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ABSTRACT. It is shown that under certain mild conditions the dual of a
commutative algebra of compact operators has the Schur property. This
result is then applied to the algebra H* /@ H® where H® is the algebra of
bounded analytic functions on the disc, and  is an imner function.
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0. INTRODUCTION

A Banach space X is said to have the Schur property if every sequence that
converges weakly (i.e. in the o(X, X*) topology) also converges in norm. The
space £! has this property, and this will be shown as an easy corollary of the main
result. In general, if F is a commutative algebra of compact operators satisfying
a certain very mild condition, then it will be shown in Section 1 that F* has
the Schur property. Subsequent to the writing of this paper, Jonathan Arazy has
shown this author a quicker proof of the theorem of Section one using known results
from [3], [4], and some of the basic lemmas presented below. While the results
of [3] and [4] are more general, they do require greater mazchinery to develop as
well as some augmentation to handle this specific case, and so the original “from
scratch” version is presented here.

In Section 2 a not so obvious application of the theorem will be given. Let
m denote the Lebesgue (arc length) measure on the unit circle. Let H} denote the
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closure in L'(m) of the polynomials with zero constant coefficient. Let H* denote
the space of bounded holomorphic functions on the open unit disc. Whenever
convenient this space will be viewed as a subspace of L®(m) via radial limits.
The space H* is the dual of L}(m)/H}{ (see [2]). Let ¢ be any inner function (i.e.
¢ € H*® and |p| = 1 a.e. [m]), and consider H}/pH}. This space is the predual
of H® [oH™ . It is already known that the predual of H* is weakly sequentially
complete (see (1], [2], [5], [7], [9]), so the space H}/pH! is already known to be
weakly sequentially complete. The result of Section 1 will be applied to H} /i H}]
to show an even stronger result for this space — it has the Schur property.

1. THE MAIN THEOREM

Let F be a normed closed commutative algebra of compact operators on a Hilbert
space M. It will be assumed from now on that F satisfies the following:

(R) Restriction on F: The set F(H) = {Fz:z € H and F € F} is dense in
M, and F*(H) = {F*z:z € H and F € F} is dense in H, whete * denotes the
adjoint of the operator or operators involved.

The main theorem is easily stated.

TREOREM 1.1. Let € be the dual of F. If a sequence converges weakly in C,
then il converges in norm.

The proof will be given at the end of this section. First some vague motivating
remarks will be made and some lemmas will be proved. One particular proof of
the Schur property for £! depends on the fact that if two elements £,n € £°
have disjoint supports, then ||€ 4 fljcc = max{}|€]loe, |[nllec). For operators on a
Hilbert space a similar statement holds. If Py, Pw are self adjoint projections
onto subspaces V, W (respectively) of H, then for bounded operators 4, B on K

(1) ”PV.APW + PV.LBPWJ.“ = ma.x(lIPvAPw“,||PV.LBPWJ.||).

Here L denotes the orthogonal complement of a space. In general there won’t be
any projections in F, but certain pairs of elements in F will be aproximated by
elements of the form Py APw and Py.BPy.. This will allow the formation of
an infinite sum of certain elements in F in order to find a new element A € F**,
Given a sequence in C which tends weakly, but not in norm, to zero, this element
A can be arranged so that its evaluation on the sequence in € will not tend to zero
(a contradiction). The reader familiar with the proof for £ may recognize this
approach.
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The space of all bounded operators on the Hilbert space H will be denoted
B(H). The space of all compact operators on K will be denoted by XK. The space
of all trace class operators on H will be denoted C;. In natural fashion C; =~ K*
the dual of K, and B(H) = C{ (see [8]). The topology B(H) inherits as the dual
of C; will be referred to as the weak* or ultraweak topology on B(H).

In what follows, the closed unit ball of any Banach space X will be denoted
by Bx. For any z € X and z* € X*, the symbol [z*](z) will be used to denote
the evaluation of the linear functional £* on £. The notation [z](z*) will represent
z (viewed as a naturally embedded element in X**) evaluated at #*. The square
brackets will usually enclose an element of an algebra, and it will be helpful to
realize this at times.

For z € M, define Byz = {Nz: N € N and ||N|| £ 1}.

LEMMA 1.2. Let N be an ultraweakly closed subspace of B(H). Then {z €
H : By is norm compact} is norm closed.

Proof. For each z € M, define ¢, : N — H by ¢ (A) = Az for all A € V.
Note that if By z is compact then ¢, is a compact operator from A into H. Assume
z; — z in norm in H, and Byz; is compact for i = 1,2,.... Then ¢z, — ¢, in
norm, and each ¢, is a compact operator; so, . is a compact operator. Note
that ¢, : (N, ultraweak) — (H, weak) is continuous (for all y € H), so p,(By) is
weakly compact and therefore norm closed for all y € H. Thus, ¢.(Bx) = By
is norm closed and relatively compact, and therefore norm compact. 1

The following proposition will not be used in the rest of the paper but is of
independent interest. The proof follows directly from Lemma 1.2.

. ProposiTioN 1.3. If A is an ultraweakly closed commutative subalgebra of
B(H), then {z € H : Baz is norm compact} is a closed invariant subspace of A.

Lemma 1.2 will now be applied to . Let A be the ultraweak closure of F
in B(H). Note for later reference that A ~ F**.

LEMMA 1.4. For each = € H, the set Brz is relatively norm compact in M.

Proof. Note that Bax D Bzrz for cach & € H. It will be shown that Bz
is norm compact for each # € H. By 1.2, it is enough to show that B4z is norm
compact for all £ in a dense subset of . Let § = {z € H : Ky = z for some
K € F and y € H}. By the restriction (R) placed on F at the beginning of this
section, & is norm dense in H. Let « = Ky € 8. Then Bax = BuKy = KB,y
which is norm compact since B4y is weakly compact as shown in the proof of
Lemma 1.2, and K is a compact operator.
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REMARK 1. Lemma 1.4 holds for 7* by the second part of the restriction
(R) place on F.

REMARK 2. The property of Baz being compact is not unique to algebras
containing compact operators. Let v be a positive Borel measure whose support
is the closed unit disc in the complex plane, with v(unit circle) = 0. The operator
of multiplication by z on L%(v) (i.e. f(z) — zf(z)) generates the algebra H*.
Given any f € L%(v), By f is norm compact in L%(v).

Again, we will let Py and Pw denote the projections of H onto closed sub-
spaces V and W respectively.

LEMMA 1.5. Given a finile dimensional subspace V of H, and given € >
0, there exists a norm closed subspace G of F of finile codimension such thal
IGPy|| < € for all G € G with ||G|| < 1.

Proof. Select an orthonormal basis {z;,z3,...,2.} for V. As before, for
each z;, 7 = 1,2,...,n define ¢; : F — H by @i(F) = Fz; for all F € F. Then
each @; is a compact map by Lemma 1.4. Hence there is a norm closed subspace
H; of H of finite codimension such that sup{||z|| : z € H:[\w:i(B#)} € ¢/n. Note
that ¢ '(;) is norm closed and of finite codimension in F fori = 1,2,...,n. So

G = (7 (H;)) is norm closed and of finite codimension in F. Let G € G with
i=1

|G|]] = 1. Then ||Gzi|| < ¢/n for i =1,2,...,n. So for any Y ¢;z; € V of norm
=1
one it holds that

;||cgc..m,.|

Hence ||GPy||<e. 1

n: n
€ . ‘
< E |c.-]; <& since E le:]? = 1.

i=1 i=1

The lemma can be applied to F* by the remark following Lemma 1.4. Given
a subspace W of H of finite codimension this will yield a subspace G of F of finite
codimension such that ||G* Py || = ||PwGl| < ¢ for all G € G of norm one. Taking
the intersection of G and G yields (after renaming this intersection G):

LEMMA 1.6. Let V and W be finile dimensional subspaces of H. Given
€ > 0, there exists a norm closed subspace G of F of finite codimension such that
Jor all G € G of norm one, ||GPv|| =€ and |PwG| = ¢.

One final lemma is needed. In this lemma, the number 1/3 can be replaced
by any number < 1/2.
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LEMMA 1.7. Let X be a Banach space. Let S be any finile dimensional
subspace of X. Suppose {b;}§2, is a sequence in X and b — 0 weakly in X
and ||b;]| = 1 for all i = 1,2,.... Then there exists N such that for all i > N,
dist(d;, S) > 1/3.

Proof. Suppose the result is not true. By dropping to a subsequence, it can
be assumed that there exists a sequence {5;}52, C S such that ||b; — &|| < 1/3 for
alli=1,2,.... Now let b be an adherent point of {5;}$2,. Note that [|b|| > 2/3.
Now the weakly closed set b+1 /2Bx contains an infinite number of the b;, and
b; — 0 weakly, s0 0 € b+1/2Bx. This implies ||b]] < 1/2. This is a contradiction. B

Proof of Theorem 1.1. Suppose {b;}82, is a sequence in C with ||b;|| #+ 0 and
b; — 0 in the weak (i.e. o(C,C*)) topology. A contradiction will be found. 1t will
be assumed that |[b;]] = 1 for alli =1,2,..., by (first) restriction to a subsequence
of {b;}{2, bounded below and then (second )~ appropriaie scalar multiplication.
Without loss of generality, it only has to be shown that this (newly arranged)
sequence does not converge weakly to zero.

Let {£;}52, be a sequence of positive numbers. Inductively choose ¢y, ¢2,... €
{5;}%2, and Ki,K,... € F as follows. Let ¢; = by and choose K, € Br with
- [K1)(e1) > 1/3. Next assume ¢i,¢3,...,¢, and Ky, Ka, ..., Ky have been chosen.
Now ¢p41 and Kp41 will be chosen. Let V and W be finite dimensional subspaces
of H such that fori=1,2,...,n

(2) ) |KiPysl| < €ns1  and I PwrKill < ent1.

By Lemma 1.5 choose norm closed subspace G of finite codimension in F such that
for all G € Bg (i.e. the unit ball of G)

(3) MGPV\” < Eng1 and “PWG” < Endl-

Now let & = G = {b € C : [G)(b) = O for all G € G}. Let § be the finite
dimensional space in C spanned by (S, ¢1,¢2, ..., ¢s). Forsome j > n, |[K;](b;)] <
1/27+ for alli = 1,2,...,n and dist(b;,S) > 1/3 (by Lemma 1.7). Set ¢aq1 = bj.
For later reference, note that

1 .
(4) [Kil(en41) < PT¥E) fori=1,2,...,n.
Let Sy = {B € F : [B](b) = 0for all b € S}. Then C/S§ is isometrically isomorphic

to (S1)*, and the coset cyq1 + S in £/S has norm > 1/3. So there exists Kn41
of norm one in 8y such that |[Kn41](¢n+1)| > 1/3. Multiplying K,41 by an
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appropriate scalar of modulus one, it may be assumed that [K,41](cnt1) > 1/3.
So

) [Knsall €1 and

(6) [1{,,+1](c,,+1) > 1/3 and [I(n.’.l](Cj) =0 for J = 1, 2, P (B

Now K, annihilates §, and so it annihilates §’. But (§')y = G, since § is norm
closed. So Kn4y € G, and (by (3))

(M Kas1Prll < €ng1 and  [|PwKnpill < €nga-

This finishes the description of the introduction process. Next, some of the
properties of K, K»,..., K, will be examined (see (2)). The spaces VW C H
will be just those given above in éelecting Knt1. Applying (2) and (7) yields the
following two inequalities:

lPw S Py - 3K, ||
i=1 i=1

n n : i
8) = |Pws S KiPv + Pw Y KiPya+ Pws Y KiPos
i=1 i=1 i=1

13
<3 ent1 = Ineny,

i=1

[1Pw s Knt1Pys — Knyal|

9
®) = ‘”owfn.'_lpy.;. + Py Kpp1 Py + owi’n+lpv|ﬁ < denti.

Next use (8) and (9) to get the first inequality below, and (1) and (5) to get the
second,

” 5;:1(; + Kn+1” = " zﬂ: K; — Pw i}{,—P‘, + Pw i}{ipv
i=1 =1 i=1 i=1

+ K'ni};i - Pwi.ffn.{.lpvx + PWJ.I{n+1pv.L

(10)

<3nentt + 3041 + "PW ZK:'PV + PwiKny1 Pys
i=1 .

1)

< 3(n+ 1)enss + max (" iK*'l
£=1
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n
Now set A, = 3~ K;. By (10) and (5), the sequence {4,}5%, is bounded pro-
i=1

00
vided that 37 neny1 < co. Assuming the €, have been so chosen, then {4, }3%,

n=1
has a weak® adherent point, A, in 7**. Fix j =1,2,..., and consider ¢;. By (6)

o J
[Al(;) = Z[Ki}(cj) = Z{K,-](c,-).
But )
4 y —
| otilten| > 5 - S
i=1

by (6) and (4), so |[4](c;)| > 1/4 provided j is sufficiently large. Hence [A)(c;) 4 0,
and so [A](b;) #+ 0. The proof is complete. 1

REMARK 3. The theorem also holds for any norm closed subspace £ of K
with the property that B.z and B¢.z are relatively norm compact for all z € H.

REMARK 4. Let {;}$2; be an orthonormal basis for a Hilbert space. The
space of all compact operators that are diagonal with respect to the basis {¢;}2,
is isomorphic to ¢g. This algebra of compact operators is commutative and satisfies
restriction (R). Hence the result for £ follows.

2. AN APPLICATION TO H®® /@ H>.

Throughout this section let ¢ denote an arbitrary fixed inner function. It will be
shown that the space H®/pH> is isometrically isomorphic to the second conju-
gate space of a commutative algebra of compact operators (on a Hilbert space)
satisfying (R). This result first appears in [8] and is repeated for completeness.
First the notion of a dual algebra isomorphism will be defined. Suppose A, is a
Banach algebra which is the dual (as a Banach space) of a Banach space X, and
suppose A; is likewise a Banach algebra dual to Banach space X3. Then a map-
ping from A4, into Aj3 is a dual algebra isomorphism if it is an algebra isomorphism
of A; onto Aj, an isometry, and a homeomorphism when A; and A, are endowed
with their respective weak” topologies.

Let H? denote the closure of H® in L?(m) where m denotes Lebesgue mea-
sure on the unit circle. The symbol M will be used to denote the orthogonal
complement of pH? in H2. The projection operator of H2 onto M will be de-
noted P. For any h € H*®, let M} denote the operator of multiplication by h
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on H?%. Henceforth view PM) as an operator on M and set T = PM,. The
smallest algebra containing {T™}23_, that is ultraweakly closed in B(M) will be
called Ar. The Banach space Ay is the dual of a quotient space of the space of
trace class operators on M. There is a natural map A’ : H® — Ar given by
h — PM)y. The kernel of A" is 9. So this induces amap A : H®/pH® — Ar.
Propositions 2.2 and 2.3 of [12] show the following to be true:

THEOREM 2.1. (Sarason). The map A: H®/pH® — Ay is a dual algebra
tsomorphism.

From now on, H* /pH> and Ar will be identified when convenient. An
element h + @H™ in H®/pH>® will be called compact if PM) is a compact
operator on M. There is an easy way to tell if b + @H™ is compact. The set
of continuous complex valued functions on the unit circle will be denoted by C.
Viewing the functions of H® as elements of L°(m), the following result {from
[12], Theorem 2) applies.

THEOREM 2.2. (Sarason). If h € H™, then hp € H® + C iff PMy is
compact.

The following now links the study of H® /¢ H® with the results of Section 1.
We present a theorem from [8]. The proof given here is slightly different from that
of [8] (another proof can be found in [10]). The compact elements of H*® /o H*®
form an ideal which will be denoted F.

THEOREM 2.3. (Kriete, Moore and Page). The algebra H®/oH™ is iso-
metrically isomorphic to the second conjugale space of F.

Proof. The proof is a direct adaptation of the techniques used in the proof
of Theorem 2.2 (see [12], pages 190-191). From this proof, it follows that L™ /H>
is the dual of H}, where H} is the closure in L'(sm) of the polynomials with zero
constant term. Also by [12], H} is the dual of C'/A where A= H*[C.

First the second predual of GH*/H™ will be described. To do this view
FH® /H™ as a subspace of L®/H*. The annihilator of pH®/H* in H} is pHj.
The annihilator of H} in C/A is (H® (C)/A. Hence ((FH™[C)/A)" =~
FH®/H>.

Let I'" : (gH® N C)/A — §H®/H® denote the canonical embedding. If
w' € pH® (C, then w' + A is mapped by I'" to w' + H* (as observed in [12]).

Now (pH® N C)/ A= (H* N ¢C)/pA and pH® [H® = H® [pH>. So I'"!
gives rise to a natural injection I : (H® N ¢C)/pA — H® /pH>®, and w+ pA is
mapped by I' to w+ pH® for w € H® (\¢C. Also I is the canonical embedding
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of (H*® N ¢C)/pA into its second dual, H® /@ H*. This embedded subspace will
be shown to coincide with F. If w € H®[)¢C, then I'(w + ¢A) is compact by
Therem 2.2. Conversely, if h4+@H™® € H*®/pH™ is compact with A € H*°, then it
has to be shown that I'(g+ @A) = h+ @H® for some g € H*[)¢C. By Theorem
2.2, hg € H*® 4C; or equivalently h € pH® +¢C. So h—pf € H* [} for some
f € H®. Therefore h + pH*® = I'(h ~ ¢f + ¢A). And I’ maps (H® () ¢C)/pA
onto the ideal of compact elements in H*® /pH>. This finishes the proof since I
is an isometry. #

The proof of Theorem 2.3 provides a predual of gH®/H™ that is isometri-
cally isomorphic to H} /¢ H} (i.e. mod out the annihilator of ZH>/H® in H}).
Now gH®/H® ~ H®/pH> and further use of the identifications made in the
proof shows that H}/@H} is isometrically isomorphic to the dual of F.

THEOREM 2.4. If a sequence in H} /oH} converges weakly,'than il converges
n norm.

Proof. Since H}/pH} = F*, it is only necessary to verify that F satisfies
the restriction (R). The identity operator I is in Ay &~ H®/@H>. By Theorem
2.3 then, there is a sequence {K;}{2, in By such that K; — I ultraweakly. This
means that for any z € M, it follows that K;z — z and Kz — z in norm; so,
restriction (R) is satisfied. 8

REMARK 5. Let {£}52, be a sequence of complex numbers (all of norm < 1)
that is dominating in the unit disc (i.e. for all f € H®®, sup{|f(£&:)]}:21 = [|fll)-
Now {£;}82, is an element of the algebra £° (under pointwise multiplication),
and it generates a subalgebra dual algebra isomorphic to H*. The techniques
of Section 1 can be expanded without much difficulty to show that if F is a
commutative algebra of compact operators with the identity I in A & F**, then
A has a subalgebra that is dual algebra isomorphic to H*. This is not hard to
show, but it does require a rewrite of the entire proof and will not be provided
here.

This author wishes to thank David Stegenga for several useful suggestions-and dis-

cussions related to Section 2 of this paper.
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