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ABSTRACT. Let M be a properly infinite von Neumann algebra, and « a
dominant action of a separable compact group. Choose a faithful normal
state p¢ on the fixed-point algebra M® and lift it to M as ¢ 1= o - ¢
by means of the canonical expectation € : M -+ M. Then we express the
modular objects associated with o in terms of the modular objects associated
with ¢o.
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1. INTRODUCTION

Let M be a properly infinite von Neumann algebra, and a a dominant action of
a separable compact group G by automorphisms of M. In this paper we shall
describe the modular structure of M, in terms of the modular structure of M?,
the fixed-point algebra of M by a.

To do this we have to use some index theory for an inclusion of von Neumann
algebras with nontrivial centre. So we recall, in Section 2, the definition of the
index given by H. Kosaki ([11]), and some related results. Then, in Section 3,
we slightly extend a recent result of J.F. Havet ([3]) on the minimal expectation
between von Neumann algebras with finite dimensional centres (Proposition 3.6).

In Section 4 we state our problem: we start, for simplicity, from a faithful

" normal state g on M?, as in case of a weight we are faced with some unsubstantial



4 ToMMASO IsoLa

technical complications, and, denoting with ¢ : M — M? the normal faithful
conditional expectation of M on M?, we express the modular group associated
to ¢ 1= o - € in terms of the modular group associated to . To do this, we
have to characterize the restriction to M® of some conditional expectation £ of
M. We consider first, both for their importance and simplicity, prime actions,
namely those with M A M = C, as in this case the characterization of E|M? is
immediate (see Proposition 4.8). Then we solve the case of finite group actions
using the result on the minimal conditional expectation previously proved. The
general case is solved by means of another approach, which makes use of the
unitary implementing the flip to characterize the expectation E. Let us observe
that we use, here and in Section 6, the construction of the crossed product by the
dual of G given by J.E. Roberts ([20]), as this approach provides us with a set of
generators of M, namely M® and the Hilbert spaces in M, in terms of which the
expression of the modular objects associated to ¢ is particularly simple. Therefore
this approach is more useful than the one based on Hopf-von Neumann algebras,
for details of which we refer to [18] and [21].

Section 5 is devoted to the proof of a sufficient condition for two endomor-
phisms to be conjugate. This result is used in Section 6 to compute the modular
operators associated to ¢.

* Finally, we would like to mention that this structure appears, for example,
in algebraic quantum field theory, where one may ask for the modular structure of
the local field algebras in terms of the modular structure of the local observable
algebras.

2. PRELIMINARIES

In this section we recall some known results on the theory of index, initiated by
V. Jones ([9]), both for ease of reference and for fixing notation. Throughout the
paper we assume that all von Neumann algebras have separable predual, and use
the following notation: if A C B are von Neumann algebras, P(B, A) is the set of
all normal semifinite faithful (n.s.f.) A-valued weights on B, F(B, A) is the set of
all normal faithful conditional expectations from B to A; if M is a von Neumann
algebra, P(M) is the set of all n.s.f. weights on M, and E(M) is the set of all
normal faithful states on M.

Let us now recall the definition of H. Kosaki’s index ([11]) based on A. Connes’
spatial theory and U. Haagerup’s operator valued weights. :

Let M C B(H) be a von Neumann algebra, and ¢ € P(M’). We use the
standard notation.
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Ny ={z € M 1 y(z*z) < 0};

My 1= NjNy the domain of 4;

Hy := the Hilbert space completion of Ny, with respect to & ~ 9(z*z)!/?;
Ay = the canonical injection of Ny into Hy;

my := the regular representation of M’ on M, that is
Te(z)Au(y) == Ay(zy), Yz € M', VyEN,.
Define, Y€ € H, the operator R¥(£) : Hy — H by
DRV Q) = Av(Ny), R¥(©)Ay(2) :=a€, Yz € Ny,

We say € € 'H is ¢-bounded if R¥(£) is a bounded operator, that isif 3C > 0
s.t. ||zé]} € C¥(z*z) /2, Y& € Ny. The set D(H;9) := {£ € H : ¢ is Y-bounded}
is dense in M. Let us set 9¥(£,7) := RY(§)RY(n)*; then ¥¥(€,£) € M, (the
extended positive part of M), and, if £,n € D(H; ), ¥ (€, n) € M.

Let now ¢ € P(M) and extend it to My and set g, : £ € H — g,(8) =
P(9%(€,€)) € [0,00]. Then g, is a lower semicontinuous (hence closable) quadratic
form, thus, by Friedrichs’ theorem, there exists a unique positive self-adjoint op-
erator d¢/dy on M (called the spatial derivative of ¢ relative to ) such that
3,(6) = |[(dp/dv) /€],

Based on spatial theory one can prove that, if A C B are von Neumann
algebras, V E € P(B, A) there is a unique E~' € P(A4’, B') such that d{p- E)/dy =
- de/d(v-E~1), Y € P(A), ¥4 € P(B'). Observe that E-'(1) € Z(B), and does
not depend on the representation of B (as the same proof of [11], Theorem 2.2

works).

" DEFINITION 2.1. If A C B are von Neumann algebras and E € E(B, A), we
say that E has finite indez if E~1(1) € Z(B), and that Ind g(4, B) = Ind (E) :=
E~1(1) is the indez of E.

Let now A C B be von Neumann algebras and let E € E(B,A). Let ¢ €
E(A), and set ¢ := - E € E(B); let ¥ € H = Hy cyclic and separating for B and
such that ¢ = (¥, ¥), and set ¢ := [A¥] € A'. We call e the Jenes projection of

the inclusion. Then one has:
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ProrosITION 2.2. ([11]).
(i) E-(e) = 1. In particular Ind (E) 2 1 and Ind(E) =1 <= A= B.
(ii) exze = E(z)e, Yz € B.

(ify)z€B;2€ A <> [z,¢]=0.

(iv) Jpedp = e, where Jg 1= Jg.

(v) (B,e) = JpA'Jp. This algebra is called Jones’ basic construction.
(vi) A := {;i a;eb; 1 a5,b; € Bne N} is a dense x-subalgebra of (B, e).

(vii) The central support of € in {B,e) is 1.
(viii) z € A — ze € Ae = e{B, e)e is a surjective isomorphism,

PRroPOSITION 2.3. Let A C B be von Neumann algebras, E € E(B, A) with
finite index, J a modular conjugation for B, and j := adJ. Then

(i) Ey :=Ind(E)~1j-E~1.j() € B({B,e),B) and Ei(e) = Ind (E)~}; we
call By the ezpectation dual of E.

(i) If Ind(E) € A, Ind (E)) = Ind (E).

Proof. (i) follows by direct computation.
(ii) Ind (Ey) = E;*(1) = j - E - j(Ind (E)) = § - E(Ind (E)) = Ind (E). 1

PROPOSITION 2.4. Let A C B be von Neumann algebras, E € E(B, A) with
finite inder. Lei e be Jones projection and By := (B,e) the basic construction.
ThenVz € By, A b€ B s.t. ze = be.

Proof. Tt follows from [11], Lemma 3.3, with obvious modifications. 8

ProrosiTION 2.5. Let A C B be properly infinite von Neumann algebras,
E € E(B, A) with finite index. Then 3b€ B s.t. z = bE(b*z),Vz € B. Moreover
beb* =1, bb* = Ind(E), aend E(b*b) = 1.

Proof. Let v € B; be such that v*v = ¢, and vv* = 1 and let b € B be s.t.
v = ve = be. Let Ey € E(By, B) be the dual expectation. Then beb* = vv* = 1,
66" = Ind(E)bE;(e)b* = Ind(E) Ei(beb*) = Ind(E), and E(b*b)e = eb*be =
v*v = e, so that, by uniqueness in Proposition 2.4, E(d*b) = 1. Finally, V2 € B,
ze = beb*ze = bE(b*z)e, so that £ = bE(b*z). 1
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3. ARESULT ON THE MINIMAL EXPECTATION OF AN INCLUSION OF VON NEUMANN
ALGEBRAS WITH NONTRIVIAL CENTRES

In this section we want to give one result on the minimal expectation that will be
useful in the next section. To do this, we have to prove some preliminary results
on the behaviour of expectations and indices w.r.t. decompositions.

PRrOPOSITION 3.1. Let A C B be von Newmann algebras, E € E(B, A).
IfA = fe Awdp(w), B = f@ B, du(w) are their decompositions with respect to
L2(Q, p) = Z C Z(A) A Z(B), then for almost allw, there exists E, € E(B,, Au)
such that E(z) = [® E,(z,)dp(w), Yz = [® 2, du(w) € B.

Proof. Let us choose ¢ € E(A) and set ¢ := ¢ - E € E(B); then ¢ = ¢ - E,
and, if oy := o¥, then oy(A) = 4, Yt ER.

Let o4(z) = [ 04, 4(20) dp(w), be its decomposition as in [22], Theorem A.13,
and let ¢ = fe) o dpw), ¥ = f® ¥ du(w) be the decompositions of ¢ and %,
where ¢, € E(AL), ¥ € E(B,) for almost every w ([23], Proposition IV.8.34).

Observe that 1,|A, = @., from uniqueness ([23], Proposition 1V.8.34),
therefore o, (Aw) = Aw,¥t € R. Thus, from Takesaki’s criterion, 3! E, €
E(B,, Ay) such that 9, - E, = t,.

Let us set F(z) = fe Eu(z,)dp(w),¥Yz € B. Then it is easy to prove that
F € E(B, A) and that ¢ - F = 1, so that, by uniqueness, F = E. 1

LEMMA 3.2. Let A be a von Neumann algebra, f® A, du(w) its decomposti-
tion w.rt. L®(Q,p) =2 2 C Z(A), ¢ € P(A), p = [® 0., dp(w). Then
(M) Ho = O My, du(w);
(i) My C [ N, dp(w);
(iii) D(M;¢) C {€ = [® € dp(w) : &u € D(Hy,;pu) ae}.

Proof. (i) By [13], Corollary 2.7, A := [® Ay, (W, NNG,) dpp(w) is a full
left Hilbert algebra, dense in #, and whose left von Neumann algebra is A ([13],
Theorem 2.5). Besides ¢ is the weight on A determined by A, by [22], Theo-
rem A.6, so that A = Ay(N, {1 N,;) and the thesis follows.

(i) Let z = [® 2, dp(w) € N,,; then

®
[ouaian)du) = o [ stz du(w)) = pla"s) < oo

so that @, (z%z,) < co a.e., that is z,, € N, a.e.
(iii) Let £ = [® &, dp(w) € D(H; ); then 3C > 0s.t. [|2€]|> € Cp(z*z), z €
Ny, that is [ [lewéu||? dp(w) € C [ pu(zlzu) dp(w), = € N,. Then in particular
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lzwéull? € Cou(zhzw), 2w € Np, N, ae. Let now {uui}ies C Moy, 4 be s.t.
uyi /1. Then [[Ay (2w) = Ap, (bwizu)]] — 0 and uuiz, € My, ([21], 2.2) so
that [[2,€u]|* € Cpu(zhzu), Tuw € Ny, a.e., that is &, € D(H,,; pu) ae. B

LEMMA 3.3. Let A = feAwdp(w) be a von Neumann clgebra, and ¢ =
f vwdu(w) € P(A), ¢ = f t, du(w) € P(A’) where the decompositions are
wrt. I°(Q,u) % Z C Z(A). Then 32 2 = = o4 {5 du(w).

Proof. Let £ = [® £, du(w) € D(H; ) and o = [zl dp(w) € Ny; then
[ e = [7 R (el dnte)
| = f ’ z,,éu du(w) = '€ = R¥(€)Ay(2')
so that [® R¥«(£,)du(w) = R¥(€), € € D(H;%). Then

@
99(6,6) = [ 9%(6u,£4) du(w), € € D(H; ),

whence

(e €) =060 = [ ul0¥(60,6) o)

=/ (%w,@) dpfw) = ( T duoe, e)

for ¢ € D(M; ). Therefore
d‘P d‘Pw
w>] . dp(w)
Let now w € Q@ — £, € I'ID(’wa,w‘.,) be a measurable field, and let,

VneN,Q, = {we: |z &l < < npu(zozl), . € Ny }; then JQ, = Q.
Let us observe that ¥I' Borel sub‘set of Q,, we get [ ® xr{w)é, dp(w) €
D(H; ) so that, from what we have proved above, we get

[((5).0.¢) 00 | ()

(( )wfw,fw) = (dpwfw,fw) a.e.

Therefore %ﬁ:’- 2 (%,p"’-) a.e., so that —"’— < [O qeu o du(w) and the thesis follows. @

hence
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THEOREM 3.4. Let A C B be von Neumann algebras, E € E(B, A), and
let A= [®A,du(w), B = [®B,duw), E = [®E,du(w) be their decomposi-
tions w.rt. L®(Q,pu) = Z C Z(A)AZ(B). Then E~' = [® E;1 du(w) and in
particular Ind (E) = [ Ind (E,) dp(w).

Proof. As
dpy _doy-E, dlp-F), [(dp-E
dyp, - EZ T dge de ( dp )w
de _ _ dpy dp.,
- (dwE-l)(,, T d(y-E-Y), ~ dd, - (BN,

we get (E~1), = E;! ae. and

. . d
from uniqueness of decomposition of @_T%'—_l’

the thesis follows. 0

Recall that, when the two algebras A and B have finite dimensional centres,
J.F. Havet proved in [5], Theorem 2.9, the existence of a minimal expectation.

THEOREM 3.5. Let A C B be von Neumann algebras with finite dimensional
cenires, and assume that there exists £ in E(B, A) with finite indez. Seiting
p:=min{|[Ind (F)|| : F € E(B, A)}, there ezists a unigue Ey, € E(B, A) s.t.

(i) [lInd (Em)l| = p-

(i) Y F € E(B,A) s.t. |[Ind(F)|| = p, there follows Ind (Ey,) < Ind (F).
Besides Ind (En) € Z(A)( Z(B) and En(zy) = En(yz), z€ AAB, yeB. 8

PROPOSITION 3.6. Let A C B be von Neumann algebras, E € E(B, A),
A= [®A4,duw), B = [® B, dp(w), E = [®E,du(w) be their decompositions
with respect to L°(Q,pu) = Z C Z(A) A\ Z(B). Suppese that dim(Z(A,)) < oo,
dim(Z(B,)) < oo a.e., and that E,, is the unique expectation of Theorem 3.5. Set
m(z) := min{||Ind(F)z|| : F € E(B,A)}, for all z € Proj(Z). Then E is the
unique ezpeciation in E(B, A) s.1.

- (1) (Ind (E)z|] = m(z), Vz € Proj(Z).

(i) V F € E(B,A) s.t. [[Ind(F)z|| = m(z), Yz € Proj(2Z), there follows
Ind (E) < Ind (F).

Proof. (i) Let F = [® F, du(w) € E(B, A) and z € Proj(Z) corresponding
to the Borel subset I' C ; then

[lInd (E)z|| = esssup p||Ind (E,)|| < esssup p||Ind (F,)|| = ||Ind (F)z||.

(i1) Let now F € E(B, A) be s.t. {|Ind(F)z|| = m(z), z € Proj(Z); then
[Ind (£,)|| = (|Ind (#,)|| a.e., from standard measure theoretic arguments. There-
fore, from 3.5, Ind (E,) < Ind(F,,) a.e. and the thesis follows.

Uniqueness follows from 3.5. 1
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DEFINITION 3.7. We call E of Proposition 3.6 the minimal conditional ez-
pecialion in E(B, A).

4. THE MODULAR GROUP

The first part of this section is taken from an unpublished manuscript of R. Longo.

First of all, let us review some notions.and results from [20] that we will use
throughout the following.

Let M be a properly infinite von Neumann algebra; then a norm closed linear
subspace H of M is said to be a Hilbert space in M if a € H implies a*a € C, and
t €M, za=0,Vae H implies x = 0. Let us denote with H(M) the set of all
Hilbert spaces in M.

A unital normal endomorphism p € End(M) is said to be inner if there
exists H € H(M) such that, if {v; : i € I} is a basis of H, p(z) = }_ vizv},
where the series is strongly summable. In this case we write p = py and 'i?follows
that py is faithful and we have the isomorphism M = py (M) ® (H, H), where
(H,H):={z €M :a*zbe C,Va,be H} = B(H).

Let now G be a separable compact group, and a : G — Aut(M) be a
continuous action. We recall that « is said to be dominant if (i) M* ;= {zx € M :
e, (z) = z,Y g € G} is properly infinite, and (ii) V7 € G there exists H € H*(M),
the set of c-invariant Hilbert spaces in M, such that a|H 2 7. Then, from [20],
Theorem 6.5, we have M = {M*, H*(M)) the von Neumann algebra generated by
M*® and the set H*(M).

In this section we want to describe the modular structure of M, knowing
that of M. To begin with, let H € H®(M) be a Hilbert space in M, invariant
with respect to a, and p = py be the corresponding inner endomorphism. Then
we have:

LEMMA 4.1. With the above notation, if {v;,i € I} is e basis of H, the
tensor product decomposition M = py (M) ® (H, H) is given by
2= plzi)we},
ijer

where z;; := v}zv;, and the series is strongly summable.

Proof.

* * *
E pzij)viv] = E E VT VR UiY) = E viTijv; = E vy zvjv; =z. A

i,5€r s jel kel i,jel i,j€r
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REMARK 4.2. If we set d:=dimH and ®: 2z € M — [vfay;] € Maty(M),
then from Lemma 4.1 we get

z=y p(B(z)i;)uiv}.

Therefore the inverse of @ is given by ®~![z;;] = 2 viijv} z pzij Juiv]
ijer

Note also that @ - p(z) = 2 ® 1, and &~ }(X) = Z P® 1d(X).,v. ¥, where we

ijel
have used the identification Mats(M) = M @ Matq(C).

Denote by € : M — M“ the normal faithful conditional expectation given by
g = f oy(-) dg, and suppose we are given a normal faithful state o on M* with

modular group o%¢; we wish to describe ¥, where ¢ 1= g - £ is a faithful normal
state on M.
Let H € H*(M); since o¥ commutes with @, as ¢ is a-invariant, we get
o¥(H) € H*(M). Set uy := ) wof ()", where {vi,i € I} is a basis of H. Then
3

of(v) =uiv,Yve H.

‘LEMMA 4.3. With the above notation, u; is a unélary o¥-cocycle that does
not depend on the basis of H.

Proof.

Uy, U= ar,_l_,(v) = of (0¥ (v)) = of (uiv) = of (u))ujv,Yv € H.

Thus u},, = of (ul)u} or w4, = oy (u,). Formula of (v) = ujv shows that u,
does not depend on the basis {v;} but only on H. &

Since u; is a cocycle, by a result of Connes [21] there is a positive linear
functional ¢’ on M such that ¢f = u,0(-)uf. We want to write ¢’ explicitly.

PROPOSITION 4.4. Ifu, ts the cocycle of Lemma 4.3, then the positive linear
J
functional ¢' on M such that 6f = wof(-)u} is given by ¢'(z) := go(Zv :cv,)

Proof. Indeed
of (z) = wof (a)u; -.Z viaf (v})of (z)of (v;)v}
= Z v;of (vf zv; )'v; = Z vi(of @ 1d)}{(®(z))ijv] =91 . (¢f ®@id) - ¥(2).
6 35
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Thus ¢¥ = ®=1.g¥®".®, where tr is the usual trace on Matg(C), tr[a;;] := Za.,

Let us now verify that ¢’ = (¢ @ tr) - ®, that is
@'(z) = (p®tr) B(z) = ¢ @ trfvf zv;] = (Zv mv,)

Indeed, from KMS formulas we get

F(t) = ¢'(we) = ‘P'(Z viof (vi)'z ) 2¢(v V0 (v;)":r:v,-)’——*Zgo(a;”(u,-)"mu,-)

i

and

F(t+1i) = th(xv;a;p(v;)*) = p(zu). B

Let us observe that ¢’ is a-invariant; therefore, if we set ¢f := ¢'|M®, we
get u; = (Dy' : Dp)i = (Dl : Do)t € M. To determine u¢ we need a more
convenient expression for ¢’.

PROPOSITION 4.5. The funclional ¢' € M.y of Proposition 4.4 is given by
¢ = dp-p~t E., where E; € E(M,p(M)) is given by E.(z @ y) = 7(y)z,
Vz € p(M), y € B(H), in the isomorphism M = p(M) ® B(H) and 7 := Ltr.

Proof. Indeed
N _ * - w0
& (0(e)) = o X vt p()) = o S iveviu) = dole),
i ij
thus ¢'|p(M) = dyp - p~t|p(M). On the other hand
p’(v;'v;) = (p(Zv:v;v;vk) = b,
k

that is to say ' |p(M) A M = tr. So,.if we denote with £, the normal conditional
expectation from M to p(M) given by 7, we get

!

p:d(P.p_l'Efs [ |
REMARK 4.6. As follows from Lemma 4.1,Vz e M, z = Z p(vf zu;)viv},
rJ-‘l

d d
so that E,(z) = Y. p(vjzv;)E.(viv}) = # Yo p(vf zw;).
iJ i=1

6=l

LEMMA 4.7. (i) agp = pay, Vg € G, so that p(M*) C M*;
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(il)) ag B = Eraqy, Vg € G, so that E.(M®) C M®;
(i) VE € E(M,p(M)), s.t. ogF = Fa,, g€ G, one has E-e =¢-E.

Proof. (1)
ag(p(a)) = o (P wiwv} ) = 3 aglvr)ag(@)ag(v)* = plerg(=))-

(i1) Recall that, in the isomorphism M =2 p(M)QB(H ), we have o = aQad,
E(z®y)=1(y)z,Vz € p(M), Yy € B(H). Then
ag - Er(z®y) = 1(y)ag(z) = r(n(g)yn(g)")ory(x)
= 7(adn(9)(v))ay(z) = Er(ay(z) © adn(g)(y))
= E; - (ay @ adn(g))(z @),
from which the thesis follows.
(iii)
E . e(z)= E‘/ag_(x) dg = /Eag(:c) dg = /agE(x)dg =z=¢-E(z),VYee M. 8
G G G
As follows from Proposition 4.5, to determine u; we have to characterize

E;|M%*. For the time being, let us state a simple condition which allows us to
uniquely determine E,|M¢.

PropPoSITION 4.8. If M™ AM = C, then p(M®) AM® = C. Then the
resiriction of E. fo M® is unique.

Proof. Let & € p(M“) AM®, then zp(y) = p(y)e,Yy € M*, ie.
Z zuyv] = E vy} T
£ .3

Multiplying both sides of this equality by v} on the left and by vx on the

right, we get
VRTURY = yupTUR, Yy € MT,
that is vizv, = ®(z) € M A M.

Therefore ®(z) € (M*' A M) ® Maty(C),Vz € p(M?) A\ M©.

Denote with #(g) := ag|H, where H € H*(M) is the Hilbert space in M
implementing p, and recall that = is irreducible; then ¢ - « - @‘115(3) = adw, and
D(M®) = M ® Matg(C)*®7,

Therefore

S(p(MY AM®) = (M* AM) ® Matg(C)AM ® Maty(C)*&2dr
= (M* AM) ® Maty(C)>®adr,
Now, as M*' AM = C, we get p(M*)Y AM*=C. 1
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To determine E,|M“ in the general case we need some preparation.
Let A C B be properly infinite von Neumann algebras, G a separable com-
pact group, o : G — Aut(B, A) a dominant action.

LEMMA 4.9. With the previous notation, VE € E(B*,A%), 3E € E(B, A)
such that Eag = ayE, g € G, and E|B* = £.

Proof. From (20}, Theorem 6.5 and [18], Theorem IV.4.8 there exists an
isomorphism ¢ : {B, a} — {B® x5 G, §}, where 6 is a dual coaction. If we identify
B = B® x5 G, a = §, then A = A® x; G, and, by [8), Section 5, there exists
E = 5®id3(;,2{(;))l3 € E(B, A), such that Eay = ayF, g € G,and E{B* =£. 1

DEFINITION 4.10. We call E the canonical lifting of £ ([8]). Besides, we call
any E € E(B, A) such that Eay, = a,F, ¢ € G, and E{B* =&, a lifting of £.

LEmMMA 4.11. Let

A C B
U U
Ao C Bo

be von Neumann algebras, E € E(B,A), £ = E|pg, € E(By, Ao), Ind(E) €
Z(Bo),- Then Ind(E) > Ind(£).

Proof. Let ¢ € E(A), ¢ € E(Byp), then we have
dp _dp-E _d(p-E)lp, _ dplao-€ _ _dola

dg|p - E-1 " dylp d¢ d¢p  dg. &l
where the inequality follows from [7], Lemma 1.8. Then V£ € D(H; ¢) C D(H; ¢|a,)
we have 1-£~1(8%140 (£, €)) < Ylp-E~1(69(£,£)). By normality we get 1}{-8"1[,4: €
¥l - E71, so that, in particular, ¥(Ind (£)) 2 ¢(Ind (£)), Y € E(Z(By)), and,
as Ind (E), Ind (£) € Z(Bo), , we obtain Ind(E) > Ind(£) in Z(Bo),. 8

PROPOSITION 4.12. Let £ € E(B%,A%), E € E(B,A) a lifting of £, and
suppose E has finite indez. If a|A is dominant, then Ind (E) = Ind (£).

Proof. Let po € E(A%) and ¢ := g - E - ¢ € E(B) (since E and € commute,
E .¢ € E(B* A%)). The modular group o¥ of ¢ leaves 4, A® and B globally
invariant. As E = a, - E - o' we get Ind(E) € Z(B)* C Z(B“). Indeed,
if oy = aduy|B, let us set &, := aduy, € Aut(B(H)). Then by [10], Lemma 1.6,
E-! =(ogE-a;')"! = ay-E~1-a; so that Ind(E) = &,(Ind(E)) = a,(Ind(E)).

As follows from previous lemma, Ind(£) is finite, so that from Proposition 2.5
we get that 35 € B” st. z = bE(b*z), Yz € B*. As a| is dominant, B =
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(B*,H*(A)), A = (A*,H*(A)). Then {b} is a basis for B wr.t. E, as VH €
H*(A), Vv € H we get bE(b*v) = bE(b")v = v. So we obtain Ind(E) = bb* =
Ind(€). &

REMARK 4.13. Let E € E(B, A); then E is uniquely determined by its
action on B* as B = (B*, H*(A)) and E(v) = v, Vv € H, VH € H*(A). Hence
V& € E(B*, A%) there is a unique lifting £ € E(B, A).

We can finally come to the characterization of the restriction, to the fixed-
point algebra, of E; € E(M, pg(M)), the conditional expectation given by the
trace on pu (M) A M at least in the case dim Z(M?) < o0,

Notice that pg (M) and M have the same centre, and that E, is the minimal
expectation in E(M, pg(M)), as defined in Definition 3.6, and has scalar index.
Besides a|pg (M) is dominant as py is an equivariant isomorphism between {M, a}
and {pn (M), clpu(M)}.

PROPOSITION 4.14. Suppose that dim Z(M*) < oo and let E. be the mini-
mal expectation in E(M, p(M)) and £, the minimal expectation in E(M®, p(M®)).
Then & := E,|M® = &,,.

Proof. Let E,, be the canonical lifting of £, to M. Then from Proposi-
tion 4.12 we get [[Ind (Ep)|| = ||Ind (£,))} < |IInd (&;)|| = Ind (£;) = Ind (E;), as
E, is a lifting of &;, as is easily verified.

As Ind (E;) < |[Ind (E)|| we get [|Ind (Ep)|| = [Ind (En)| = Ind (&) =
Ind(E;). Therefore from Theorem 3.5 and Proposition 4.12 we get Ind (E,,) =
Ind (€ ) € Ind (€;) = Ind(E;) < Ind(E,;,). Hence E,, = E,, as E, is the unique
minimal expectation in E(M, p(M)). Then E,|M® = E,,|M* =&,. 8

Gathering together what we have found thus far we can state the following:

THEOREM 4.15. Let M be a properly infinite von Neumann algebra, a a
dominant action of a separable compact group s.t. dimZ(M®) < 0o, €: M — M?
the normal faithful conditional ezpectation from M to M®, ¢y a faithful normal
state on M and set ¢ := o -¢. Then VH € H*(M), a-igvariani Hilbert space
in M, we get

of(z) = of°(z), Yz e M®,

of(v)=up,v, VveEH,

where ugy = (Dpg : Dpo)y € M®, gy := dim{H )y ~p;,1 &y, €y M* =
pa(M®*) the minimal normal conditional expectation.
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PROPOSITION 4.16. Let M be a properly infinite von Neumann algebra, o
a dominant action of a finite group, € : M — M the normal fetthful conditional
expeclation from M to M®, @o a faithful normal state on M and sel ¢ := @o €.
Then ¥V H € H*(M), a-invariant Hilbert space in M, we get

of(z) =of°(z), Yz e M?
of(v) = uy,v, YvEH,

where up ¢ ;= (Dpn : Do)t € M, o = dim(H )y -p;{l Ey,and Ey - M* —
pr(M®) is the minimal ezpectation given in Proposition 3.6.

Proof. Let M = f@ M, dp(w) be the decomposition of M w.r.t. Z(M)°.
Then, as Z(M)® = fEB Z(M,)% dp(w), we get Z(M, )% = Cae. As Z(M,)* C
Z(M,,) has finite index because the group is finite, from (1] dim Z(M,) < oo.
As the inclusion M~ C M, has finite index again because the group is finite,
from [1] dim Z(M2«) < oco. Let us denote with £x . € E(MSv, pro(MJ*))
the minimal expectation, and with £y := | ® Ex . dp(w) the minimal expectation
given in Proposition 3.6. Then it is easy to see, using arguments similar to those
in Proposition 4.14, that £y is the restriction to M of the minimal expectation
Ey of E(M, py(M)) and this completes the proof. 1

The lack of a definition of minimal conditional expectation in full generality
prevents us to solve the problem in the general case of a dominant action of a
separable compact group, so we use another approach, based on {16]. We hope to
return to the approach based on the minimal expectation somewhere else.

Let H € H*(M), and {v; : i =1,...,d} be a basis of H; then

d
o ay sy
191{ = E v.v,vivj
ij=1

is independent of the chosen basis; besides ¥ € M® is unitary and v} 9gv; = viv].

d d
So that, from Remark 4.6, we get E. () = 1 - p(vfdpw) = § 3 plviv]) = L.
izl i=1

PROPOSITION 4.17. Let F € E(M,pu(M)) be s.t. F(9g) = k. Then
F=E,.

Proof. As M = pg(M) ® B(H), there is a bijective correspondence between
E(M, pr(M)) and the set of faithful normal states on B(H), so that there is a
unique A = [ani] € Maty(€), positive delinte, with 7(A) = 1, s.t.

d d

F(z)= Y p(o;zv)F(viv}) = 3 p(vlau;)r{Avivy).

ij=1 1,5=1
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Now, as {v;v}} is a set of matrix units in Mat4(C), we get

d d
Av;v;-’ = Z ahkvhv;v;v;-' = E ah;vhv;
hk=1 h=1

d
and 7(Av;v}) = Laji, so that F(z) = 1 3= ajip(v}zv;) and
i,i=1

1 d
F(ﬂ”) = E Z a.—_,-p(v,-v;).

i,5=1

d d

As F(9y) = %, we get Y aijp(viv]) = 1 that is 3 aijv;v; = 1, whence
i,j=1 i,f=1

a;; = 6,']' and F=F,. 1

PROPOSITION 4.18. The restriction E.|p« of E; to M* is uniquely deter-
mined by the condition E,|pe(Jy) = L.

Proof. It follows from Remark 4.13 and the previous proposition. 1

THEOREM 4.19. Let M be a properly infinite von Neumann algebra, o a
dominant action of a separable compact group, ¢ : M — M the normal faithful
conditional expectation from M to M*, vy a faithful normal state on M and set
w:=o-€. ThenVH € H*(M), a-invariant Hilbert space in M, we get

of(z)=0of°(z), Vre M®,

of(v) =uj,v, VveEH,

where up s := (Dpn : Do)t € M?, on = dim(H )po -p,}l €y, and Eg - M* —
pr(M®) is the unique ezpectation s.t. E4(dy) = dim(H)~!.
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5. A SUFFICIENT CONDITION FOR THE CONJUGATE ENDOMORFPHISM

Before we come to the main result of this section we recall a few notions.

Let A, B be von Neumann algebras, then H is said to be an A — B corre-
spondence if it is a (separable) Hilbert space where A acts on the left, B on the
right, and the actions are normal: we denote with afb, a € A, b€ B, £ € H, the
relative actions.

Let Corr(A, B) be the set of A — B correspondences.

Let p : A — B be a normal homomorphism, then we let 7, be the Hilbert
space L?(B) with actions aéb := p(a)Jb*JE, a € A, b € B, £ € L%(B), where J
is the modular conjugation of B. Conversely, by [17], Proposition 2.1, if A, B are
propetly infinite von Neumann algebras, and € Corr{A, B}, thereisp: A — B
normal homomorphism such that X = #,.

Let H € Corr(A, B), then the conjugate correspondence H € Corr(B, 4) is
given by the complex conjugate Hilbert space H with actions bla = a*€b*,a € A,
b € B, where ¢ € H is the conjugate vector of £ € H. We say ¢ € End(4) is a
conjugate endomorphism of p € End(A) if H, = ﬁp, and set g for a conjugate
endomorphism. Then, if A is a properly infinite von Neumann algebra, p,o €
End(A) are conjugate endomorphisms, by [17], Proposition 2.3, iff V£, n € L2(A),
3¢, 0 € LY A)s.t. (€, p(z)ny) = (v, 2€'a(y)), Y=,y € A, or, by (17}, Theorem 3.1,
iff 37 : A — p(A) canonical endomorphism, s.t. ¢ = p~* - 7.

Let us state and prove a sufficient condition for two endomorphisms to be
conjugate. '

AssuMPTION 5.1. Let M be a properly infinite von Neumann algebra, and
p,o0 € End(M) and injective. Let v,tv € M be isometries s.t. op(z)v = vz,
po(z)w = wz, ¥z € M, and 3) € (0,00) s.t. w™p(v) =v*a(w) = A.

Set x(z) := v*o(z)v, ¥(z) := w*p(z)w, Yz € M, then x, % are completely
positive normal maps s.t. xp(z) = v'ep(z)v = z, Ya(z) = wpo(z)w = =z,

Yz EM.
LEMMA 5.2. E:=p-x € E(M,p(M)), F =0 ¢ € E(M,c(M)).

Proof. We have only to prove faithfulness. Let us set G(y) := o - E - 07 (y)
and prove that G € E(c(M),op(M)) from which will follow immediately that
E € E(M, p(M)). :

Set e := vv* € Proj(M); then op(z)e = op(z)vv* = vzv* = wv'op(z) =
eop(z), Vz € M, that is e € op(M)’ A M. Besides

eo(z)e = vv o(z)vv* = vx(:-r)v' = opy(x)vv* = a(E(z))e, Yz EM,
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that is G(y)e = eye, Yy € o(M).

Now, if y = o(z) € o(M) and G(y*y) = 0, we have 0 = G(y"y)e = ey*ye,
that is 0 = ye = o(x)e, that is o(z)v = 0, that is po(z)p(v) = 0, which implies
0 = w*po(z)p(v) = zw*p(v) = Az, that is 2 = 0, which implies y = 0 and the
faithfulness of G.

The proof of the faithfulness of F' is analogous. 1

THEOREM 5.3. Under Assumplion 5.1 p and ¢ are conjugate endomorphisms
and Ind g(p(M), M) = Ind p(c(M), M) = A~2,

The proof follows closely that of [17], Theorem 4.1. We divide it in some
lemmas.

Choose 2 € H cyclic and separating for M, p(M), o(M); let U,V be the
canonical unitary implementations, with respect to 1, of p, and o respectively; set
J =i Jp = Titary Jo 1= Jary w = (R,- Q) € E(M) and ¢ := w- E € E(M).

LEMMA 5.4. ¢(z) = (®,2P), where @ := V*'ol/*Q.

Proof. We have, Yz € M,

p(z) = w- B(z) = (@ B(z)Q) = (@, p(v* o (2)v))
= (Q,Uv*o(z)oU" Q) = (Q,Uv" VzV* ol Q) = (V*oU*Q,zV*0U*Q). 8

LEMMA 5.5. @ is cyclic and separating for M.

Proof. ® is separating for M because ¢ is faithful. We want to show that
& is also cyclic for M. Let us set 0~ (z) := V*zV, Yo € M. Then we get
[p(M)®)] = o~ () € p(M) Ao~} (M). Indeed, V& € M, we get
p(2)® = p(z)V*oU*Q = VU UVp(z)V* U UU*Q
= VU pop(z)p(v) = V' U p(op(z)v)Q2
= VU p(ve)t = VU p(v)p(2)S2.
As Q is cyclic for p(M) we get,
[p(M)®] = range (V*U"p(v)) = VU p(v)p(v)" UV
= VU p(e)UV = VeV =07 (e).
Finally, let us set ¢ := [M®], and show that ¢ = 1. Indeed ¢ = [M®] > [p(M)®] =
o~1(e). But we have o(w)*v = X so that w*o~!(v) = X that is c™1(v)*w =

A, so that w*o~(e)w = w*e(v)o~}(v)*w = A% and ¢ = quw*w = w'qw 2>
w*o~ (e)w = A? > 0 which implies ¢ = 1, and & is cyclic for M. 1
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Multiplying UV by a unitary in M’, if necessary, we may assume that ® €
L(M,Q)4.

Let us now set M := {M,o"'(e)); then, as [p(M)®] = s~}{e), we have
that p(M) C M C M, is Jones’ basic construction. By applying ¢ we have
op(M) Co(M)C (o(M),e) CM.

LEMMA 5.6. M = {c(M),e), that is ep(M) C o(M) C M = (a(M),e) is
Jones’ basic construction. Besides Ind g(p(M), M) = A"2%

Proof. We want to apply [12], Lemma 1. Remember that in Lemma 5.2 we
already proved that, with G(y) := o- E-0~!(y), we have G(y)e = eye, Yy € o(M).

Moreover, the central support, cas(e), of e in M is 1, as cpr(e) = [MeH] =
[Mvv*H] 2 [o(w)*vo*vH] = 1.

Besides F(e) = at(e) = o(w*p(e)w) = o(w* p(v)p(v)*w) = A2,

Finally, V2 € M,

F(ze)e = oy(ze)e = o(w' p(ze)w)e
= 0w’ (@)p(0)p(v)" w)e = Aa(w’ p(z)p(v))e
= do(w) op(z)op(v)ve” = da(w) op(z)vvr”

= do(w)*vre = Aze.

Therefore, by [12], Lemm |, M = {(0(M),e), and A72F = adJ, - G~ - adJ, so
that A=2 = G~1}(1) = Ind g(op(M),0(M)) = Ind g(p(M), M). 1

Note that, exchanging the roles of p and o, we also get that M = {p(M), ww"}
and Ind p(o(M), M) = \~2.

Proof of Theorem 5.3. From the previous lemma it follows that ¢=!(M) =
(M,07(e)) = My = Jp(M)'J. Therefore c=*(v),07!(e) € My = Jp(M)J,
so that vy := Jo~ (v)J € p{M). The canonical unitary implementation of the
isomorphism y € p(M) — yo~1(e) € p(M)o~'(e), with respect to Q and @, is
given by the isometry wo = voz, where z € p(M)' is unitary. Then, from [16],
Proposition 3.1, we get T := J,J = w§JwoJ = z*vyJvozJ = z*vgJvgJ J2J, thus,

to compute the class of 7, := adl',, the canonical endomorphism of M into p(M),
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we may assume wy = vg. Then we have, Y2 € M,

[p2l), = vgJvpJeJvgJvo
= Jo~Yv)* Jo~ (v)zoe (v) Jo L (v)]
= Jo~ (v)* Jo Y (vo(z)v* ) o~ (v)J
=Jo~ (v) o (v opal(a))Jo (v)J
=Jo (w)* Jo~ e)po(z) o~ (v)J
= Jo  (v)* Jo~ (e)Jo~ (v)J po(z)
= Jo (v ev)J po(2)
= po(2),

because Jo~1(v)J € p(M) and Jo~'(e)J = o~ '(e). Hence we get [po] = [v,],
that is p and o are conjugate. 1§

6. THE MODULAR OPERATORS

Recall the notation of Section 4. M is a properly infinite von Neumann algebra,
is a dominant action of a separable compact group G, ¢ : M — M® the canonical
expectation, g € E(M?), ¢ := o -€ € E(M). Let Q be a cyclic and separating
vector for M representing ¢ and set UyaQ := ay(z)Q?,¥Yz € M. Then ¢ € G —
U, € U(H) is a strongly continuous unitary representation of G on M and we have
the following decomposition for U

U:@n,ﬂr

where G is the set of classes of irreducible unitary representations of G modulo

unitary equivalence. Let H = @ Hn be the induced decomposition of H, that is
TeG
UlHx = nym.

DEFINITION 6.1. Let Ey := [ xx(9)U, dg, where xx(g) := dxtr (n(g)), dx :

G
degm; then E, € B(H) is an orthogonal projection and E,H = H,.
Set ex := [ xx(g)ag(-) dg; then £,(2)Q = EnzQ, ¥z € M.

G
Set My := ex(M); then H, = [M,Q].
Finally set Eo := [ U, dg, projection on the a-invariant vectors, and Ho :=
G

EoH = [M°Q).
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Now let us choose, ¥ 7 € G, an a-invariant Hilbert space Hy in M, su\ch that

o|Hy =2 7, and let {ver :k=1,...,dy} be a basis for Hy; then

de
Ex =de Y v3yEovnk,
k=1

where 7 € G is a conjugate representation of 7 ([15]).
With the previous notation, we have:

dx
LEMMA 6.2. (i) Mz = HiM® and z =dy 5 v}, ¢(verz), YV € My;
k=1

dx
(i) My = M*Hy and 2 = dy 3 e(vi, z)vy., Yz € My,
k=1
Proof. (i) Let us prove first that Mz C HyM®. Indeed, ¥z € My, we have

z=¢x(z) = /x,(g)ag(z) dg

G
dx dex
=dx EU:k / a (vrt)ag(z)dg = dy Z vypgE(Uxi ).
k=1 G k=1

Then we prove Hf M®* C My; indeed, Y v}, 2z € H;M®, we have

dx
ex(viez) = / xe(@)ag(uize)dg = ds 3 / 1(0)uerg(var) Vem Vi dg2s

& Iim=1 G
ds de
=d, ) ]‘K(g)uﬂ(g)mk dgupmze = Y imbixVinTk = V3Tt
im=14 I,m=1

and, by linearity, we are through.
(ii) is analogous. @

For the sake of completeness we report here the proof of a result, which is
part of a stronger one in [4], that we will use repeatedly in the sequel.

PROPOSITION 6.3. For everyw € G’, there exist {Vyx k= 1,...,dx} isome-

dar
tries from Ho 10 Hy, with mutually orthogonal ranges, such that 3 Vi Vi = E,.
k=1

Proof. For the sake of brevity, let us drop suffix 7 from what follows.
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: d
Let {&1,...,£4} C My be such that Uyé; = 5 €;m(g);i, and let {31, ..., 0a}
i=1

d
be a basis of Hy such that o (%;) = Y. 9;7(g);:.
=1

d
Then & := Y #;¢; € Ho;-indeed
i=1

d
U9£=ZU € =EU U U € = Za’y (0:)Ugéi

i=1 i=1
d d d d d
=33 97(g)ji ZﬁkW(g)h =" 56 Y m@mleT )y = Y by = &,
i=1j=1 = k=1 i=1 k=1

Thus &; = 8¢ € 57 H,.
Besides £ € Ho = 97€ € Hx as

Ug¥i§ = ay(:)"€ = Z’r(g)zl” §= 2"’(9)1-” §.
i=1 j=1
Finally V&, n € Hg we get
(93¢, 95 n) = (£, %:}n) = (€, Eoti¥} Eon)~ (€, €(8:3])m)

f Cog@Tmdg = 3 [ aie, ay(ay ) dg

Im=1g
d —
=5 /*(g)iri(g)jm(ﬁfﬁa Tn)dg =d™* Z 8is bim (V'€ )
Im=1 G im=1

d
= d—l(sij Z(ﬁmﬁmﬁ)n) = d—léu(fﬂ?)
m=1
Therefore, if we set V; := \/J:’):‘ [Ho, we get
(i) Vi :Ho— Ha,
(i) (i€, Vin) = 6i;(€,m), that is {V;} are isometries’with mutually orthog-

onal ranges, and

d dyx
(if)) My = 32 ViiMo, s0 that 3° VerVey = Er. B
i=1 k=1

We now want to calculate the modular operator A, and the modular conju-
gation J,, associated to (M, ), in terms of those Ay,, Jy, associated to (Mg , Q).
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Motivated from Proposition 6.3, we now introduce the following unitary op-

erators 4 4
Ur: e ®6 € C" @Ho— ) Vakls € Ha,
k=1 k=1
where {ex : k = 1,...,d.} is the canonical basis of C~. To state the following

theorem, we have to recall some notation.
. ) de
Weset, V7 € G, gx = drpo - p7' - Ex, where pe(x) := 3 Urp2v},, and &y :
k=1
M® — p.(M*?) is the normal conditional expectation given in Proposition 4.16, if
G is finite, and in Theorem 4.19, in the general case.
In addition, we denote by Ay,,e, the modular operator associated with
Q€ M®Q C Ho — Ay (2*) EH,yp,,

where Ay, 1z € M§, — 7, ()R, € Hy,, is the canonical injection in the GNS

of .
Now we are ready to state and prove:

THEOREM 6.4. With the above notation, Ay = Y Ux(1@Apy;0,)Us, where
r€G
the series converges in sirong resolvent sense.
Proof. As Al My — Hy, if wesel Ay i= Uy A Uy : C* @Ho — Cé @Ho,
we get Alf = Ur AU, and then, Yz, € M,

d, d,r dvr
AFS e @ Q= ALY VaziQ = Vo ) UrAlvzziQ
k=1 k=1 k=1

de dx
= a3 Uzaf (vhe)Q = V/de 3 Uyof (vai) o (21)2
k=1 k=1

dy
= Ve Y Upvius 0! (2x)8
k=1

where uz ¢ := (Dos 1 Do) = Ait Azt as follows from [3].

PoPr TP ?
Then we get
L de ‘ o
ALY er @2 = Vir 3 Urvie b, AT AL, 510
k=1 k=1
dy . s -
=U; Z V"kA:;o;tpnku = 2 e ® A:;D;‘P*xkﬂ.
k=1 k=1
That is Alt = 1®Ago;w = Ar = 1®A g0, and Ay, = Z’ Ur A UL = z‘ Ue(1®

. rEG rEG
Agoips )Ur, in strong resolvent sense. B
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REMARK 6.5. We can prove a little more. Set F := {F : F finite subset
of G}, ordered by inclusion, D := 3 M,Q, and, VF € F, Ar := 3 Uy A, US,
,eé r€F

L
extended with zero on ( > ‘H,,) .
e F

Then D is a common core for {Ar} and Ay, and Ap€ — ALE,VEE€D.

We now come to the decomposition of J,. We have the following:

THEOREM 6.6. J, = 3 Us(1 @ WirlJy,)UZ, where the series is strongly
te(;'
summable, and Wy is the canonical implementation of px|pme, the restriction of

px 1o M, with respect 1o a vector £ € L2(M*,Q), cyclic separating for both M*
and pyr(M®).

We divide the proof of the theorem in a series of lemmas.

LEMMA 6.7. Let A C B be properly infinite von Neumann algebras, € H
cyclic and separating for B. Then 3¢ € L%(B,Q)+ cyclic and separating for
A C B.

Proof. Let us take a &’ cyclic and separating for both A and B and consider
the normal state we: := (¢, £’) on.B. From known results ([2]), there exists
£ € L*(B,Q); such that we = (§,- £). Then £ is cyclic and separating for
A C B. In fact, let U be the unitary operator such that IUzé’ = x£,Va € B; then
U € B and [A¢] = [AUE'| = [UAE']=1. 8

REMARK 6.8. From this lemma it follows that for all H € H*(M), there
exists £ € L?2(M?,9)4, cyclic and separating for py(M*) C M*. Then J,“;,,,, =
JWDA

Let now H € H*(M) be such that o|H 2 = and let {9 : k = 1,...,d}
be a basis of H. Let K € H*(M) be such that a|K = 7%, and denote with

d
{tx : k = 1,...,d} the conjugate basis of K. Let us set Zyx = 3, vrJoUpJ,
k=1
d
and, consequently, Zx g 1= Y GrJ,v5J,; then we get
k=1

LEMMA 6.9. (i) Zyk is a unitary operalor on ‘H which is independent of
the chosen basis;

(i) JpZhx o = ZkH;

(iii) ZyxxZi g = pu(z),Va € M;

(iv) Zuk commutes with Ug,Vg € G.
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Proof. Let us set, for the sake of brevity, J := J, and Z := Zyx.

(i) We get
d d
z2z'= ) wigJindv =Y wloiulv
hk=1 h k=1
d d
= Zv;.JJv,', = Evhv; =1.
h=1 h=1

And, analogously, 2*Z = 1.

Let now {wg}, {we} be new bases in H and K respectively. Then we get

d d d d
Yowdail= Y wviwdwiue = Y vl Y vf wdgs
k=1 i,j,k=1 i5=1 k=1

d d d
= z v;Jﬁ;JZv;wkw;v,- = Z v; J U] J v} v;
ij=1 k=1 ij=1
d
=Y wloJ = Zuxk.
i=1
d
(i) J2Z5xd = Y veJvid = Zyp.
k=1
(i) Yz:e M,
d d
Zz2”* = Z vt JzJtpJu} = z LT E R T LTH
" hk=1 h k=1
d d
= EvthJv; = Zv;.zu,', = pu(z).
h=1 h=1

(iv) As U, commutes with J we have

d d
U, 2U; =) UnUg JU, 53U = ) ag(n)Jay(0)J = 2,
k=1 k=1

because of (i). 1

Because of 6.9 (iv) we can set Wyg = Zpx|Ho € U(H,).
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LEMMA 6.10. W = Wgyk satisfies

() Weg,W* = pu(z)g,, for x € M?,

(1) (JpoW*J oo )2Ee (S W o) = pr(2)Ey, for = € M2,

If W' € U(Ho) satisfies (1) and (ii) then there is a unitary operator z €
(px (MY AM*)g, s.t. W =WJ,,2J,,.

Proof. W verifies (i) and (ii) as a consequence of Lemma 6.9. Let us now set
Jo = J,, for the sake of brevity and let W’ be another unitary operator on Ho
satisfying (1) and (ii). Then V := W*W' is such that, for z € M?,

Vep,V* = W Weg, W' W = W*pg(2)g,W = 25,
that is V € (Mg,) & JoVJo € Mg, and

(JoV*Jo)pk (2)Eo(JoV J0) = (JoW'™ Jo ) (Jo W Jo)pxc (2) 8o (JoW™ Jo)(Jo W' Jo)
= (JoW"" Jo)z g, (JoW'Jo) = pk (2)E,,

that is JoVJo € px(M*)g,. Therefore JoVJy =: 2 € (px (M) A M*)E,, that is
W' =WV =WJdezJo. 1

Let us set ¢ : ¢ € M® — zg, € My, where My := Mg , and recall, from
Proposition 2.2, that ¢ is an isomorphism. Set also oy := pg|me, for all H €
HM), Do = IS, ppeyTiga € U(Ho), v := ¢ - adTq - ¢, the canonical
endomorphism ([14]), and finally 55 := o' - y#. Then we have:

LEMMA 6.11. For every H € H*(M) such that o|H = 7 there exists an
"L € H*(M) such that o|L = % and 75 = 0.

Proof. Let us choose a K € H*(M) such that o|K = 7, and recall that
oy = pu|M®* and g := px|M*. We want to show that o is conjugate to ox.

Let {v;} and {#;} be conjugate bases for H and K, respectively, and set
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Then
d
- -
ag(v) =d=3 ) ay(B)og(ve)

k=1
N 7d
=d3 Z 5] arg (B Jv; vf g (ve)
§j,k=1
. d
=d™% )7 wvw(g)um(9)jn
i k=1
d

I
o

vy Z w(g)jkm(g™" s

1 k=1

that is v € M?, and analogously w € M®. Besides v*v = d~! E v} U] Ujv; =
i,i=1

d-! Z vfv; = 1, and analogously w*w = 1, that is v,w € M* and are isometries.
i=1
Moreover, Yz € M, we get

d d
axa;;(m)v = d‘%’ z ‘!_Jhd‘;{(z)t-);!_)kvk = d“kzﬁko‘g(z)vk
hk=1 k=1
d
= d"iz'ﬁkvkx = vz,
k=1

and analogously ¢gok(z)w = wz. Finally

d
-1 - TR
w'op(v)=d~3 E B v vjou] =d 3 2 LI
fj=1 im1
I3

:d‘IZvuJu_,v =d- IZ‘U. =d-1,

i,3=1

-9

and analogously v"og(w) = d™1.
Then from Theorem 5.3 it follows that ox = oy, so that there exists z =
on(u) € oy (M®) unitary, such that ogyox = ad(z)yw, hence og(v* ok ()u) =

Let usset L :=u*K and oy := pr|M*,sothat g =or. 1§

LEMMA 6.12. For every H € H*(M) such that o|H = = there exists a
K € HY(M) with a|K = 7, such that Wyy is the canonical implementation of
cr = prlme with respect to the cyclic separating wector ¢ of Remark 6.8.
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Proof. Let us set R for the canonical implementation of ¢y; then we get
Rrp,R* = on(z)g,,x € M®. Besides, as R satisfies RJgR* = Jy, where Jy :=
Jpo = J,EM.,, and Jg := JjH(M,), we get, for ¢ € M@,

(JoR*Jo):L'EO(JoRJo) — R‘JHJU:L’EDJoJHR = R‘I‘HZEOI‘;;R

= (o' - 1(2))Ee = oL(2)E,,

where L is given in Lemma 6.11. Therefore, by Lemma 6.10, there exists z €
(e(M*) A M*)g,, unitary operator, such that R = WyrJozJo. Take then u €
pL(M®) A M? such that ug, = 2*, and set K := uL. Then oK = 7, and, if
{vk : k£ =1,...,d} is the conjugate basis of L, so that {wy : k = 1,...,d}, where

wy, = uy is the conjugate basis of K, we have

d d

Zuk =y wliju'd =Y uJogdJu'],
k=1 k=1

and if we restrict to Mg,
d
Wyk = Zyx|MHo = kaJﬁ;JIHoJouE;,,Jn =WhrJozJo=R. 1
k=1

Proof of Theorem 6.6. For every 7 &€ G let us choose an H, € H*(M) such
that a|Hx = 7, and a basis {veg : £ = 1,...,dy}. Take Ky € H*(M) such that
oKy = 7 as given by Lemma 6.12, and let {wey: k=1,.. .,dx} be its conjugate
basis.

Then from the definition of Z, = Zy, x, we get v} Zx = J,w?,J, and then,
Ve, € M2,

dy de
Iy Z Verzi§d = Vdx Z JpwrrJpdpo xS
k=1 k=1

d. dr
= Vde Y 5 Zadp, i = > Vi Wa g, 2,
k=1 k=1
therefore Uz J,Uxr = 1® WarJy,,, and eventually

Jo =3 Ur(1@ Wady,)U3,
T€qG

where the series is strongly summable. 8
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