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ABSTRACT. An operator T on a Hilbert space H is said to be Jordan (of
order 2) if T = M + N where M*M = MM* MN = NM and N? =0, and
to be sub-Jordan if T has an extension to a Jordan operator J on a larger
Hilbert space £ D H. If the sub-Jordan operator T is such that its minimal
Jordan extension J has spectrum in the unit circle T we say that 7" is T-sub-
Jordan., We present a functional model and solve an inverse spectral problem
for this class of operators.
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1. INTRODUCTION

To state the main operator theory result of the paper, we first need a few defini-
tions. A (bounded, linear) operator T' on a Hilbert space H is said to be Jordan
(of order 2) if T' = M + N where M is normal, M and N commute and N is
nilpotent of order 2 (M*M = MM*, MN = NM and N? = 0). If instead there is
a larger Hilbert space K D H, and a Jordan operator J = M + N on K such that
‘H is invariant for J and J|{H = T, we say that T is sub-Jordan. If T is sub-Jordan
on M and there is no nonzero invariant subspace M C M for T such that T|M is
Jordan, we say that T is pure sub-Jordan. If T is a sub-Jordan operator such that
the minimal Jordan extension has spectrum equal to a subset of the unit circle
T, we say that T is a T-sub-Jordan. Finally, we say that a compact subset K of
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the unit circle T is regularly closed with respect to T if K is the closure of its
T-interior; intuitively, such a subset K is locally thick with respect to the unit
circle. We can now state one of the main operator theory results in the paper.

THEOREM A. (See Theorem 4.1) A compact subset K of the compler plane
is the spectrum of a pure T-sub-Jordan operaior if and only if either K is the
closed unit disk or K is a regularly closed (with respect to T) subset of the unii
circle T.

The proof of Theorem A relies on a functional model P§(p,v,8) for a sub-
Jordan operator with cyclic vector. Here p and v are compactly supported mea-
sures in the plane, 0 is a complex-valued function in L%(v), P§(p,v,0) is the
closure of the manifold {p @ (8p + p’) : p a polynomial} in L?(u)} @ L*(v} and the
associated sub-Jordan operator Ty, v, 6) is the restriction of multiplication by the

i 7]

to P}(u,v,0). This then is a canonical generalization of Bram’s model for cyclic
subnormal operators (see {19]).

Properties of p,v,8 for the case where T(p,v,0) is pure are derived; for
the case where g and v have support on the unit circle, it is possible to gather

matrix function

sufficiently more explicit information to arrive at Theorem A.

We also give an explicit characterization of the space P3(p,v,0) for a few
computable special cases where u and v have support on T; we note that such a
characterization for the case where v = 0 is an easy consequence of a theorem of
Szegd and Kolmogoroﬂ'aKréin (see [33], p. 49); here the main tool is a character-
ization of the annihilator of P%(u,v,8) in L%(u) ® L%(v). We also conjecture a
function algebraic characterization of the spectrum of a pure sub-Jordan operator
analogous to that of Clancey-Putnam (see [17]) for the case of subnormal opera-
tors and verify the validity of the conjecture for a number of computable special
situations. This analysis involves a review on what is known about simultaneous
uniform approximation by a rational function and its derivative over some compact
subset of the plane.

For the case of sub-Jordan operators with real spectrum (real sub-Jordan
operators), more definitive corresponding operator theory and function theory
results were obtained in [6] and [7]; indeed this paper is simply an adaptation (to
the extent possible) of the techniques there to the complex case. Real sub-Jordan
operators also have an intrinsic algebraic characterization (namely, the operator
function Qr(s) = e T e4T is a second degree polynomial in the variable s)
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and have a strong connection with conjugate point theory for Sturm-Liouville
operators (see (2], [8], [29], [30], [31]). The circle analogue of this latter theory has
been worked out by Agler (see [4]); the relevant class of operators turns out to be
2-isometries (operators T for which I — 2T*T + T**T? = () rather than T-sub-
Jordan operators as one might initially expect by analogy with the real case. The
extension theory for 2-isometries has been developed by Agler and McCullough (see
[4], [43]). A Dirichlet space function model for 2-isometries was found by Richter
(see [46]); a comparison of models suggests that a pure 2-isometry is similar to a
pure T-sub-Jordan,

To our knowledge an algebraic characterization of T-sub-Jordan operators
has not appeared in the literature; for the case of T-Jordan operators, as well as
the general class of Jordan operators of arbitrary order k, results appear in [15] and
[23]. Also, we do not know of a connection between the class of T-sub-Jordan or
general sub-Jordan operators and another area of analysis such as Sturm-Liouville
conjugate' point theory; our motivation is to try to develop an extension of the
rich interplay between operator and function theory that has been worked out in
the theory of subnormal operators (see [19]).

We do not deal with the question of invariant subspaces for the class of sub-
Jordan operators except for the following observations. If T is in fact subnormal,
nontrivial invariant subspaces are known to exist as a consequence of S. Brown’s
theorem [14] (see also [19] and [42]); now the result of Thomson [48] on analytic
bounded point evaluations gives an even stronger result. Subjordan operators are
in particular subdecomposable; hence nontrivial invariant subspaces are known to
exist if the spectrum of T has interior in the plane as a result of a theorem of Al-
brecht and Chevreau [5] (see also [42], Theorem 1V .2.3), or if R(e(T})) # C(o(T))
(see [21]); here C(K) is the algebra of continuous complex-valued functions on K
and R(K) is the uniform closure in C(K) of rational functions with poles off K

The paper is organized as follows. In Section 2 we give several equivalent
formulations of the purity property for sub-Jordan operators. In Section 3 we set
down our model for a sub-Jordan operator with cyclic vector, with special attention
paid to the case of a pure sub-Jordan operator. In Section 4 we specialize the
model to the case of pure T-sub-Jordan operators and prove Theorem A. Section
5 formulates and analyzes a conjectured function algebraic characterization of the
spectrum of a pure sub-Jordan operator analogous to the result of Clancey-Putnam
([17]) for the subnormal case. Finally, Section 6 gives more detailed information
on the space P#(u,v,0) for the case where u and v have support in T, and can be
viewed as a start toward a Szegd-Kolmogoroff-Krein theorem with derivatives.
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Finally, we mention that some of the results of the paper are in the second
author’s 1989 dissertation written under the direction of the first author.

2. A FORMULATION OF PURITY

The primary aim of this section is to define a notion of pure sub-Jordan operators
which generalizes simultaneously the notions of purity for the case of subnormal
operators (see [19]) and for real sub-Jordan operators given in [6]. To serve these
dual purposes we actually give three notions which we later prove equivalent.

DEFINITION 2.1. Let T be a sub-Jordan operator on H with complex Jordan
extension J = M + N on K. Then we say

T is pure if there is no nonzero subspace Ho C H

2.1.1
( ) which is invariant for T such that T'|H, is Jordan.
21.2) T is pure if there is no nonzero subspace Hg C H
o which is invariant for M, M* and N,
(2.13) T is pure if there is no nonzero subspace Ho C H

which is invariant, for T such that T|H; is normal.

We should note that in the real case (i.e. where M = M*), all these notions
coincide. To be exact, in (2.1.1), if T is real sub-Jordan, we have Definition 3.2 of
(6], while Proposition 3.3 of [6] (replacing normal with self-adjoint) gives (2.1.3).
Finally, again taking M = M*, Proposition 3.6 of [6] is exactly (2.1.2).

Moreover these three notions generalize the idea of purity for subnormal
operators. A pure subnormal operator is the restriction of a normal operator to
an invariant subspace with the property that it has no nonzero reducing subspace
on which it is normal (see [19], Definition 2.2, p. 127). Clearly, a subnormal
operator A can be thought of as sub-Jordan: that is, the restriction of a Jordan
operator with nilpotent part ¥ = 0. If in addition A is a pure subnormal operator,
then by (2.1.2) A can also be regarded as pure sub-Jordan. Conversely if A is a
pure sub-Jordan operator in the sense of (2.1.3) with a normal extension, then A
is a pure subnormal operator.

We now show the equivalence of (2.1.1), (2.1.2), (2.1.3), beginning with the
first and third.
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PROPOSITION 2.2. Let T be a compler sub-Jordan operator on K. Then T
has a nonzero invariani subspace on which it is Jordan if and only if T has a
nonzero invarient subspace on which #l is normal.

Proof. If TH C M with H nonzero, X # K, and T|H is normal, then T|H is
Jordan. Conversely, suppose T is a sub-Jordan operator on K and H is a nonzero
invariant subspace of K so that T{H = Mg+ Ny is Jordan where M; is normal, My
commutes with Ny and N¢ = 0. Without loss of generality, we assume Ny # 0.
Let Ho = NgH # (0). Considering h € H, we see MoNoh = NoMyh € Ho.
Furthermore, by the Fuglede-Putnam Theorem ([19], Theorem 5.4), My Noh =
No M(; h € Ho.

Thus Hg is reducing for My. Moreover

TIHO = (Mo + No)l?‘io = Mg'Hu.
Thus My is a nontrivial proper invariant subspace on which T is normal. &

In order to exhibit the equivalence of (2.1.1) and (2.1.2) we argue via spectral
subspaces. Let J = M + N be a Jordan operator on X. We define a spectral
measure Ej(-) for J to be simply the spectral measure Ep(-) for the normal
operator M. The idea used here is a consequence of Proposition 3.7 of [6], that
is, o(J) = o(M). The following result gives that, with respect to Ej(-), J is a
spectral operator in the sense of Dunford and Schwartz (see [20], pp. 1930-1931).

PROPOSITION 2.3. For J = M + N, a Jordan operator on K, let Ej(-) be
the spectral measure for the normal operator M. Then for all Borel subsels § of
the complex plane C

(2.3.1) Ej(8)J = JE (8),
and

(2.3.2) o(J|Es(8)K) C é.
Furth,ermoré,

for all bk € K, the scalar valued measure

(2.3.3) _ .
< Ej(-)h, k> is countably additive.

Proof. First of all (2.3.3) follows directly from the definition of a spectral

measure for a normal operator (see [19], Section 2 and Section 3).
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Since N commutes with M and M* by the Fuglede-Putnam Theorem (see
[19]), we have, by the spectral theorem for normal operators ([19]), Theorem 3.1,
p. 67) that both M and N commute with E;(6) for each Borel subset of the plane.
Thus (2.3.1) follows.

Now let & be a Borel subset of C. Since E;(-) is the spectral projection for
M we know o(M|E;(6)K) C 6. Furthermore, by the above, the subspace E;{§)K
is invariant for both M and N. Let Ms = M|E;(6)K and N; = N|E;(6)K. Then
MsNs = NsM;s and (N5)? = 0. So by Proposition 3.7 of [6)

a(J|E;(6)K) = o((M + N)|E;(6)K)
= g(Ms + N;) = o(M;)
= O'(MlEJ(‘S)K:) C 5,

which proves (2.3.2). &

Our argument giving the equivalence of (2.1.1) and (2.1.2) relies on a pro-
cedure for recovering spectral subspaces Ej(§)K for Borel subsets of the plane
directly from J which is well known in the theory of decomposable operators (see
[20] and [18]). We define for k € K, the set

pi(k) ={Ao € C: there exists a function A — k(1) € K,
defined and analytic on a neighborhood of Ag, so that (A ~J)k(X)=k}.

By [20], Theorem 2, p. 1933, J has the single valued extension property.
Thus k(X) is unique and is referred to as the local resolvent of k. Furthermore,
by definition, p;(k) is open and contains the resolvent set p(J) of J for all k. Let
oj(k) = C\ ps(k). Then o;(k) is compact and nonempty if k £ 0. Given a Borel
set § C C, a spectral maximal subspace for J is one of the form

Ki(®) ={k€K :0;(k)C8}.
By [20], Theorem 4, p. 1934,
K;(8) = E;(6)K.

The proof of the following theorem, which gives that (2.1.1) and (2.1.2) are
equivalent, follows from the two succeeding lemmas,
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THEOREM 2.4, Let J = M 4 N be a Jordan operator on a Hilbert space K.
Suppose H C K is invariani for J. Then Jy = J|H is itself Jordan if and only if
‘H is invariant for M, M*, end N. Furthermore, if Jo = My + Ny where My 1s
normal, My commutes with Ng and N = 0, then Mo = M|H and No = N|H.

LEMMA 2.5, With J and Jy defined and Jordan on K and H respectively as
in Theorem 2.5, for every Borel set § C C, the containment

Ez,(6YH C E;{(6YH
is valid, where Ej,(-) and E5(-) are the spectral measures for Jo and J respectively.

Proof. (Note that spectral measures are unique via [20], Corollary 9, p. 1935;
thus the use of the definite article in the lemma is justified). By the previously
cited result from [20], we need only show

Ki.(8) C Ks(8).

Let A € H and A € C\ 8. Then there exists a vector-valued function
A — h(}), defined and analytic on a neighborhood of Ay, so that (A =Jo)h(A) = h.
But since H C K this says that there is s K-vector-valued function A — h(}),
defined and analytic on a neighorhood of Ag, so that (Af — J)A(A) = A. That is,
for h € H, 05,(h) C & implies o(h) C 6. Hence K1,(6) CKs(6). &

LEMMA 2.6. For all h € H and for all Borel sets § in the plane,
E; (8)h = Es(8)h.

Proof. By the definition of the spectral projections for J and Jo, we have,
for a Borel set § C C,
H=FE;(YH® E;(C\&H

and
K=E;§Ka E;(C\HK.

Also from Lemma 2.6, E; (8)H C Ej(8§)H and Ez,(C\8)H C E;(C\ 6)H.
So if h € H, we have equality of the two orthogonal decompositions

Es,(8)h + E1,(C\ 8)h = E;(6)h + E;(C\ 6)h

which implies Ej,(6)h = E;(8)h. 1
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Proof of Theorem 2.4. From Lemma 2.6, % is invariant under E;(§) for
all Borel sets § C C. Since Ej(-) = Epm(-), we have H is invariant under all
the spectral projections for M. In particular, X is invariant for M = [ AdE(])),
and, by the Fuglede-Putnam theorem, also for M*. Since ¥ is invariant also for
J = M+ N, it follows immediately that A is invariant for N. This gives the
implication in one direction. On the other hand, if we assume A is invariant for
M,M", and N, it is easily seen that Jo = J|H = M|H + N|H is Jordan. &

3. A MODEL FOR SUBJORDAN OPERATORS WITH CYCLIC VECTOR

We proceed with the construction of a model for a cyclic complex sub-Jordan
operator T on H similar to that of the real case presented in [6], Section 3. The
basic ideas used there are mimicked and some proofs follow exactly as presented
in that article.

There the authors characterized H as the closure of the graph of a closable
differential operator D if T is pure. Here the purity of T' does not imply the
closability of D in general and hence specific results using the structure of the
closure of the graph cannot be utilized as before. Though less explicit than the

model for the real case in [6], an analysis of purity is still possible.

DEFINITION 3.1. Let T be a complex sub-Jordan operator on H with com-
plex Jordan extension J = M 4+ N on K where M is normal, N2 = 0, and
MN = NM. Wesay J is a minimal Jorden ezlension of T if K is the smallest
space containing M for which M, M*, and N are invariant.

THEOREM 3.2. Lel T be a sub-Jordan eperator on K with cyclic vector and
minimal Jordan ezxlension J on K. Then there are finite positive measures p and v
compactly supported in the complex plane with v absolulely coniinuous with respect
to pu, and a function @ € L2(v) so thal, if we set

(3.2.1) K=L*p)® Li(v)

then

J ts unitarily equivalent to multiplicaiion

3.2.2 |
( ) by the matriz funclion [; 0] on K,
i z
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and

T s unitarily equivalent to J restricted 1o the closure of the graph of

dz

cyclic for this restricted operator.

(323) D=0+ 4 defined on all polynomials; moreover the vector [;] is

Conversely, an operator T defined by (3.2.3) is a cyclic sub-Jordan operator
with mintmal Jordan extension J defined by (3.2.2) on K as defined by (3.2.1)
provided that

(3.2.4) the inclusion map 1: L?(p) — L%(v) is continuous.

Proof. Let J = M + N where M is normal, N2 =0, and MN = NM. Let
K: = (RanN)! and Ky = Ran N. Letting M; = M|K;, we see by Fuglede-Putnam
that K; is reducing for M;, hence M; is normal for i = 1, 2. Furthermore, for some
operator T' : Ky — K, with dense range we can write

M 0 00
= dN=
=g ) meav={p o]
with respect to the decomposition K = K; ® K2. Note also, since MN = NM, we
have I'M; = M,T.
By [19], Theorem 9.1, p. 99, there exist two sequences of measures {y;};o,
and {v;};2, satisfying piy1 < pi and vj41 < vj with M) represented as mul-

o0
tiplcation by z on K1 = @ Y. L?(p;) and M, as multiplication by z on K3 =
i=1

[«
& Y L?(v;). With respect to these decompositions of X, and Kz, I' can be
i=1
viewed as the matrix operator I' = [I';;] where T'j; : L2(y;) — L%(p;). If we des-
ignate, for i,j = 1,2,..., My; = M1]L%(g;) and My; == M,|L%(y;), it follows that
My Ty; = I'yj Myj. Therefore by Abrahamse (1], for each i, j we get the existence
of a function I';;(2) so that for all h € L?(y;),

(Tijh)(2) = Tij(2)h(2).

Let T'(z) be the matrix valued function with ij-coordinate I';;(z). Then for
. 00
each h(z) = hy(2) @ ha(2) @ € ® >~ L(1y)
i=1

(Th)(z) = & Y Tyj(2)h;(2).

j=1
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We argue that T being cyclic and J being a minimal Jordan extension of T" implies
that without loss of generality there are compactly supported measures g and v
so that Xy = L?(p) and Ko = L2(v). Let (i = (i1 @ Gin @ -- €Ki fori = 1,2 be

so that { = f:l is a cyclic vector for T'. Then
2

H = {p(T) : p a polynomial}~

([ 20
PN () +P()al2)

:pa po]ynomial}
Now, if we let

K1 = {p(z,2)¢1(2) : p a polynomial in two arguments}

Ky = [s'pan{p(z, 2)T(2)¢1(2), p(2, 2)¢2(#) : p a polynomial in two arguments}] ,

~ ~ ~ ~ h ~
and KX = K, ® K,, we see H C K. Moreover, if [L] € K, then

N [i’J - [r(z)oh(z)] <k,
][22

and

« [P zh(z)] _ &
(] = [5) <%
Thus K is invariant for M, M* and N. So by minimality of J, K C K. In
particular Ky C El. We conclude M is star-cyclic. By Theorem 4.3, p. 14 of [19],
there is a measure g compactly supported in C so that M, is unitarily equivalent
to multiplication by z on LZ(y).
Furthermore, since Ko = Ran N and

Ne= [r(z)glm] !

I‘(z)(g)’l(z)] 'T‘hus M, is star-
-cyclic and we have as above a measure v compactly supported in C so that M,
is unitarily equivalent to multiplication by z on L%(v). This gives (3.2.1).

Since T : L%(u) — L?(v) with Mo’ = T My, it follows from [1] that there
is a measurable function I'(z) satisfying, for some ¢ > 0,|T(z)| < e(dp/dv)3,

we see K is spanned (over the polynomials) by [
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I'(z) = 0 p - almost everywhere on the set {z|(dg/dr)(z) > 0}, such that for every
h e L?(u), for v-ae. z,
(Ch)(z) = D(2)h(2).

Furthermore, by arguments identical to those of Lemma 3.13 of [6], it follows
that v is absolutely continuous with respect to u,I' € L*(v) and T' # 0 v-a.e.
This last fact gives that the transformation

V- L?('u) ® LZ(U) — L%M)@Lz(;llﬂlzdu)

Y [:] - [r-hik]

is unitary (see the proof of Lemma 3.14 in [6]). Therefore, replacing dv by |I|2

defined by

and J by VJV~1! but retaining the prior notation, we have

z 0
=[7 7]
on L?(p) ® L?(v). Thus (3.2.2) holds.

Now consider the cyclic vector ¢ =

¢

" for T Suppose there is a measurable

set A contained in supp g (the support ofziu) so that u{A) > 0 and {; = 0 on A.
Letting K = Xa<L?(p) ® L%(v) where xx denotes the characteristic function of
the set X, we see that H C E, Kisa proper subspace of K, and K is invariant for
M, M* and N. This contradicts the minimality of the complex Jordan extension
J on K. So we may assume (; # 0 p-a.e.

Note that v < u implies also {3 # v-a.e. Consider the isometry

h (Cth
h ¢k
from L2(p) & L%(v) into L2(|¢1)2du) & L2(|¢1|*dv). Using this we may take as our

1
cyclic vector for T the vector ¢ = 0} (where 8 = ({'¢> € L?(|¢1]?dv) which we

rename L2(dv) just as we identify L2(|¢;|?du) with L2(du)).
Finally, noting that

™ [5] = logger 2nenes ]

H= {[ P ] 1D apolynomial}
Dp

we see that
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where D = @ +d/dz : L:(u) — L?(v). This gives (3.2.3) and completes the proof
in one direction.

Conversely if 4 and v are positive compactly supported measures with v <
py if 8 € L*(v) so that (3.2.1), (3.2.2), (3.2.3) and (3.2.4) hold then clearly T

is complex sub-Jordan on H with cyclic vector 2l and with complex Jordan

extension J. We need only show J is minimal. Let K be a space so that C K cK
and which is invariant for M, M*, and N. Then we have

UHEHES

Therefore if p(-,-) is a polynomial in two arguments it follows that

oy [] = 757 won] ) = s €®

Lz[zv)] C K. In particular for all
polynomials p(-) in one argument, { Dp} € K. Thus

L)~ Lo ) = 5] €%

Now let g(-) be a polynomial in one argument. Then by the above

a0 [P] = [1009) ¢ .

Since p is arbitary, we conclude that {

0 0
Consider the collection
{¢(z)p(2) : ¢, p polynomials}.

By the Stone-Weierstrass theorem in the complex case (see [47], Theorem 7.3.8,

2 ~
p. 155), this is a dense set in L?(u). Therefore, [L é'u)J C K. We have shown

L2(p) 0 = S
C = . u ‘ 1. 0
K [ 0 ] + [L%u)} C K. Thus J is minimal

For measures p and v compactly supported in the complex plane with v < u
such that L*(u) is a subset of L?(v) and for a function # € L?(v), we denote by
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T(u, v, 0) the restriction of the operator J(g,v,8) = [; S] on L%(p) ® Li(v) to

the subspace
p -
P}(p,v,8) = { [Dp] ‘pa po]ynomlal}

where Dp = 6p + p’ and the closure is in L?(u) & L?(v). Theorem 3.2 states that
any cyclic sub-Jordan operator is unitarily equivalent to T'(u, v, 8) on PZ(u,v,8)
for some triple (u,»,6). Also, it should be noted that by taking v = 0 we get
Bram’s characterization of cyclic subnormal operators (see [19]). The next two
theorems describe exactly when T'(g, v, 8) is actually Jordan or the other extreme,
pure.

THEOREM 3.3. T(u,v,8) is Jordan if and only if PF{is,v,8) = L¥(p)@L?(v).

Proof. Obviously, by the preceeding theorem, if PZ(y,v,8) = L% (p) & L*(v),
then T = T(u,v,8) is Jordan. So assume T is Jordan on P#(u,»,0). Then by
Theorem 2.5, H = P}(p,v,0) is invariant for M, M*, and N. Thus by the same
argument used in the last part of the proof of Theorem 3.2, replacing K with H,
we see PF(p,v,0) = L*(p) & L3 (v). B

THEOREM 3.4. T(u,v,8) is pure if and only if there is no nonzero posi-
tive measure a, compactly supported in the complex plane, for which P}(u,v,0)
contains the subspace L%(a) ® (0) or (0) & L?(a).

Proof. By Theorem 2.4, T = T(u,v,8) 1s not pure if and only if there is a
nontrivial subspace Ho of PZ(u,v,0) which is invariant for M, M*, and N. So
assume Hy is such a subspace and consider three cases:

(1) Ho € ker N. H .= NHo. First note that N7 # (0). Secondly,

MH = MNHo = NMHo C NHo = H.
Finally, again by Fuglede-Putnam theorem, we have
M*H = M*NHo = NM*Ho C NH = H.
Thus H = NHo C (0) ® L(v) and T|H is normal. Thus there is a measure a so
that 7 = 0@ L?(a).

(2) Ho C Ran N = 0@ L?(v). Here as in the previous case, T|H, is normal.
Thus Ho = 0 ® L%(e) for some measure o.
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(3) Mo C Ker N but Ho ¢ Ran N. Then we consider the nonzero subspace

fi= [; g] Ho € L3(1) & (0).

! ~ [h] I
Let [ l] € H. Then there is a k € L?(v) so that L} € Hp. Now M [ l] €

0 k
’, —~ ~~ _ o~
Ho implies M [(;] € ‘H. Thus H is invariant for M. Similarly M is invariant for
) f
M?* since Hyg is invariant for M*. Finally, noting that for “l] € Ho, N [;] =0
h - -~
] = 0 for [0] € H. We conclude that T'|H is normal and hence

h

0
there is a measure o so that 7 = L%(a) @ 0.

implies N [

Conversely, suppose PZ(u,v,8) contains a non-zero subspace of the form
Ho = L*(o) & (0). If Hg C Ker N then we are in case (3), above, and it follows
that T'|Ho is normal. Thus by Proposition 2.4, T is not pure. On the other hand,
if Ho ¢ Ker N, then { = N'H, is nonzero and as seen in case (1), TJﬁ is normal.
Hence T is not pure.

Finally, if P7(p,v,0) contains a nonzero subspace of the form Ho = (0) @
L?(a), then Ho C Ran N. Hence we are in case (2) and it follows that T is not
pure. 1

4. PURE T-SUBJORDAN OPERATORS

In [6], the main operator theoretic result was that the spectrum of a real pure
sub-Jordan is a regularly closed subset of R. A regularly closed set is one which
can be recovered by closing its interior. In this section we show an analogous result
in the case that the minimal Jordan extension of a pure sub-Jordan operator T
has its spectrum contained in the unit circle T = {z : |z| = 1}; such sub-Jordan
operators we shall refer to as T-sub-Jordan. We state the theorem now. The proof
is a consequence of the lemmas and propositions which succeed it.

THEOREM 4.1. Lel T be a pure T-sub-Jordan operator. Then
o(T)=D" ={z:]2] < 1}

or

o(T) is a regularly closed subsel of T.
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PROPOSITION 4.2. Suppose that T is a T-sub-Jordan operator such that its
minimal Jordan extension J has ¢(J) =T. Then cither o(T) =T oro(T) =D~

Proof. By Lemma 6.7 of (8], 0(J) C ¢(T). By Theorem 3.8 of [3], o(T)\o(J)
is either empty or a union of components of C \ o(J). Since o(J) = T, it follows
that either o(T) = Toro(T)=D~. &

As a result of the preceeding proposition it is left to show that Theorem 4.1
holds when o(J) is a proper subset of T. If in addition we assume that T is cyclic,
by Theorem 3.2 we may assume that 7" is given by its model T = T'(p, v, 8) where
u# and v are measures with common support equal to a proper subset of T and
fe Lz(u). Then the minimal normal extension J of T is equal to the operator

J = J(p,v,8) of multiplication by [i 2] on L%(p) @ L%(v). When v = 0 (and
hence 8 = 0 also), we abbreviate PZ(u,v,8) to P2(u).
LEMMA 4.3. If T = T(u,v,0) is a pure cyclic T-sub-Jordan operator such

that the spectrum of ils minimal Jordan ezlension J = J(p, v, 8) is a proper subset

of T, then P?(p) = L?*(p) and P%(v) = L*(v).

Proof. By the construction and the fact that o(M) = a(J) (see [6], Proposi-
tion 3.7), we note that o(J) = (supp ) U(supp »). But since v < p it follows that
supp ¥ C supp . Hence o(J) = supp . Thus if o(J) is a proper subset of T, we
have T \ supp zz and T \ supp v must contain a subarc of T. This is a consequence
of T\ supp s # @ being an open subset of T. Therefore both dy/|dz| and dv/|dz|
are zero on a subset of T of positive |dz| measure. Thus both

/ Iog([g—l:l-) ldz| = —o0

/log(ﬁ-g—l-) [dz] = —oc0

hold. So by Szégo’s Theorem (see [33], pp. 49-50), L?(p) = P%() and L2(v) =
L:(v). &

and

LEMMA 4.4, If T(u,v,0) is pure T-sub-Jordan and o(J(p,v,60)) # T, then
supp p = supp v.

Proof. Since suppv C supp u, it suffices to show (supp p) \ (suppv) = 0.
Arguing contrapositively, let A C (supp ) \ (supp ») with u(A) > 0. Using, again
by Szégo’s theorem, that L?(u|A) = P?(u|A) we get that x 4 is a non-zero element
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of P?(11)A). Thus there is a sequence of polynomials {pn}., so that p, — x4 as
n — oo in L?(u|A). Now for each n, po @ Dp, € P#(p, v,8) and pa® Dp, — xa®0
in L2(p2) ® L(v). ' .

Thus x4 ® 0 € PZ(p,v,0). Therefore L2(u|A) ® 0 C PE(p,v,0) and by
Theorem 3.4 it follows that T is not pure. &

The following result plays no role in the proof of Theorem 4.1, but has
significance as an analogue of the situation in the model for real pure sub-Jordan
operators found in Section 3 of [6]. For that reason we include it here.

PropPoSITION 4.5. If T(pu,v,0) is a pure T-sub-Jordan operator and
o(J(p,v,0)) # T, then D = 8p+p' : L:(pn) — L%(v) is closable.

Proof. Suppose there is a nonzero k € L?(v) so that 0 k € PZ(p, v, 0). We
may assume k& = 0 on T\ suppv and get that the essential support K of k is a

k"1={£‘ k#0
0 £=0"

Then £~ € L2(|k|2dr). Since the support of v is a proper subset of T, P2([k|*dv) =
L2(Jk|?v); hence there exists a sequence of polynomials {pn}oz, With Jim pp =
k=1 in L?(|k|?v). Then

subset of suppr. Set

0= lim /[pn ~ k7R dv
n—oo
J
= lim /Ipnk - 1!2 dv.
n—od
K

Thus pak — xx in L2(v). Using this and the fact that

() [2] = [pfk] - [xi']

we get 0@ xx € P(p,v,0). Hence 0@ L2(v|K) C P3(p,v,9) which implies T is
not pure by Theorem 3.4. &

In [6] a duality technique was used to characterize the space P2(p,v,0);
the key point was an explicit characterization of the annihilator PZ(u,v,0)% of
P2{(p,v,9) inside L?(u) ® L?(v). We next adapt these ideas to the case where p
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and » have support on the unit circle T. For 4 a measure on the circle, we identify
the dual space of L?() with L2(yt) via the bilinear pairing

Ly(f) = / £(2)a(2) di(z), frg € L3(w).
¥

We also identify the dual of the space C(T) with the space M(T) of finite
Borel measures on T via the pairing

Lu(f) = / F(z)du(z), feC(T), pe M(T).
T

Under this pairing as a consequence of the F. and M. Riesz Theorem (sec
[27]) the annihilator of A(T) (the uniform closure of the analytic polynomials in
C(T)) can be identified with H{, or more precisely, with measures of the form
g|dz| where ¢ € H} and |dz| is arc length measure on T. Here H] is the Hardy
subspace of L'(|dz|) consisting of functions f with vanishing nonpositive Fourier
coefficients; such functions are the nontangential limit boundary value functions
of functions analytic on D and vanishing at 0 (see [33] or [27}).

Throughout the rest of this section we assume that g and v are finite Borel
measures with support on T and 8 € L?(v).

PROPOSITION 4.6. The function pair f @ g € L*(u) ® L*(v) is an element
of PZ(p,v,0)* if and only if

dv
(4.6.1) gdv = gw|dz| where w = a2l
(4.6.2) [ U@ auta) + 0wt 1acl] =0
) T
and
(463) = [[£(Q)du(€) + 8OOl + g(2)w(z) € H} for all zo € T.

ldz]|
z

(Here foh(C) da(¢) is the integral along the arc from z; to 2o taken with positive
2y

orientation.)
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Proof. If f @ g € PZ(p,v,8)*, then for all polynomials p,

(4.6.4) / pfdu+ / (0p+p')gdv = 0.
T

T

Let 25 € T and write

2

2(2) = p(z0) + j PC)AC.

<0

Substituting in (4.6.4) results in

0= [ [ptz0) + [ #(0)ec] 1 )
T

Zo

+ / {e(z) [(z0) + / P ()] +P’(2)}g(z)dV(z)
T

26

(4.6.5) = [ Hallf(2) dute) +6(2)a(z) ()

T

T/ [ / (¢ ) ldc| &g I] [£(2) du(2) + 8(2)g(z) dv(2)]

20

+ / P (2)e(2) du(z).

T

Using Fubini’s Theorem we interchange the order of integration in the second
integral of (4.6.5) to obtain

0= p(z0) [(7(2)d1(2) + 6(2)o(2) ()]
T

(4.646) dz Zo
+f p'(z){ L[ 70 a0 + 6000 (@] 0zl + g(z)dv(z)}-
T z

Taking p = 1in (4.6.6) gives (4.6.2). Considering all polynomials p’ with p(z0) = 0,
we get by the F. and M. Riesz Theorem ([33], p. 47) that the measure

dz| + ¢(z) dv(2)

iz I[ F(Q) d#(()+9(C)g(C)dV(C)

is absolutely continuous with respect to |dz|. Since the first summand is absolutely
continuous with respect to {dz|, it follows that ¢(2Ydv(z) < |dz}. This gives (4.6.1).
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Finally (4.6.3) follows from the F. and M. Riesz Theorem by again considering all
polynomials p’ with 'p(zg) = 0in (4.6.6).

The converse is obtained by simply reversing the argument above. We should
note that since we could have chosen zg as any point on T in the beginning of the
proof, necessarily condition (4.6.3) is independent of z; € T. To see this directly,
note that a change of zo to 2§ amounts to perturbing the expression in (4.6.3) by
a term of the form cﬂi—[ (where ¢ is some constant) which is an element of H}.

COROLLARY 4.7. P3(t, ,0) = P2(s,va,6) & [0® LA(1y)) where dv = dvy &
dys is the Lebesgue decomposition of dv with respect 1o |dz| with dv, < |dz| and
dug L |dz|.

Proof. By Proposition 4.6, if k € L2(v) and k = ka @ ks is the decomposition
of k with respect to dv, ® ds, then 0 & ks € {P3(y,v, t':’)l}'L =PHp.v.0). 1

COROLLARY 4.8. If T(p,v,8) is pure, then dv is absolutely continuous with

respect to |dz|.
Proof. This follows immediately from Theorem 3.4 and Corollary 4.7. 8

COROLLARY 4.9. If T\ o(J) # 0, then f & g € Pi(u,v,0)* if and only if
(4.6.1) and (4.6.2) hold in addition fo

(49.1) |d| [f(C)du(C)+0(C)g(C)w ¢yd¢] = —g(ayi)

forall zo € T.

Proof. If T\ o{J) # 0, then this set contains an arc I disjoint from supp p
and hence from supp(w|dz|). Thus by taking 2o € I, we get from (4.6.3) that

e ! [f(c ) d(€) + Uz | + 92wz

is an H! function which vanishes on a set of positive Lebesgue measure. Thus by

a corollary on page 52 of [33], this function must vanish identically. ®
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If T'(p, v, ) is pure, we may write dv = w|dz| by Corollary 4.8. Let

M = U{I : I is a maximal subarc of T with the property

that for every compact subarc J C I,/w'1|dz| < oo}
J

Then K = T\ M consists precisely of those points z on T for which

246 z
/ wl|dz| = / wldz| = o0
z z—8

for all § > 0. This set K. corresponds to the set K defined by (2.12.1), p. 105 of
[6). We cite Lemmas 2.11 and 2.13 of [6] whose statements and proofs hold with
the following modifications:

1. Consider all intervals as subarcs of T and integrals as line integrals along
T in a positive direction.

2. When the proofs refer to Lemma 2.7, use Corollary 4.9 instead.

3. Use Xa(4) = ] £(C)dn(). 2a(4) = [ 0(Q0(CIw(OdC] and X = 1+

4. Define a maximal interval of local integrability (MILI) for % to be any of
the components of M. '
With these changes we then have the following analogous result which has

as an immediate consequence the piece necessary for the proof of Theorem 4.1.

ProposiTION 4.10. If T(p,v,0) is pure, if o(J) # T and if fb g €
€ P}u,v,0)t, then f=0p-ae andg=0v-ae on T\ M.

ProposiTion 4.11. If T(u,v,0) is pure and o(J) # T then supp v is regu-
larly closed in T.

Proof. Since T is pure, dv = w|dz|. Furthermore, by Proposition 4.10,if K =
T\ M then 0@ xx is orthogonal to Py, v,8)* and hence belongs to PZ(u, v, 0).
Therefore, 0 @ L?(i2|K) C P#(j,v,6). Since this contradicts Theorem 3.4, we
conclude »(K) = 0. Hence v is carried by M, a union of subarcs. It follows that

suppv = M~ is a regularly closed subset of T. 1
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Proof of Theorem {.1. By Proposition 4.2 it suffices to consider the case
when o(J) # T. If T is cyclic we may assume that 7" = T(p,v,0). As noted
earlier, o(J) = supp #. By Lemma 4.4, we have that ¢(J) = suppv is a regularly
closed subset (relative to T) via Proposition 4.11. Finally, by Theorem 3.8 of [3],
o(J) = o(T) since the only component of C\ 6(J) is C\ o(J) itself. The general
case can be reduced to the cyclic case by the same procedure as in {6] for the real
case; here one must use that a normal operator with spectrum equal to a proper
subset of T is reductive, i.e. any invariant subspace is reducing. This also can be
seen as a consequence of Szegd’s theorem, for example, 1§

5. THE SPECTRA OF PURE COMPLEX SUB-JORDAN OPERATORS

The result of Section 4 can be viewed as saying that the spectrum of a pure
complex sub-Jordan operator must be locally thick in a certain precise sense, at
least for the case where the minimal Jordan extension has spectrum inside the unit
circle. In this section we present a plausible way of making this statement precise
for general pure sub-Jordan operators, and check its validity for some computable
special cases. The conjectured characterization of spectra of pure sub-Jordan
operators is function algebraic in nature, and is modeled on the characterization
of spectra of pure subnormal operators by Clancey and Putnam [17].

We begin by recalling the result of Clancey and Putnam. For Kya compact
subset of the plane, C(JK) denotes the algebra of continuous complex valued func-
tions on K and R(K) is the uniform closure over K of rational functions with
poles off K.

THEOREM 5.1. (see [17]). A compact set E of the complex plane is the
specirum of some pure subnormal operator if and only if for every open disk A
with ANE # 0.

R(ENA) # C(ENA).

To present a possible analogue for complex sub-Jordan operators, we intro-
duce the following.

DEFINITION 5.2. Let K be a compact subset of the complex plane. We
define Co(K) as C(K) ® C(K) and Ry(K) to be the subspace of Co(K) equal to
the uniform closure in C3(K) of the manifold

{r @' : r a rational function with no poles in K} .
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CONJECTURE 5.3. A compact subset E of the complez plane is the spectrum

of some pure complez sub-Jordan operator T if and only if
RQ(E n A) # CQ(E N &)
for all open disks A such that ANE # 0.

First we notice that in at least one direction this conjecture is consistent with
Theorem 5.1. Indeed a compact set which is the spectrum of a pure subnormal
operator in particular is the spectrum of a pure complex sub-Jordan operator. By

the result of Clancey-Putnam,
R(ENA)# C(ENA)

for each open disk A for which AN E # 9. But it is easily seen direcily that

Rz(E n A) = CQ(E n A)
= R(ENA) = C(EN A);

for if r, ® v}, — h @k, then in particular #, — h. Then by the contrapositive,
R(EN D) # C(EN A) implies that Ry(ENA) £ Co(ENA). Thus the condition
of Conjecture 5.3 holds for a subset E which is the spectrum of a pure subnormal
operator.

The proof of Theorem 5.1 in [17] relies on the Cauchy transform; this tech-
niqgue does not extend in any obvious way to give insight on Conjecture 5.3. Rather
than tackling the conjecture in full generality, we will verify its validity in a number
of computable special cases.

In order to do this we need to be able to compute R3(X) for as many compact
sets K as possible. In general this is difficult.

For the case where one omits consideration of derivatives, there 1s a charac-
terization of when R{K) = C(K) in terms of analytic capacity due to Vitushkin
(see [26], Chapter 10) and more recent tests involving generalized Cauchy-Green
formulas and distributional §-derivatives due to Khavinson ([37]) and extended by
Ferry ([22]). For the space Rp(K) considered here, we mention [9], [10], [25] and
[7]. The following theorem summatizes some special cases where the question of
whether Ry(K) = C2(K) can be settled definitively.
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THEOREM 5.4. Let K be a compact subsei of the plane.
(1) If K C R, then Ry(K) = Cy(K) if and only if K has empty one dimen-

sional interior.

(i) If K C T, then Ry(K) = Co(K) if and only if K has emply interior
relative to T.

(iii) If K is totally disconnecied, then Ry(K) = Cy(K).

(iv) If K is a smooth simple curve without critical points, then Ra(K) #
Ca(K).

Proof. (i) By Theorem 3.2 in [7], we know that Py(K) = Cy(K) (where
Py(K) is the uniform closure of {p&® p' : p a polynomial} in Cy(X)) if and only
if K has empty one dimensional interior. To verify (i) it suffices to check that
Py(K) = Ry(K) if K C R. To do this we need only check that any r &7’ (where r
is rational with poles off K} can be approximated uniformly on K by p® p’ where
pisa polynomial.

So let r be rational with poles in C\ E. Since r, and hence 7/, can only have
a finite number of discontinuities, the poles of » form a compact set in € disjoint
from E. Thus, since by assumption E is compact, we can cover E by a finite set of
closed finite intervals disjoint from the poles of r and /. Let E denote the union
of these closed intervals. Then E is compact and if a = rnin{:c 1z € E} and
b=max{z:2 € E'}, then (b—a) < co. Furthermore both r and 7’ are continuous
on E.

Now let f be a smooth continuous extension of r|E to [a,b]. Then f’ is
defined on [a,b] and » = f and ' = f' on E. Let € > 0 be given and choose a
polynomial p’ so that

sup [p'(z) - ()] < S(max{1,6—a})~"
z€[a,b]

Define the polynomial p via

k4

Ha) = [FOd+ 1),

a

Noticing that

(=) = / Ft)dt + f(a)
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we have

llp - r“L"“(E) + ”p' - r’HLoo(E) =lp- flle(ﬁ) +1Ip' - f’”Loo(E)

< swp [0 - @)t 5(max{1,6-a})”

z€la,b]
<(b- a)%(ma*x{l,‘t‘)—a})-‘1 + %(max{l,b— a})—l
<E.

(ii) The result can be obtained by using the same duality technique as used
in [7] for the real line case; we omit the details.

(iii) This is essentially the result from [10].

(iv) This is essentially the result from [25]. #

We now list special cases where one can verily Conjecture 5.3 by direct
checking.

THEOREM 5.5. Conjecture 5.3 is valid if E satlisfies any of the following
additional hypotheses:
(i) ECR.
(i) ECTor E=D.
(iii) E is totally disconnected.
(iv) E is a smooth simple curve without critical points.

Proof of Theorem 5.5. (i) By Corollary 3.16 in [6], a compact subset E of
R is the spectrum of a pure (real) sub-Jordan operator if and only if E is the
closure of its one dimensional interior (i.e. £ is regularly closed relative to R). By
Theorem 5.4 (i), Conjecture 5.3 for this case follows if we show that (ENA)~ has
nonempty one dimensional interior for all open disks & with ENA # 0 if and
only if E is regularly closed with respect to R. But this is straightforward.

(11) This follows in the same way as (i), based on Theorem 4.1 and part (ii)
of Theorem 5.4.

(i) If E is totally disconnected and A is any open disk such that £ N
A # @, then K = ENA is also totally disconnected. Then by part (iii) of
Theorem 5.4, Ra(E N A) = C3(E N A). On the other hand, J. Agler (3] has
shown that any complex sub-Jordan operator with totally disconnected spectrum
is actually Jordan, so in particular cannot be pure. Thus this case is consistent
with Conjecture 5.3.

(iv) If £ is a smooth simple curve without critical points, then part (iv) of
Theorem 5.4 implies that Ro(ENA) # C2(ENA) for any open A with ENA # 0.
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On the other hand we can construct a pure complex sub-Jordan operator having
spectrum equal to £ as follows.
Let f be a differentiable complex-valued function defined on [0, 1] satisfying

(5.5.1) f is one-to-one,
(5.5.2) feclo,1]
(5.5.3) f'(t) #0 for all t € [0,1],
and

(5.5.4) 4 f([0,1]) = E.

1
Lebesgue measure on [0,1] . Let Ty = Jo|H where H is the K-closure of the mani-

fold {r ® Y p
a polynomial}. Then by Theorem 3.9, Ty is a pure (real) sub-Jordan operator
with minimal Jordan extension J.

t
Let Jo be multiplication by [ 2] on K = L%*(m) @ L*(m) where m is

We have a C'-functional calculus available for use. That is, since both f
f@ o0 ]
frt) @)

restricted to M. (See the latter part of the proof of Theorem 3.17 of {6]). If

f&y o
0 f(t)] on K and Ny

on K, then clearly J is Jordan and hence T is

and f’ are continuous on [0,1], then f(7%) is multiplication by [

we let J = M; + N; where M; is multiplication by [

is multiplication b [ 09
’ YL o

sub-Jordan. It is left to show 7 is pure and ¢(T) = E.
By the Stone-Weierstrass Theorem in the complex plane (see [47], Theo-

rem 7.3.8), the manifold
{p(f, f): papolynomial in z and z}

is dense in C[0,1]. (Note: Here we use 5.5.1 to get that the manifold separates
points.}

Now suppose Hp is a subspace of H which is invariant for M and M;. Then
Ho is invariant for p(M;) and p(M}), for all polynomials p. Thus H, is invariant
for p(My, M ;) where p is any polynomial in z and z. By the result noted above,
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there is a sequence of polynomials {p,} in z and 7 so that {pa(f, f)} converges
uniformly to g(t) =t on [0, 1]. Thus

it )= ("G L al=16 =

implying that Hp is invariant for S.

Suppose further that Hg is invariant for Ny. By 5.5.2 and 5.5.3 we have as
before a sequence {p, } of polynomials in two variables so that {pn(f, f)} converges
uniformly to (f')~! on [0,1]. Since H, is invariant for

Ny - pn(Myg, M) = [f'(zt) 8] [Pn(g'f) pn(?',f)]

“Lromen ol =11 ol =%

it follows that Hg is invariant for N. Therefore Ho C H being invariant for
My, M} and Ny implies H, is invariant for both S and N. Since Tq is pure this
says Mo = {0}. Hence T is also pure.

To show o(T) = E, we first show J = f(Jo) is the minimal Jordan extension

of T = f(To). Considering H = { [::,] :h € AC|O, 1]}, we need to show that K

is the smallest space containing H that is invariant for both M; and N;. Notice
that for all h € ACJ0, 1}, for all polynomials p

p“w[;]z[mﬁm]eﬂ

But since functions of the form p(f') are dense in L2(m), this says [L2?m)] cK

In particular, for all polynomials p,

[Mﬂmimnw]€“

“”[;]—[MPﬁ+pU%J Fum]

for all polynomials p and all A € AC[0,1). Since the manifold {p(f}h : p
L2
a polynomial, A € AC[0,1]} is dense in L%(m), we get [ gm)] C K. There-

L*(m)
fore K = L2(m

o(J) = o(T), provided o(J) C E.

Thus

Again by Agler’s result ({3], Theorem 3.8), we conclude
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To see this is indeed the case, we show C\ E C p(J). Solet A € C\ £. Then
both functions (A — £(t))~! and (A — f(2))~?(A — f(#)) are defined and continuous
on [0,1]. Thus multiplication by

[ (-n-t 0 ]
(A=H720-8 (=-n7"

is bounded. The following calculation shows this operator is in fact (AI— f(Jo))™1:

[(A——f'f ) (A E f)] [(,\ ~(;\')t2f()z\-l— Y Q@ —Of)‘l]

- [—(A—f)’(f\—f)‘11+(f\—f)“i()v-f)' (1)] - [(1) 2]

In conclusion, we cite Proposition 3.7 of [6] to get that both ¢(Jo) = ¢(S) and
o(J) = o{M;). Obviously, ¢(S) = [0,1], so by the Spectral Mapping Theorem,
E = f([0,1]) = f(2(S)) = o(f(5)) = a(My) = o(J) = o(T). ¥

6. THE SPACE PZ(p, v, 6)

The model for a complex sub-Jordan operator with cyclic vector presented in
Section 3'suggests the general problem of characterizing precisely what are the el-
ements f @ g of PZ(u,v,0). Here p1 and v are assumed to be compactly supported
Borel measures on the plane, 6 is assumed to be an element of L%(v) and PZ(p, v, 6)
is defined to be the L2(1)®L?(v) closure of the set {p & (fp + p') : p a polynomial}.
For the case where u and v are supported on the real line, a neatly definitive intrin-
sic characterization of P#{y,v,6) was given in [6]. For the case where v = 0 (and
hence also § = 0), J. E. Thomson [48] has recently obtained a complete structure
theory for P?(u) = P?(,0,0) in terms of bounded analytic point evaluations. For
the case where v (as well as §) is zero and u is supported on the unit circle, P?(u)
can be described explicitly as a consequence of the Szegd-Kolmogoroff-Krein the-
orem (see [33], p. 49). Here we give some results on P?(pu,v,8) for the case where
both u and v are supported on T; these results might be considered as a beginning
toward a Szego-Kolmogoroff-Krein theorem with derivatives. The main tool is the
characterization of PZ(s,v,8)* given by Proposition 4.6.

We first consider the case where g and v have support equal to a proper
subset of T. Then the annihilator P}(u,v,0)* is characterized by conditions
(4.6.1), (4.6.2) and (4.9.1), just as in the real case analyzed in detail in [6]. As
a consequence the space PZ(u,v,0) in this case has the same structure as in the



70 JOSEPH A. BALL AND THOMAS R. FANNEY

real case. To summarize the result we need some notation and terminology. Let

p = wldz| + Wsing be the Lebesgue decomposition with respect to arc length mea-

sure on the unit circle. If w(z) = 0 set w(z)™ = co. An arc 7 on T is said to

be an MALI (maximal arc of local integrability) for w=" if I is a maximal subarc

of T with respect to the property that fw=!|dz| < co for every compact subarc
7

J C I. The following sums up the results from [6] adapted to the sitnation where
¢ and v are measures with supports properly contained in T.

THEOREM 6.1. Let p and v be finile measures with supports equal to proper
subsets of T and 0 € L*(v). Then:

(i) A given h@® k € L (u) @ L*(v) is in PZ(p,v,0) if and only if (h® k)|I
is in P2(p|I,v|I,8|1) for each MALI for w='. Moreover h @ k is in P}(u,v,8) if
and only if h@® ko is in P}(p, w|dz|,8), where k = ko + ks is the decomposition of
k€ L*(v) with ko € L (w|dz]) and k, € L*(Vsing).

(1) If v = w|dz|, supp v is the closed proper subarc I = [zg,71] of T and
fw_1|dz| < 0o, then a function pair hedk € L%(p)@® L%(v) is in PZ(u,v,0) if and

;nly if there ezists a funciion h) such thal
(a) hy is absolutely continuous on I
(b) h=hip-ae.
(c) e®@hi(z) = hi(z0) + [(e®k)(z)dz where ©(z) = [0(z)dz end
29 Zg

line integrals are taken along I.

(i11) If v = w|dz| and v is carried by an MALI I for w™! whose closure is a
proper subarc of T, then a given function h@k € L?(p) ® L*(w{dz|) which satisfies
condilions (a), (b), (c) in siatement (ii) above (where zy is some point in I) and
which also satisfies

(d) h @k has compact support in I
is in Pi(p,v,0).

. We next present a special case with supp ¥ = T where an explicit description

of P2(u,v,8) is possible. We first note that if w is a function in L!(|dz|) with
w 2> 0 on T such that [w™!|dz| < oo, then
T

/logwldz| = —/log(w‘l)]dzl p> —/w'l|dz| > —x.
¥ T ¥

Then, by a consequence of Szegd’s theorem (see [33] or [27]) there is an outer
function v € H? such that w = |v[?on T.
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THEOREM 6.2. Let u and v be finite positive measures on T and § € L2(v).
Suppose v = w|dz| where w=! € L*(|dz|) and suppose 8 is an element of the Hardy
space H'. Let v be an outer function such that |v|> = w. Then a given function
pair h@ k € L2(u) @ L%(v) is in P(u,v,0) if and only if there exists functions hy
and ki such that

(i) hy is absolutely continuous on T and h = hy p-a.c..
(ii) ky € H? and k = v k.
(i) & = 6hy + b} |dz|-a.e. on T.

Proof. To verify necessity we first need a couple of observations. First of all,
the hypothesis w=? € L!(|dz|) implies that w=! € L?(w|dz|); indeed

/|d}'1|2wldz| = /w"lldzl < oo,
T T

Hence, for any f € L?(w|dz|), by the Cauchy-Schwari inequality

/ |£lldz] = / |Flw= (wldz]) € [1llzguiast o™ sl < 0,
T T

that is, L2(w]dz|) C L*(]dz|). Moreover, if v is an outer function with |v|? = w,
the map p — wvp (where p is an arbitrary analytic polynomial) maps a dense
subspace of P?(w|dz|) to a dense subspace of H?(= P?(|dz|}) isometrically and
hence extends to a unitary map of P?(w|dz|) onto H?; as a consequence we see
that P%(w|dz|) is identical to v™* H? and that L2(w|dz|)N H! = v~ 1H2,

Now suppose that {p,} is a sequence of polynomials such that p, & (8pn +p},)
converges to h@k in L?(p)@ L?(w|dz|). In particular, since § € H! by assumption,
0pn + pl, € H1 1 L?(w|dz|). This latter space by the discussion above is identical
to P%(w|dz|) = v~ H2. Hence k, as the limit in L%(v) of 8p, + pl,, is in v~ H?;
this verifies the necessity of condition (ii).

Fix a point 29 on T and define O(z) = jﬂ(c) d¢. Since § is in H!, by

Cauchy’s theorem and the Lebesgue dominated ?onvergence theorem one can see
that ©(z) is defined and continuous on the whole closed unit disk D and that the
integral is independent of path. In fact © is in the disk algébra A(D) = H2NnC(T)
with ©' = 6. Moreover, if we set gn = Op, + pl, then (€®pn) = ¢®¢n.

Thus, for z; and z; points on T,

z

(6.2.1) (e®pn)(22) — (€%pn)(21) = /(eeqn)(C) d¢

21
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where the line integral is taken along an arc of T. Note next that ¢®g, converges

to ek in L2(wldz|) since e® is bounded. Hence

j (%% — ®g,)(0)dC

Zy

. . ® -
im < lim 1%k — e®gnllzauias o™ | auiasp = 0-

By choosing a subsequence if necessary, we may assume that lim pn(z) = h(z) p-
a.e. on T. Hence, we may pass to the limit in (6.2.1) to get (eeh)(zg) (e®h)(z1) =
f (eelc)(C)dC for u-a.e. 2z and z;. Unraveling this condition leads us to the

z)
necessity of conditions (i) and (iii).

Now suppose that h@k € L?(u)® L?(w|dz]) satisfies conditions (i), (ii), (iii).
To show that h @ k € P2(y, w|dz|,8), by the Hahn-Banach theorem it suffices to
show that k @ k is annihilated by an arbitrary element f & g of P}(u, w]dz|,8)*.
In the following calculation, we use the characterization of PZ(p, wldz],0)1 given
by Proposition 4.6. Thus .ssume that f @ g € L?(p) EB L?(w|dz]) satisfies (4.6.1),
(4.6.2) and {4.6.3). The problem is to show

(6.2.2) I= /hf dp+/kgw]dz| =0
T T

for all @k satisfying (i), (ii), (iii) and f &g satisfying (4.6.1), (4.6.2) and (4.6.3).
By (ii) k € H! while by (4.6.3)

(6.2.3) X = g(z) + w{z)! l%f_;l- / [£(€) dut0) + 80290 w(@1ec |
is in w™*H N L% (w|dz]); hence
/kxwld(] =0
T
and so
[ kautasl = - [ 1) [ [10au0) + Q0 ©u(lecl] o=
T T z
Hence we get

1= [bran- [k / [#(0)du() + 8)stIw(Oec1] 02
T T z
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Interchange of the order of integration converts this to
/ hfdu - [ [ / k(z)dz} 0)dp(€) + BOa(wONdC]].
But by (i) and (iii)
/k(z)dz = f (2)dz + h1(¢) = A1(z0)

and hence, -

- ] ha(O)F(C) du(<)
T

- ( T
_/ /0(z)h1(z)dz+h1(C)—h](zo) F(Q)du(C)

T

() (Qw({)IdC]

~—
L J

-/ | /0(z)h1(z)dz+h (€) = hi(zo

/ R1(¢)F(C) dn(©)

-/ [ [e@me e+ m(c)] [#(0)4u(0) + 0Oa(@yu(lac]]
T 2o ]

+h(z0) [ [£0 () +0Q)aeru(Ol4c]].
T

From condition (4.6.2) we see that the‘last term vanishes. The first term

cancels with part of the second term to leave us with

I=- / h(¢)8(C)a(C)w(¢)ldc]

T

¢
-/ [ Jome dz] (700 au0) + 0©0(cuo)Iecl]
T Lz
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Another interchange in the order of integration brings us to

I=— / R1(¢)8(C)a(C)w(C)Idc]

T

- [oem@ | [ 160a0) + 0010001l | 82
T z
= —/B(Z)hl(z)x(z)w(zﬂdzl
T

where x(z) is given by (6.2.3) and is in w™Hi N L%{wldz|). By -solving (iii)
for hy and using that k and & are in H', we see that h, € A(D); hence 6h; €
H' N L%(wl|dz|), and therefore I = — [ 6k, xw|dz| = 0, as required. 1§

T

For measures g and v with supports equal to more general compact subsets
of the plane, such an explicit description of PZ(u,v,6) would apppear to be very
complicated. Rather than seeking such an explicit description, it makes sense to
try to understand some qualitative properties. Specifically, Theorems 3.3 and 3.4
suggest the following question: for what measures ¢ and v compactly supported
in the complex plane and functions § € L?(v), does one have
(1) PR, v,0) = L2(u) ® L*(v)

or
(2) PZ(u,v,0) contains a nontrivial subspace of the form L%(a)®(0) or (0)®L%(a)?

Both of these problems seem difficult in general though complete answers are
given in Chapters 2 and 3 of [6] when p and v are supported on the real line (see
Theorem 2.31, the model construction and Theorem 3.17 of [6]).

When v is taken to be zero, then the questions above reduce to:

For what measure i, compactly supported in the plane, does one have
(1o) P?(u) = L*(p)

or
(20) P?(p) splits into a direct sum with one summand an L?-space.

Here P%(u) denotes the closure of the polynomials as a linear manifold in
L?(u). These latter questions have been addressed and answered in some cases
by various authors. The reader may pursue work done regarding (1o) in [11], [12],
[32], [33], [26], [44], [49), [50), [61], and [52]. As noted previously, a consequence of
Szego’s theorem generalized by Kolmogoroff and Krein is that for x4 supported on
the unit circle, P?(u) = L?(p) provided that

flog(%)dhd = —c0
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(see [33], [26]). T. T. Trent characterized when P%(u) # L?(p) in general with the
condition that there exist a finite measure v singular with respect to g so that for
some positive constant c,

”P”l,v < cllpll2,u

for all polynomials p. Thomson ([48]) recently characterized the failure of (1¢) in
terms of the existence of bounded analytic point evaluations.

Question (2o) is addressed in [38], [39], and [41] in the case where u is sup-
ported on the closed unit disk D and g = v + wdm where v is carried by the open
disc D, m is Lebesgue measure on 8D, and w € L*(dm). Kriete shows that if
suppv C D and » is circular symmetric then

P*(y) = P*(v) + L*(wdm).

Here “circular symmetric” means that dv = dm(r)d# for some Borel measure
mon [0, 1]. The interplay between m and w is investigated with various results, For
example if dm(r) = G(r)rdr, then the rate of decay of G as r /1 is a determining
factor for splitting, as is the logarithmic integrability of w. In particular, if for
small é > 0

1
/ loglog C%dr =00
1-6

and if w = 0 on a set of positive Lebesgue measure in 8D, then P?(u) splits.
Conversely, if the above integral is finite and T contains a subarc for which 1/w is
integrable, then P2?(u) does not split; this condition is similar to those examined
in Section 2 of [6]. Further references concerning when P?(u) splits include [13],
(28], [34], [35], [36], [40], [45], [53], and [54].
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