is not reflexive, so there exists an A € B(H)
such that A € AlgLat(T), but A ¢ {T'}". The first condition on A can be rewritten
as

9) sup{||PLAP||: P € Lat(T)} = 0.

Since H is finite-dimensional, the closed unit ball of B{H) is compact. So, for each
k > 1, there exists a Py € Lat (T;) such that

(10) sup{||PLAP||: P € Lat (T})} = || P AP

Still because of the compactness of the closed unit ball of B(H), we can assume,
without loss of generality, that there exists a P € B(H) such that k]im P.=P.In
’ —_00

the context of this last relation, of (7} and of the fact that Py € Lat (T} ), applying
the result on the upper semi-continuity of Lat ([14] ) it follows that P € Lat (T).
Using this together with (9) and (10), we can infer that

Jim sup{||P*AP||: P € Lat(T},)} = 0,
—00
which, in view of (8), implies that

klim dist (A, Aw(T:)) = 0.
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Thus, there exists a sequence { Xy }r») in B(H) such that

(11) /X'k E Am(Tk), Vk ; I,
and
(12) klim [|A - Xe]| = 0.

From (11) it follows that X;Ti = T:Xi. So (12) and (7) imply that AT = TA,
which contradicts the choice of A not in {T}I. So, L]im k(Ty) = .
: —00

Finally, lct T be an operator in £, and let {7k }r>; be a sequence in B(H)
such that L]im T = T. From the general theory of matrices, there exists an invert-

P — 00
ible operator S € B(H) such that STS~! is diagonal (with distinct eigenvalues).
Evidently, klim STpS™1 = STS™!, and STS™! € £. So, since & is open (see the

proof of Theorem 1.1), it follows that STy S~! € £, for k sufficiently large. Hence,
there exists a sequence {Si}r>1 in Z(H) with the properties that

(13) lim S =1,
k—o00
and that there exists a kg 2 1 such that
(14) SpSTeS™1S7! s diagonal, Vk 2 k.

Thus

Au(StSTS™ISTY) =D = A, (STS™Y), Yk 2> ko,
where D is the algebra of all diagonal matrices of dimension dim H. Equivalently,
by multiplying by the appropriate operators,

Au(T3) = (S7185:.8)Au(T)S715:8)™Y, ¥k 2 ko.

In view of this last equality and of (13) we can apply Corollary 1.5 and obtain the

following.
Jim w(Ti) = lim K (Au(T)) = Jim K(5™'8u5)Au(T)(S7'5:5)™)
= klim K(A,(TYH) =x(T). 1

The following two consequences of Theorem 1.6 are interesting in their own
right and also in connection with the homologous results in the infinite-dimensional

case (Section 2).
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COROLLARY 1.7. If H is a finile-dimensional Hilberl space, then the sel of
conlinuily for the function k is a dense Gy set in B(H).

Proof. As noted in Remark 1.2, the set £ is dense. Also, Theorem 1.6 implies
that the set of points of continuity for  contains £ and hence is dense. To justify
the second part of the corollary, recall that the points of continuity for a real

valued function form a G set in the domain ([27]). ¥

COROLLARY 1.8. Let H be a finite-dimenstonal Hilbert space and let A and
B be invertible operators on H. Then, if T € B(H) is a point of continuily for &,
then ATB is also a point of conlinusly for .

Proof. Obvious.

The remainder of this section sheds some light on the problem of what are
all the possible values of the constant of hyperreflexivity.

CoOROLLARY 1.9. If H is a fintle-dimensional Hilbert space, then the sel of

poinds of continuily for K 15 a connecled sel.

Proof. Denote by C the set of points of continuity for x. From Theorem 1.6
and the fact that £ is dense, it follows immediately that £ C € C £. And it is very
easy to show that the set £ is connected. Thus C itself is connected. 1

CoOROLLARY 1.10. If H is a Hilberl space of dimension fwe, then the func-
tion & : B(H) — [1,00] is surjective.

Proof. As above, denote the set of points of continuity for & by €. Notice that

C contains [(1) g] and that & ([(l) g]) = 1 ([17]). Also, since there are non-

reflexive two-dimensional matrices, the range of x contains co. But & is continuous
at non-reflexive matrices (Theorem 1.6) and C is connected, so ran(x) = [1, 00,

i.e., k is surjective.

Denote by D, the algebra of all diagonal matrices of dimension n. The fact
that makes the proof of Corollary 1.10 work is that

(15) inf{k(T): T € £ C M) (: . ([[1) gD = K(’Dz)) -1

For higher dimensions, (15) does not necessarily hold; actually K(Ds) > 1,¥n > 3
(see [5]). Thus, the natural question to ask is
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QUESTION. What is the value of inf{«(7") : T € £ C B(H)} if H is a finite-
dimensional Hilbert space of dimension > 3 7

If inf{x(T) : T € £} = 1, then « : B(H) — [1, 00) is suzjective. If inf{x(T)
T € £} > 1 it is interesting, especially in view of {11] (for implications in the
infinite-dimensional case), to determine how does this guantity depend on the
dimension of the underlying space.

2. THE INFINITE-DIMENSIONAL CASE

If H is an infinite-dimensional Hilbert space, then the notion of hyperreflexivity
does not coincide in general with that of reflexivity (see [6]). And, in addition,
there is no known characterization of reflexive or hyperreflexive operators (except
for the class of algebraic operators - for which the characterization is similar to
that in the finite-dimensional case). Still, we can show that there are “a lot” of
points of continuity for & : the set of points at which & is continuous is a dense
Gs set in B(H) (Theorem 2.14). There are also many points at which « is not
continuous, for example, all the hyperreflexive operators and all non-hyperreflexive
operators similar to operators whose C*-algebras contain no non-zero compacts
(Theorem 2.5 and Theorem 2.7). However, in view of Theorem 2.14, the set of
points of discontinuity for & is a set of first category in B(/) and is, therefore,
topologically smaller than the set of points of continuity.

For any compact set E C C, denote by E the polynomially convex hull of E.

THEOREM 2.1. Let H be a separable infinite-dimensional Hilberl space.
Then the following two sets are norm-dense in B(H ).

(1) {T € B(H) : T is non-reflezive].

(1) {T € B(H) : T is reflexive}.

Proof. (i) Let T € B(H). Denote by U the unbounded component of
C\c+(T), where a.(T') is the essential spectrum of T. Take A € OU. So, A € do.(T),
which implies that A € o, (T). Using now [8], it follows that there exists a com-
pact operator K € B(H) such that ||X|| is arbitrarily small, and T+ K is unitarily

oo i
0 Al
scalar operator AI on an infinite-dimensional Hilbert space. Obviously, X can also

cquivalent to an operator X of the form where A(®®) represents the

be written as

*
*
*
0 A

OO D
OO D
=]
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where the two A’s represent operators on one-dimensional spaces. By its choice, A s
in fact in the outer boundary of ¢.(T), or, since ¢.{X) = ¢.(T}, it is in the outer
boundary of ¢.(X). Using the relation between the spectrum and the essential
spectrum of an operator, we can infer that there exists a sequence {Ap}n>; In
U\ 6(X) such that JLH;IQ An = A. Consider the following sequence of operators

\ A 0 0 *

. 0 A, 0 *

(17) Y=g g ) .
0 0 0D A

From (16) and (17), and the fact that X is the limit of the sequence {An}n3zy, it
follows that

(18) lim X, = X.

n—o0

Obviously, e(A) C 0?)?), and X € Jﬁ). But A, & U‘(_R:), ¥n 2z 1. Thus,

/\n [ a(e2)
v ([ 0 ]) Ao ([ * ]) = . So we can apply Rosenblum’s Theorem

0 .0 A
([25)) to conclude that
sim [An O Aoy def
n =~ = Zn.
(19) X [ 0 An] @ [ 0 A .

The spectra of the two summands in (19) are disjoint, but, even more, the poly-
nomially convex hulls of their spectra are disjoint; thus (by [4])

(20) Aw(Zn) = Ay ([’\0" /\?!])@A,u([’\(;) ;D

An O

0 )n] {n 2 1) by non-

To end the proof of (i), simply approximate each [

. A
reflexive operators [ "ok ] , k1.

0 A
(it) The key ingredient in the proof of the density of reflexive opcrators

on a separable infinite-dimensional Hilhert space is the deusity of the Apostol-

Morel simple models ([15], Theorem 1.6). This result asserts, mainly, that every

A = *
T € B(H) can be approximated by operators of the form X = [0 B *} .
60 0 C

where A is a subnormal operator, B is a normal operator (with finite spectrum),
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C is the adjoint of a subnormal operator, and g(A), ¢(B) and ¢(C) are mutually
disjoint. Thus, by Rosenblum’s Theorem, X is similar to A @ B & C. Also,

(21) Ay(A® B®C) C Au(A)® Au(B) ® Au(C).

Recall that subnormals, normals and adjoints of subnormals are reflexive and have
property D ([22]). So, by [21] and [12], the algebra A, (A) ® Aw(B) ® A, (C) is
reflexive and has property (D). Thus, by [21], every weakly closed algebra of
Aw(A) @ Ay(B) & Au(C) is reflexive, in particular 4, (A @ B @ C) is reflexive,
hence, A @ B @ C is reflexive, as well as X. Thus T can be approximated with

reflexive operators.

REMARK 2.2. We could use the density of the Apostol-Morel simple mod-
els also to show the density of non-reflexive operators on a separable infinite-
dimensional Hilbert space, in a similar way we showed (ii) in Theorem 2.1, but
we still need quite a bit of spectral analysis. We prefer the above proof since it
does not require the use of such a strong result when a more direct and elementary

- proof was available.

The following immediate consequence of Theorem 2.1 gives a first result
about the points of continuity for .

CoRroLLARY 2.3. If H is a separable infinile-dimensional Hilbert space, then
the only possible points of continuity for x : B{(H)—[1,00] are the non-hyperrefle-
zive operators on H.

DEFINITION 2.4, Two operators 5 and 7" from B(ff) are called approzimately
equivalent, if there exists a sequence {U,},3, of unitaries in B(H) such that

(a) nli’ngo IS = UsTU:|| =0, and

(b) S - U,TU}, is compact, ¥n > 1.
We denote by S ~, T the fact that S is approximately equivalent to 7"

THEOREM 2.5. If H is a separable infinile-dimensional Hilbert space and
S € B(H) is non-hyperreflexive such that C*(S) N K(H) = (0), then k is not
conttnuous at S.

Proof. From [28] it follows that if = : C*(S) — B{(H) is a *-representation
of C*(S) onto a separable Hilbert space H, and if C*(S) N K(H) C ker (7), then
S ~g S @ m(S). By the hypothesis of our theorem, for any *-representation of
C*(S), S ~4 S @ 7(S). So, by taking a convenient x-representation, i.e., 7(S) =
() we can infer that S ~; S @ S(®). Since S @ 5 ~, S (they are even
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unitarily equivalent), it follows that S ~, 5() In other words, there exists a
sequence {U,},>; of unitaries such that, in particular,
(22) S = lim U, 5™y,
n—=od
Obviously, £(U,S®U2) = k(S%). Finally, recall that 5(=) is hyperreflexive ([10])

and S, by hypothesis, is not. Thus, in view of (22), £ cannot be continuous at

5 1 '

We mentioned above one of Herrero’s results ([15], Theorem 1.1) which im-
plies that the spectrum is a lower semi-continuous function of an operator. The

next lemma shows that the polynomially convex hull of the spectrum has the same

property.

LEMMA 2.6. If A is a unital Banach algebra, the map a — o(a) is lower

semi-continuous on A, i.e., if {a,}a31 is a sequence in A such that lim g, = a,
N+ 0O
for a € A, and if {A.}np1 is a sequence in o(a,) such that lim A, = ), then
n—oo

X € o(a). Equivalently, ifa € A, U is an open set in C conlaining o(a), then there
exists a & > 0 such that ||b — a|} < 6 implies o(b) C U.

Proof. Let {6,}n21 be a sequence in A such that lim a, = a, for a € A,

n—oo
and let {A,},21 be a sequence in ¢(an) such that lim A, = A. Assume, by way
7n—300

of contradiction, that A ¢ 07:1’). Recall that OT(C-E—) is the union of #{a) and its

(bounded) holes. Therefore A is in the unbounded component of C \ o(a). Thus

there exist two disjoint open sets I/ and V such that U contains o{a) and V is

unbounded, path-connected and contains A. Hence, we can choose a path " in V'

that connects A to oo and does not intersect c;_(‘c—x’). Since nl_i_mo An=Aand Vis an
open set containing A, it follows that there exists an n; 2 1 such that

(23) MEV, ¥Ynzn.

But, applying the lower semi-continuity of the spectrum‘, from lim a, = a, we
n—oo

infer that there exists aﬁ 75 2 1 such that
(24) U(ﬂn) C U, Vn 2 no.

Since U NV = 0, (23) and (24) constitute a contradiction. So, A € &f;). |

The following is the analogue in infinite dimensions of Corollary 1.8.
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THEOREM 2.7. If H is a separable infinite-dimensional Hilberl space, T &€
B(H) is a point of conlinuily for k and S is an invertible operator in B(H), then

STS—! is also a point of continuity for .

Proof. Since T is a point of continuity for « and since H is infinite-dimen-
sional, it follows, from Corollary 2.3, that #(T) = co. From Proposition 1.3, we

infer that
(25) x(STS™ ') = 0.

To show that x is continuous at ST.S™!, take a sequence { X, },»: of opcrators in
B(H) such that lim X, = STS~!'. Then, obviously, lim §7'X,$ = T Since T
n—oo 11— 00
is a point of continuity for &, it follows that lim x(S~!X,S) = &(T) = oo. Using
n—od

again Proposition 1.3, we deduce that lim &(X,) = oo, which ends the proof. 1§
n—oo

REMARK 2.8. Two operators A and B from B(H) are said to be epprozi-
mately similar if there exists a sequence {S,},>1 of invertible operators in B(H)
such that '

(a) sup{[|Sall, [IS7*Il : n > 1} < 00, and

(b) A= lim S.BS;!.

With obvious 'rz‘r;)ogiﬁcations, it can be shown that Theorem 2.7, as well as Theo-
rem 2.5, are still true if we replace “similar” by “approximately similar” in their

statements.

LEMMA 2.9. Let H be a separable (finite- or infinite-dimensional) Hilbert
space, and consider {Qn}n>1 to be a sequence of idempotents in B(H) that con-
verges lo an orthogonal projection Q. Then there exists a sequence {Sp}n»1 of
invertible operators in B(H) such that

(i) lim S, =1, and

n—oo

(i) 3ng  such that ~ S,QnS;' =Q, Vn 2> nq.

Proof. The proof will be done by constructing the sequence {Sp}n»1. For
every n > 1, define S, = @QuQ + (I — Qn)(I — Q). Since lim @, = @, it is obvious
that (i) holds. Moreover, from (i) it follows that, evyégto;ally, Sy is invertible.
Finally, trivial linear algebra shows that Q.S = SpQ(= QnS). Thus (ii) also
holds. 8
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LEMMA 2.10. Let A be a unital subalgebra of A; @ Ay, where A; is a weak-
operator closed unital subalgebre of B(H;), i =1,2. If

Lat (A) = Lat (A;) & Lat (A3),

then
K(A) 2 max {K(A;), K(A2)}.
Proof. By definition of K in particular,
dist. (T ]
(26) KAy » BT O0A) r g gy,

dTe0,A4)

where d(X, A) = sup {||PLXP|| : P € Lat(A)},¥X € B(H; ® H,). Even without
the hypothesis about the lattices of invariant subspaces, it is easy to see that the
following holds.

(27) dist (T ® 0, A) > dist (T @ 0, A1 © As) = dist (T, 41).
But, since Lat (A) = Lat (A;) @ Lat (A3), a straightforward calculation shows that
(28) AT @0,4) = AT &0, 4 & Az) = d(T, A1)

Hence, from (26), (27) and (28), K(A) > %%%H,VT € B(H;)\ A. Therefore

K(A) 2 K(A,). Similarly it can be proven that K{A) 2> K(A,). 8

REMARK 2.11. One obvious case when the hypothesis, hence the conclusion,
of Lemma 2.10 is true is when A = A, @ A;. This will be the case in which we
will apply Lemma 2.12.

LEMMaA 2.12. If {An}nzi1 15 @ sequence of weak-operator closed unital alge-
bras such that A, C B(H,),Vn 2 1, then

K (@An) < 9sup K(A,).

nz2l n2i

Proof. Using a result about relative hyperreflexivity from [10], it follows that
(29) K | @D An, BU)) | = sup K(An).
n=1 n21
Since B(H){*®) is a type I von Neumann algebra, by [26], it is hyperreflexive and

(30) K(B(H)*®)) < 4.
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Applying Theorem 2.6. in [10], we derive now from (29) and (30) that

K@ | < (K (BE)) +1) [ K [ @D A BONE) ) +1] -1

n2l nzl
< Ssup K(An) +4 < 9sup K(A,),
n2l n21

which ends the proof. &

The following theorem gives a useful “recipe” for producing new points of
continuity for & on infinite-dimensional spaces, for example using Theorem 1.6,
which describes all the points of continuity in finite dimension.

THEOREM 2.13. Let Hy and Hy be two separable {finite- or infinile-dimen-
sional) Hilbert spaces. Then non-hyperreflezive operaiors on B(H, @ Ha) of the
form T = A® B with O'_E,Z) N UTE) = 0 are poinls of conlinuily for k if and
only if at least one of A and B is a non-hyperreflexive poz'rit of continuily for the

corresponding Kk function.

Proof. Assume that T = A@® B € B(H; & H3) is an operator such that
. a'?;l‘) n JTB) = @ and such that A is a point of continuity for & with x(A) = co.
From [4] it follows that A, (T) = Ay (A)S Ay (B). So, by Lemma 2.10, #(T) = co.
If H, @ Hq is finite-dimensional, it follows from Theorem 1.6 that % is continuous at
T.1f H1& Hy is infinite-dimensional, let {T,,},,»1 be a sequence in B(H & Ha) such
that ,,IEEO T, = T. Choose two disjoint open sets U/ and V such that UF(Z) C U, and

aTE) C V. Applying Lemma 2.6, we deduce that, eventually, am) C UUV. Let Q,
be the spectral projection of T}, corresponding to U. It is clear that nlglgo Qn = Q,
where @ is the spectral projection of T corresponding to /. Because of the form
of T, @ is an orthogonal projection. So, by Lemma 2.9, there exists a sequence
{Sn}nz1 of invertible operators in B(H, & H) such that

(i) "]i‘ngo Sp=1
and

(11) S, QxS; ! = Q, for n sufficiently large.
Define a sequence of operators on Hy & Hy by T = S,7,5;1,¥n > 1. This
sequence has the property that lim 7)) = A @ B. Also, the spectral projection
of 17 is QL = SaQnS; 1, so, it i:;vogntually equal to Q. Hence, eventually, T, =
An @ B, relative to the decomposition Hy & Hy of the underlying space, the
same decomposition that gives T = A & B. It follows that ﬂli_{rgo An, = A and
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lim B, = B. Recall that A is a point of continuity for x and that x(A) = oo

n—oo

Thus
(31) "anono w(Ap) =co

Since a—(:l-) C U and O'JFB') C V, it follows that, eventually, a'('_zz,) C U, and
cr(B ) C V. Hence ([4]) Auw(A @ B) = Ay (A) ® Au(B). Using Lemma 2.10, from
(31) we conclude that lim &(T,) = co. Thus, it follows from Proposition 1.3 that
lim #(T,) = o as well,

e Conversely, assume that T = A ® B is a point of continuity for « such that
O‘H)ﬂd‘(—é) = 0 and &(T)(= &(A® B)) = co. In the hypothesis about the spectra,

Au(A® B) = Au(A) ® Ay(B). So, from Lemma 2.12 we deduce that
(32) &(A® B) = K(Au(A) ® Au(B)) < Imax{x(4),x(B)}.

Thus, at least one of K(A) and x(B) is infinite. Without loss of generality, consider
that x(A) = oo. If the underlying space corresponding to A is finite-dimensional,
since A is non-reflexive, by Theorem 1.6 it is a point of continuity for . If the
underlying space for A is infinite-dimensional, assume, by way of contradiction,
that neither A nor B is a point of continuity for x. Then, there exist sequences
{An}nz1 C B(Hy) and {Bp}ap1 C B(H?) such that hm A, = A and hm B, =
B, but {s(An)}np1 and {&(Bn)}n31 are bounded. I‘rom the hypothesns about
the polynomially convex hulls of the spectra of A and B, Lemma 2.6 implies that
o(Aj,) N 063?.) = 0, for n large enough. So we can apply Lemma 2.12 to obtain
an inequality similar to (32) for A, instead of A and B, instead of B, which in
turn implies that {k(An @ Bn)}n>1 is bounded. Since k(A @ B) = oo, this last
statement contradicts the fact that T is a point of continuity for x. 1

The last result from this section characterizes the set of points of continuity
for £ in the case when the underlying space is infinite-dimensional.

THEOREM 2.14. If H is a separable infinite-dimensional Hilbert space, then
the points of continuily for k : B(H) — [1,00] form a dense G5 set in B(H); i.e.
a sel of the second calegory.

Proof. Let T be an arbitrary operator in B(H). Following the proof of The-
orem 2.1, (i), we notice that, for A in the boundary of the unbounded component
of C\ 0.(T), T can be approximated by operators similar to

An % ‘ Mo} 4]
= ! v ? 3 ? ]
(33) Sk [ 0 )‘n] @ [ 0 A] , kzlnx1
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with the polynomially convex hulls of the spectra of the two summands disjoint.
By Theorem 1.6 the first summand of S, x is a point of continuity for « : B(C?) —
[1,00]. Thus, using Theorem 2.13, we can conclude that Sy, itself is a point
of continuity for the corresponding «. Finally, making use of Theorem 2.7, we
conclude that T can be approximated by operators that are points of continuity
for k. Thus the set of points of continuity for « is dense in B(H).

To end the proof, use the fact that the set of points of continuity for a real

valued function is a G4 set in the domain. @

3. A RELATED PROBLEM

After undertaking the research concerning the problem studied in the previous
two sections we learned about another paper about hyperreflexivity and stability
properties. Even though, at the first sight, the two problems seemed to be similar,
even if the functions whose continuity is studied are related by a simple condition,
and even if we consider only the finite-dimensional case, the differences are mean-
ingful and interesting. The following will provide a complete description of the
relationship between the problems, showing, at the same time, the independence
of our results from those in [23].

First, in [23], the authors consider the function K : S(B(H)) — [1,00],
where S(B(H)) denotes the space of all (closed linear) subspaces of B(H) with the
topology given by the distance

d(M, N) = max{sup{dist (z, N) : z € M, {|z|| < 1},

(34) .
sup{dist (v, M) :y € N, [yl < 1}}.

and K (S), for a subspace 8, is the constant of hyperreflexivity of S.
The main results in [23] that relate to our results are Propositions 3.1 and
3.4 below.

ProrosiTioN 3.1. ([23], Theorem 2.2) If H is a separable Hilberl space,
S C B(H) is a ultra-weakly-closed subspace such that S is reflezive as a Ba-
nach space and {Sp}n>1 is a sequence of hyperreflezive subspaces of B(H) such
that lim d(S,,S) = 0, and {K(Sn)}np1 is bounded, then S is hyperreflezive and
K(S;_éo?im sup K(S»). '

=00
REMARK 3.2. From Proposition 3.1 it follows that the function K is contin-
uous at every non-hyperreflexive subspace.
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DeFINITION 3.3. If S is a subspace of B(H), we denote by (5] the set of
pairs (z,y) € H? such that Sz L y. A pair (z,y) € (8] is called regular if the only
5 € S which satisfies Sz = 5*y = 0 is the zero operator. The subspace S is called

regular if every pair in [S] with non-zero components is a limit of regular pairs in

[8).

ProposITION 3.4. ([23], Theorem 3.4) If H is a finite-dimensional Hilbert
space, then reqular reflexive subspaces of B(H) are poinis of continuily for K.

The following commutative diagram shows the set-theoretical relationship
between K and «; the connecting function f is given, obviously, by f(T) =
Au(T), VT € B(H).

K

B(H) — (1, 0]
N\ /K
S(B(H))

T = &(T)
N /K

Au(T)

In other words, x = K o f. In consequence, it is natural to ask if, at least when H
is finite-dimensional, we could “transfer” the continuity properties from K to x by
means of f, in which case part of Theorem 1.6 could be obtained as a corollary of
the results in {23]. But, as it turns out, the situation is not so simple. The reason
is that the points of continuity for f defined on a finite-dimensional Hilbert space
are exactly the cyclic operators (Theorem 3.8), so the transfer is not so smooth:
since not all non-reflexive operators on a finite-dimensional space are cyclic we
cannot derive the continuity of & at non-reflexive operators from Proposition 3.1.
Also, we cannot derive the continuity of « at operators in £ from Proposition 3.4
without Corollary 3.11, which will be proven below. This corollary asserts that
for finite-dimensional Hilbert spaces, A, (T') is a regular subspace of B(H) for any
Tekf.

The next lemma will be used in the proof of Theorem 3.8, as well as in the
proof of another auxiliary result used to prove Theorem 3.8 (Lemma 3.6). It is
true in the context of arbitrary topological vector spaces and we shall state and

prove it in that generality.
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LEMMA 3.5. Let X be a topological wector space and let n be o positive inte-
ger. Then the set LI, defined by

LT, ={(z1,22,...,20) € X" : {z1,22,...,7,} is linearly independent in X}

s an open sel in X™.

Proof. The set £, is open if and only if X" \ £Z,, is closed, and we prefer
to show this last statement. Let

(35) {E:}» C X"\ LI,

be a net such that

(36) limd) = 7

for some ¥ € X™. Suppose that £y = (x5, 222,..., Zn,a), VA, and & = (21,29,

.125). From (35) it follows that there exists a net {&}x» € C™\ {0}, &, =
(0'1,,\, (4235 PRI aﬂ')‘), ¥, such that

‘ﬂ
(37) &',\ -f). = Za;,,\z;,,\ = 0, VA
i=1
Dividing through by ¢, ef max tee; 2| # 0 in the relation corresponding to A in
S

(37), we can assume, without loss of generality, that ||&x]lc = 1,VA. Hence {&x}a
has a convergent subnet. So, again without loss of generality, we can assume that

(38) lmd, = &,

for some & € C". Using now (36) and (38) in (37), it follows that
7

(39) &&= oz =0.
i=1

But @ # 0; as a matter of fact, it has norm one, as a limit of norm-one elements
in C". Thus, (39) shows.that £ € X"\ LI,. 1§

If £ = (zy,z2,...,Zn) is an element of X", denote by Sp (Z) the linear span

of {z1,z2,...,2p} in X.
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LEMMA 3.6. Lei X be a normed space, n be a posilive integer and LI, be
the set defined in Lemma 3.5. Define the funciion §, : X™ — RU {0}, by

6a(Z) = sup{||dl|co : & € Pz}, VEe€ X",

where

P (gccr @ 2 <1).

Then
(i) én(Z) < 0o if and only if £ € LI,,
(i1) 6, ts continuous on all of X™.

Proof. (i) 1f £ € X"\ LZI,, then there exists a = (61,82, ..,0n) € C*\{0}
such that

(40) f-2=3 Bixi=0.
i=1

For every t € R, ¢ > 1, define A, =1. Since ||flo # 0, it follows that tlim 13t llco =
—00

+0o0. Multiplying through by t in (40), we deduce that B, € Pz. And since
sup{||@||ec : & € Pz} 2 Hﬁ”om we deduce that §,(Z) = co.

To show the other implication, let ¥ € £I,, and assume that 6,(Z) is infinite.
Then, for every £ 2 1, there exists a B = (B, B2k, -+, Bn k) € Pz, such that

(41) 1Belleo > k.

But {ﬁk}kgl C P; is equivalent to saying that

zﬁi,ki‘i

i=1

(42) 18x - 2l = <1, Vel

Dividing through in (42) by the corresponding 18 li, which is non-zero by (41), it
follows that:
~ Bix

= g
i=1 Nﬁl’\-”‘b’o

(43)

1
€ =,
‘ (1B leo
Obviously, the sequence —4—3, 1 is bounded in C", having norm one, so it
y IBelicn* S k21

has a convergent subsequence. Hence, without loss of generality, assume that:

Br =7,

(44)

lim —
k=0 18t {lo
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for some ¥ = (y1,7¥2,...,7) € C", with, of course, [|7||oc = 1 Now taking the
limit, as & — oo in (43) and using (44) and (41), it follows that Z ¥z = 0, which,

in the context of ¥ # 0, contradicts the fact that £ € £1,. Thus 6n(Z) < co.
(ii) Let £ € X", and {Z%};»1 C X™ such that:

(45) lim & = 7.

k—oo

Claim 1. 11msup6 (£k) € 6,(%). Assume that the claim is false, i.e., assume

that lim sup 6, (xk) > 6p(Z). It follows that there exists an ro > 0 such that

k=oo

(46) lim sup é,(Zk) > ro > 6a(X).

k—o0

By the definition of the function 8., (46) implies that there exists a sequence
{Fx}k21 in Pz, such that

(47) Felloo 2 7o, V21

Because ¥y € Pz, for every k 2 1, it follows that

(48) K Ti Yk > 1.

From (47) and (48) we deduce that

ik |
_2_ km k
" Filleo l umm?"’ '

(49)
<L

Z‘nk i)
i=1

Define 8 = = 7e, VE > L. From (49), it follows that {Bc}i>1 C Pz,, and, by
its definition,

”'Yk“oo

(50) 1Belloo = ro.

Thus, without loss of generality, we can assume that there exists a ﬁ e Cn,

B = (B1,B2,...,Bx), such that
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From (50} and (51) it follows immediately that

(52) 180 = ro.

And using (51) and (45) we infer that

klﬂ?; Z Bikxig = Z Biz:.

i=1 i=1

Hence

<1

Z Bizi
i=1

which shows that 4 € Pz. Combining this with (52) we obtain a contradiction
with the second inequality in (46). Thus Claim 1 is proved.

Claim 2. likminfén(ik) 2 6.(Z). Let r < 8,(Z). By the definition of the
— 0D

function &, it follows that there exists a B € Pz such that

(53) | iﬁizi < 1,
and
(54) HBlleo > r-

From (45) and (53) we deduce that

n

> Biza

=1

lim < 1.

k— oo

= Zﬁ.‘zi
i=l

Hence, for sufficiently large k’s, 8 € Pz, . So we can use (54) to obtain from this
that 6,(Z4) > 7, Yk 2> ko, for some ko 2 1. Thus r € lim kl—lﬁo 8,.(Zx). And, since r
was an arbitrary number less than 8,(Z), Claim 2 is proved.

From Claim 1 and Claim 2 it follows that klirgo 6n(Zx) = 6,(Z), and thus
6, is continuous at Z. The proof ends once we remember that £ was an arbitrary
element of X™. #

At this moment, we need to refer to the topology given on S(B(H)) by (34)
and cite the following result (see [23], for example).
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PROPOSITION 3.7. If H is a finite-dimensional Hilbert space, then (S(B(H)),
d) is a compact space whose connected components are the subsets of B(H) made
out of all subspaces of a prescribed dimension.

The next theorem is the main result that helps to describe the relation be-
tween the problem we studied above and the problem studied in [23]. It charac-
terizes the set of points of continuity for the connecting function f.

THEOREM 3.8. If H is a finite-dimensional Hilbert space, and f: B(H) —
S(B(H)) 1s given by f(T) = Ay (T), then f is continuous al T if and only if T is
a cyclic operalor.

Proof. Let n be the dimension of H. If T € B(H) and T is not cyclic, then
the set {I,T,T2,..., 77"} is linearly dependent in B(H). In other words,

(55) dimSp (I, T,T%,...,T*"') < n.

Since the set of cyclic n x n matrices is an (open) dense set in M, ([13]), it
follows that there exists a sequence {7} }»; of cyclic operators on H such ihat
lim Ty =T Then

k—oo

(56) Jim (I, T, T2, ..., T2~ Y = (I, T,T%,:..,T*71).
Also, the cyclicity of the terms in the sequence {Ti}x»1 can be translated into
(57) dimSp (I, Ty, T2, ..., TP~ =n, Vk> 1.

From (55), (57) and Proposition 3.7 it follows that Sp(I,T,T?,..., 7" !) isin a
different connected component of S(B()) than any of Sp(I,T,,T¢,.. .,T}?‘l),
k 2 1. But in view of (56), this shows that f is not continuous at T

Conversely, let T be a cyclic operator in B(H) and let {T%}xp1 C B(H)
such that klirgo Ty = T. Using the fact that the set of cyclic operators on a finite-

dimensional space is an open set ([13]), we can assume, without loss of generality,
that T} is cyclic, Yk 2 1. Recall that the definition of the distance d, (34), is

d(Aw(Tk), Au(T)) = max{sup{dist (z, Au(Ti)) : ¢ € Au(T), [I=]| < 1},

(58) sup{dist (¥, Aw(T)) : y € Aw(T%), |yl < 1}.
But it is obvious that

Au(T) =Sp(I, T, T2, ..., T 1)
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and

Au(Te) =Sp (I, T, T2, ..., T2 ).
With the notation in Lemma 3.5,
(59) (I,T,T%,...,7*Y) and (I,T%,T2,...,T07Y), ¥YE21,

belong to £I,,, where £I,, corresponds to the topological vector space X = B(H).
Also, from the definition of the function 8, is Lemma 3.6, it follows that there
exists a constant M > 0 such that

sup{dist (2, Ax(T%)) : z € A,(T), l|z|| € 1}

(60 S
< Méa (1T, T, ..., T Tk - T}

and

(61) sup{dist (y, 4w (T)) : y € Au(Tk), llv]l < 1}

S M&(IL,T,T2,..., T YT - T

Using now Lemma 3.6 in the context of (58), (59), (60} and (61) we infer that there
exists a constant R > 0 such that d(Ay(T%), Aw(T)) < R||T: — T||, which implies
immediately that klim d(Aw(T), Aw(T)) = 0. Thus f is continuous at . 8

- 00

REMARK 3.9. Theorem 3.8 shows that we cannot derive the continuity of
« at non-reflexive operators from Proposition 3.1, since there are non-reflexive
operators which are not cyclic (for example T' = J; @ J4, where J2 and Jg are
Jordan blocks with eigenvalue zero, of size two, respectively, four).

The following is a generalization of [23], Proposition 4.3 (i).

PROPOSITION 3.10. Let H be an arbilrary separable Hilberl space. If S 1s
a regular subspace of B(H) and A and B are invertible operators in B(H), then
ASB is a regular subspace.

Proof. Let z,y € H. For any subspace § C B(H) and for any operators
A, B € B(H),

(62) (x,y) € [ASB] if andonly if (Bz,A%y) € [S].
If, in addition, A and B are invertible, it follows from (62) that
(63) (z,y) is regular (in [ASB]) if and only if (Bz, A®y) is regular (in [S]).

Assume S is regular and let (z,y) € [ASB] such that z # 0, and y # 0. Using
(62), we infer that (Bz, A*y) € [S]. But § is regular and Bz # 0 and A*y # 0,
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since A and B are invertible. Thus (Bz, A*y) is a limit of regular pairs in [S].
In other words, there exists a sequence {(ur,vk)}x>1 C [S], such that (ug,vk) is
regular Yk 2 1, and such that

kll.ngo(uk, v) = (B, A™y).
It follows immediately that
: -1 wy=1 — \
kl-l—.n;o(B ug, (A%) " or) = (z,9).

Since (63) implies that (B~ ug,(A*) " vy) is a regular pair in [ASB), for every
k = 1, the proof is complete. &

COROLLARY 3.11. If H is a finite-dimensional Hilbert space and T € £,
then Ay (T) ts a regular subspace of B(H).

Proof. Let T' € £. By direct calculation or by using {4], it follows that A, (T')
is similar to Dy, the algebra of all n x n-matrices. But, from [23], Proposition 3.2
((i) and (1)), it is easy to deduce that D, is a regular subspace. Thus, a direct
application of Proposition 3.10 leads to the conclusion that A, (T) is regular. 1

REMARK 3.12. From Theorem 3.8 and Corollary 3.11, it follows that we
could use Proposition 3.4 above to prove that, in case H is a finite-dimensional
Hilbert space, x is continuous at any point T € £, i.e., to prove 41 of Theorem 1.6.
But one should compare the direct proof given in Theorem 1.6 with the (indirect)
one using two non-trivial results, Proposition 3.4 and Theorem 3.8. Also, we
should keep in mind that the remaining 4& of Theorem 1.6 seems independent of
the results in [23].
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