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ABSTRACT. The aim of this paper is to study operator theoretical proper-
ties of module maps, for example, the spectral theory or closed range results.
Developing spectral theory in Banach algebra C(§2, B(X)), where © is a com-
pact Hausdorff space and X 1s a Banach space, or in other Banach algebras
of B(X)-valued functions is a part of this program.
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INTRODUCTION

Throughout this paper §2 is a compact Hausdorff space and X is a Banach space. In
this paper we study module maps acting on certain modules of X-valued functions
on © . To give a specific example, let C = C(2, X) be the space of all continuous
X-valued maps on Q with the sup-norm

Iflla = sup{llf(w)l :weQ} (feC)

Let C(§?) denote the usual Banach algebra of all continuous complex-valued
functions on §2. Then € is a module over C(§2) where for all w €

(8Nw) = gW)f(w) (9€C(Q), feC).

A linear map T with domain D(T) C C, taking values in € is a module map if
D(T) is a submodule of C and

T(¢f) = ¢T(f) (f € D(T), g € C(N)).
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We denote the space of all everywhere defined continuous module maps of C into
C by M(C). Now let B(X) be the algebra of all bounded linear operators on X. If
T = {T(w)} € C(£2, B(X)), then T determines a module map in M(C) by setting
for feC

T(N)w) =TW)f(@)) (veR).

The Banach algebra of operator-valued functions C(£2, B{X)) is an important sub-
algebra of M(C). We also consider some interesting modules of holomorphic X-
-valued functions and the module maps on these spaces.

The aim of this paper is to study the operator theoretical properties of mod-
ule maps, for example, spectral theory or closed range results. Developing spectral
theory in the Banach algebra C(2, B(X)) and other Banach algebras of B(X)-
-valued functions is a part of this program.

There is ample motivation for studying module maps. Such maps are de-
termined by families of operators, and families of operators play a role in many
different parts of operator theory, for example, pencils of operators [6], pertur-
bation theory of operators [10], and equations depending on a parameter ([12],
Chapter 8, [6]).

1. MODULE MAPS

In this section we consider some basic properties of module maps on certain mod-
ules of X-valued functions on 2. The notation needed is as listed below:

The space . The module. The algebra.
A general compact Hausdorff space. € = C(Q, X) C=C%Q)
The closed unit disk in C. A=A, X) A=AQ)
The closed unit disk in C. A = AR, X) A= A(Q)
A compact interval in R. ch=C*(R,X) C"=C"Q).

Here A(S2, X) is the space of all f € C(2, X) such that f is holomorphic on
the interior of Q; A;(Q, X) is the  space of all f € A(S, X) such that there exists
a sequence {Zn}nzo C X with Z l|znl| convergent such that f(w) = z: Zpw"
for all w € Q; C*(R, X) is the space of all f € C(2, X) such that f i 1s n -times
continuously differentiable on 2. The corresponding algebras are the commutative
Banach algebras which result in the case X = C. The complete norms involved

are:

Iflla = sup{|lf(w)il : w € Q} for feEA
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o0 o0
Iflls =Y llznll where f(w)= Yz for fEA;
n=0 n=0

fllan =3 (k)| F®)lq for f € C"(here f®) denotes the k-th derivative of f).
k=0

NoTe 1.1. We assume throughout that the notation .A(2, X) and A (Q, X)
implies automatically that Q is the closed unit disk. In fact, the results proved
concerning these modules (or algebras, when X is an algebra) hold when Q is any
closed disk. We illustrate this in the.case of A;.

Fix Ao € ¢, R>0,andlet T = {A € C': |]A—As| € R}. Let Ay(T, X) be the
space of all functions f:T' — X such that 3 {z;} C X with

f@) =Y ar(w—A)* (we),
k=0

and

Nl = Izl R < co.

k=0
Define ¢ : @ — T' (Q the closed unit disk) by p(w) = Rw + A,. Define W :
A (T, X) — A1 (9, X) for f € Ai(T, X) by

WNw) = flew)) (we).

00 =)
I f(w) = 3 z(w—Xo)*, 3. lz4]|RF < oo, then
k=0

W(Hw) =) (@Rt (wen),
k=0
so W(f) € A1(R2, X) with

WAl = 3 llzwll R = {1£1l3.-

k=0

Thus, W is a linear isometry mapping A; (T, X) onto A; (2, X). Results concerning
A1(R, X) can be transferred to A,(T', X) using W and W-1.

At times we consider general modules M which are Banach modules over
a commutative Banach algebra D. In this general case we call T € B(M) (the
bounded linear maps on M) a module map if

T(gf) =9T(f) (feM,geD).
Let M (M) denote the algebra of all module maps in B(M).



82 BRUGE A. BARNES

PROPOSITION 1.2.
(1) M(M) is strongly closed in B(M).
(ii) M (M) is inverse closed in B(M).

Proof. To prove (i) assume {T},} C M(M) and T, — T € B(M) strongly
on M. For fEM, g€ D,

T(gf) — Ta(af) = 9Ta(f) — 97(f).

To verify (ii), assume T € M(M) and T~ € B(M). For f € M and
g € D, let h = T-Y(f). Then T(h) = f and T(gh) = gT(h) = gf. Therefore
T-Y(gf) = gh = gT~'(f). It follows that T-! € M(M). 8

In general, module maps are determined by a family of operators, {T(w)}wen
C B(X). Any such family determines a map defined on functions from € into X
in the following canonical way.

DEFINITION 1.3. Let {T(w)}wen be a family of operators in B(X). For

f:Q — X define
T(f)w) =TW)(fW)) (we).

In what follows we always use this definition to determine how a family of operators
acts on a X-valued function.

THEOREM 1.4. Let {T(w)}wen C B(X). This family determines a module
map on (a) C(Q, X); (b) C*(Q, X); (c) A(R, X); or (d) A1(Q, X), if and only if,
for every x € X, T(w)z is in the space in (a), (b), (c), or (d), respeclively.

Proof. The “only if” direction is immediate since for every =z € X, the con-
stant function

cw)=2z (weER)

is in all four of the spaces listed.
Now assume T'(w)z € C = C(Q, X) for all z € X. By the uniform bounded-
ness principle 3 M > 0 such that

1Tl €M forall we.

Let {wx}rea be a net in Q with li{nw; =w,. Fix f € C.

IT(f)(wx) = T(F)wo)ll = 1T (@r)(f(wx)) = T(w)o (F(wo))l
< IT@r)(f(wr) = Flwa Dl + I(T(wa) = T(wo )(f(wo))
< M||f(wa) = F(wo)ll + I(T'(wx) = T(wo))(F(wo .
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Thus, T(f) € C.

Next, assume that T(w)z € A = A(Q, X) for all z € X. Fix f € A. By the
argument above, 7(f) € C. Let w be a given point in the interior of Q2. For any ¥
such that w + v € int(Q), v # 0,

Tw+N(fw+7) ~TW) (W) _ flwt+)— flw
¥ =Tl +7) ( ¥ )

+ (R =T (50,

Thus, letting ¥ — 0, we have

[T@)(f @) = TW)S' @)+ [T@))]', where y=f(w).

Therefore T(f) € A.

Similar arguments prove that when T{w)z € C* = C*(Q, X) for all z, then
. T(f) € C™ whenever f € C". Assume that for each ¢ € X, T(w)z € A, =
A1(Q, X). Fix f € A;. We shall prove that T(f) € A;. The argument is fairly
long. By hypothesis, for each ¢ € X there exists a sequence {Ax(z)}r30 € X with

T(w)z = ZAk(z)wk (we ), and Z || Az (z)]| < oo.
k=0

k=0

Using the uniqueness of the coefficients in the power series expansion, it is easy
to check that Ay is linear map on X for all k£ > 0. Since {T(w)}wen is pointwise
bounded on X, as before, the uniform boundedness principle implies 3 M > 0 with
HT(w)]] € M for allw € Q.

Now we prove

(1.1) Ap € B(X) forall k20.
Fix the parametrized circle v(t) = 1/2 ¢%, ¢t € [0,27]. Fixz € X. For allw € Q
with w # 0,

(T(W)z)w™ ™" = An(z)w™! + g(w) where g(w)= Z Ap(z)F L
. k=0,k#n

Now g{w) has an antiderivative G(w) for w € int(Q2) \ {0} by direct computation
(term-by-term integration). Thus, [ g(w)dw = 0, and therefore,
¥

%;/(T(w)w)w“"—l dw = Q%r;/Aﬂ(m)w—‘l dw = Ax(z).
v Y
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Then
[ An(2)]] = /T(w)a:w =1 4wl < Mjz|2".
4
This proves (1.1).
The next step is to show
(1.2) 3J > 0 such that for all z € X Z Ak < Tl

k=0

To prove (1.2), consider the linear map W : X — A, given by W(z) = Z Ag(z)

We show W is closed, and thus, bounded. Supposc {zn} C X, 20 EN .||an—,zo|| —
0, and ||W(z,) — ¢l — 0, where g(w) = z brw* € Ay. Using (1.1), for each
fixed k 2 0, |[|Ax(zn) — Ac(zo)|| — 0. By assmnphon

m -
S lA(za) = il = O,
j=0

so certainly, ||Ak(::“,1 — by|| — O for all k. It follows that Ag(zo) = bx, k 2 0. This
proves W(zo) = Z Ax(zo)wr = g. Therefore (1.2) holds.
k=0

Finally, assume f € A;, f(w) = Z drw*, Z |dx|l < co. Applying (1.2) we

have,

> (lefh:(dj)!l) <3 Il < oo,
k=0 -

=0

Now

T(w)(f(w)) = ZAL(I

i (i (d; )w’) w® for each w.

This power series is in A; by the previous calculation. 1@

We state the next result as a corollary of Theorem 1.4, although it could be
proved by direct computation.

COROLLARY 1.5. Assume that {T(w)}ueq is a family in (a) C(Q, B(X)); (b)
C(Q, B(X)); () A(Q, B(X)); or (d) A1(Q, B(X)). Then {T(w)}wea determines
a module map (via Definition 1.3) on (a) C(Q, X); (b) C*(2, X); (c) A(Q, X), or
(d) A1 (2, X), respectively.
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The proof of this corollary is clear, as using Theorem 1.4, it is enough to
check that T'(w)z is in the module indicated for z € X.

As a second application of Theorem 1.4, we have a result on extensions of
module maps.

COROLLARY 1.6. Let O be any one of the four basic modules. Assume that
N is a subspace of I which contains the constant functions ¢, for allz € X. If
{T(W)}wen € B(X) determines a linear map T : N — M (es in Definition 1.3)
then T has an cxienston lo a module map on M.

The proof of Corollary 1.6 is straightforward. Thus, for example, an operator
T € M{A(f2, X)) that is determined by a family {T(w)}uen & B(X), has 2 unique
extension to a map T € M(C(R, X)).

Next we show that every T' € M(C(Q, X)) is determined by a family
{T(w)}wen C B(X). Here, and throughout this paper, we adopt the useful nota-
tion from [13], p. 40: for ¢ € C(), V an open subset of 2, ¢ < V means 0 < g < 1
on  and g =0 on V©.

COROLLARY 1.7. Assume T € M(C), whereC = C(2, X). Then I{T(w)}uen
C B(X) such that for all f€C

T(f)w) =TW)fw)) (we)
Proof. For w € Q and z € X, define
(1.3) T(w)z = T(f)(w) where f is any function in C with f(w) = z.
It will follow from (1.3) that
T(Hw) =TWw)fw)) (weR fel)

We need to check that the definition is well-defined. For this it suffices to show
that when k € € and h(w) = 0, then T(h)(w) = 0. For € > 0 arbitrary let

Ue = {yeQ:|la(n)ll <}

Choose g. € C(Q) with g.(w) = 1 and g. < U.. Then |lg.h|la — 0 as ¢ — 0F.
Therefore

T(h)(w) = ge(W)T(h)(w) = T(geh)(w) =0 as ¢— 0%,
Thus, T(h){w) = 0.
Now let T € M(C), and let {T(w)}wen be as defined in (1.3). Clearly T'(w)
is a linear map on X, and for all z € X,
1T W) (@)l = 1T @) ezl < T Hlezlla = Tl li=l.
Therefore ||T'(w|| < ||T| for all w € Q. This proves {T(w)}wea C B(X). 1
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THEOREM 1.8. Let M be any one of the three modules C, C*, or A. Assume
T € M(M) is determined by a family {T(w)}wen C B(X). Then T7! ezists in
M(OM) if and only if T(w)~! ezists in B(X) for allw €  and 37 > 0 such that
NT(w) < J forallw € Q.

Proof. First assume that M = C(Q, X), T{w)~! exists for all @ € Q, and
IT(w)=*{| € J for all w. By Theorem 1.4 it suffices to show that T(w)™ 'z € C for
any fixed z € X. Fory € 2, z € X, 7 and z fixed, we have for w € 2

IT@)™ 2 = T(n) "2l = | Tw) ™ (T(5) = T@)T() 2|

1.4
(1.4) S JI(T () = Tw))yll

where y = T(y)~!z. Since w — T(w)y is a continuous map on §, it follows that
T(w)~'z € €. Thus, T~ = {T(w) ! }uen is a module map.

The proof for the other modules is similar, making use of the inequality in
(1.4). 8

It is an open question whether Theorem 1.8 holds for maps T' = {T(w)}wen €
.M(A,). We have as a simple corollary of Theorem 1.8, the following result.

COROLLARY 1.9. et X be a Hilbert space. Let D be any one of the three
- modules C,C", or A. Assume T'€ M(9M) is determined by & family {T(w)}wen C
B(X) where T(w) = T(w)* for allw € Q. Then o(T), the spectrum of T as an

operator in B(M), consists of real numbers.

Proof. Assume X = a + ib where a,b € R, # # 0. For each w € Q, (A —
T(w))~! exists and ||(A = T(w))~!}] < [b|~2. Then the result follows directly from
Theorem 1.8. &

It is not difficult to find module maps which are not determined by a function
in (), B(X)). For example, any family {T(w)}wen € B(X) which is strongly
continuous on X determines a module map on C(£2, X') by Theorem 1.4, but such
a family need not be in C(2, B(X)). It is more interesting to produce a map
T € M(C(R, X)) such that T(w)~" exists for all w € €, but T is not invertible in

M(C). We construct an example next.
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EXAMPLE 1.10. Let X = C[0,1)], and let Q be N, the space of natural
numbers N = {1,2,3,...} with {co} adjoined (so N is compact). Now we give
an example of a module map T € M(C(, X)) with the property that T(n) is
invertible for all n € N, but T is not invertible on (2, X). For all integers n, let
en{2) = e2""% For n € N let P, be the projection on C[0, 1] given by

1
Pals) = ( [ s@e-nt@) dm) tn  (gEX).
0
Let I be the identity operator on X. Define T = {Tp}nen by
To=(14+n" ) -P,, 1<n<o0; To =1

Clearly T, is invertible for all n € N. From Fourier analysis we know that for any
g € C[0,1], P,(g) — 0. Therefore as n — co

To(g) = (1+n")g = Pa(g) — 9 = Too(9).

It follows that {T},} is a module map on C by Theorem 1.4. Now T,(en) =
(14 n~Ye, — Pa(en) = 1/n eq. Therefore ||T,71| > n for 1 < n < co. It follows
that T is not invertible on C.

2. QUOTIENT MODULES

The main aim of this section is to establish certain quotient module results which
have interesting applications to the spectral theory of module maps. For example,
if B is Banach algebra with unit and K is a closed ideal of B, then it is shown
in Theorem 2.2 that C(Q, B)/C(, K) is isomorphic to C(Q2, B/K). From this it
follows that if 7' € C(Q, B) has the property that T{w) is invertible in B module
K for all w € 2 if and only if T is invertible in C(£2, B) module the ideal C(Q, K).
When B = B(X) and K = K(X), then this is an interesting fact concerning mod-
ule maps T € C(£2, B(X)) having the property that T(w} is a Fredholm operator
for all w € Q.

The quotient module results derived in this section are more general than is
strictly necessary for aplications to study of module maps. However, these general
results are of independent interest. The Banach algebra C(Q, B), where B is a
general Banach algebra, has been widely studied, especially the ideal theory of
this algebra; see for example [9], [15], and [16].

We start with a lemma which is well-known, including the short proof for
convenience.
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LEMMA 2.1. Let W be a subset of a normed lincar space (Y,|| - [|). Assume
T € C(Q2,B(Y)), and let € > 0 be given. Suppose for each w € Q, Jw, € W such
that ||T(w) — wy|| < €. Then there exzist {wy,...\wa} C W and {hy,...,hn} C
C(Q) such that

< E.
¥

T(w) - E hy(w)wy
k=1

Proof. For each v € Q, let V, = {w : |[T(w) — wu|| < €}. By hypothesis
{Vy 1y € 2} is an open cover for Q. Let {V,,,V,,,..., ¥, } be a finite subcover.
Set wy = w,, for 1 € k € n. Choose {hy,...,h,} C C(R) such that kx < V,, for

all kand 3 hy =1 on Q ([13], Theorem 2.13). Set
k=1

R(u) = Z hk(w)wk.
k=1

Then N
T(w) — Rw) = > he(w)[T(w) — wel.
k=1

Fixwef, andset A= {k:w€V,}. Then

T(w) — R(w) = D hi(w)[T(w) — w],
keA
and therefore,
IT@) = R@)ll € Y h@)IT(w) —well < Y ha(w)e <e. B
keA k€A
Now we prove the first of our quotient module results.
THEOREM 2.2. Let (B,|| - ||) be a Banack space, and let K be a closed
subspace of B. Then C(Q, B)/C(R, K) is isometrically isomorphic to C(Q, B/K).

Proof. For b € B, let [b] = b+ K be the coset of b in B/K. Define ¢ :
C(Q, B) — C(Q, B/K) by ¢(R(w)) = [R(w)], w € Q. First we show:

(2.1) R(p) is dense in C(2, B/ K).
Fix T € C(Q, B/K), and let € > 0 be arbitrary. For each w € 2, 3[b,] € B/K such

that T(w) = [bu] so the hypotheses of Lemma 2.1 hold (with W = B/K). Applying
the Lemma 2.1, we have for some collections {b1,...,b,} C B and {hy,..., ha} C
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@), |Tw) - ; he(@)lbel]| < e. Setting R(w) = é hi(w)bs € C(Q, B), we
have =

P(Rw)) = Y hx(w)[ba].
k=1

This proves (2.1).

Note that ker(p) = C(Q, K). Define & : C(, B)/C(Q, K) — C(, B/K) by
@([R]) = p(R) where [R] is the coset R+ C(8, K) in (Q, B)/C(Q, K). It is easy
to check that

l6(RDlle < [I[Rllla (R €C(Q,B)),
so |l@|l € 1. We verify the opposite inequality. Fix 7' € ¢(Q, B). In Lemma 2.1
take W = K and ¢ = ||@([T])|ln + & where § > 0 is arbitrary. Note that for
every w € @, 3K, € K such that ||T(w) - K, || < €. Applying the Lemma 2.1,
I{Ky,..., K} C K and 3{hy, ..., ha} C C(Q) with ||T(w) — J(w)||a < € where

w) = ihk(w)ffk € C(Q, K).
k=1

Thus,
IS([TDlla +6 =€ > |IT - Jlta = [|[Tila-

Since 6§ > 0 was arbitrary, it follows that ||| > 1. This proves that ¢ is an
isometry and, as a consequence, has closed range. This combined with (2.1) proves
R(@) =C(Q,B/K). 1

Before proving the quotient module result for C*, we need a preliminary
result. In what follows, Q = [a, §].

PROPOSITION 2.3. Let T € C*(Q, X), and let W be a subspace of X. Sup-
pose v > 0 is fized, and for each w € Q, Iw, € W such that

1T w) = wal| < 7.

Then 3{f1,..., fm} CC*(Q) and {wy,...,wm} C W such that
< [E(k!)"(b - a)k]y
k=0

Proof. Since T(n) € C(,X), we can apply Lemma 2.1, and as a result,
3{gn1s--,9n;} CC(R), and I {wy,...,w;j} € W such that

Tw) -3 fulw)u
k=1

n,0

<7.
0

j
T(")(w) - Z Gn {w)wy

k=1
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Let gn-1k(w) = fgn g(u)dufor 1 < k< 4, and set gn_y j41(w) = 1 and wj4; =
T(*=1)(a). Then

T-1 () = ] T () du + wy41,
a

and for all w € ,

Jj+1
T0-D(w) - Zgn—l,k(w)wk

k=1

< 7(b—a).

Jl

Again, set gn-2t(w) = [gn1x(u)dufor 1 € k € j+1, gn_zjsa(w) = 1,
a

TN () — Zgn e(u)wgd

wj 42 = T("=?)(a). The same argument as given above shows

42
TC-D(w) = Y gn-sp(w)un| < (b-a)’y
k=1

Q

Clearly, we can repeat this argument applied to T("=P) 1 < p < n, where at the
p-th stage, gn_p 1(w) = fg,,_p.H p(w)dufor 1< k< j+p—1, gn- ,,_,'+,,(w) =1,
wj4p = T=P)(a). Ha.vmg completed this construction, set f = go 1<k

m = n+j Let Flw) = E fr(w)we. As we have proved, for 0 < k < n,
||T(""‘) - F("‘k)" <(b- a)k'y Therefore

IT = Flio,n < [i(fct)—‘(b - a)k] .
: k=0

Now we prove the quotient module result for C™.

THEOREM 2.4. Let §) be a fized interval, Q@ = [a,b]. Let (B,||-||) be a Banach
space, and assume that K is a closed subspace of B. Then C™(, B)/C"(Q, K} is
bicontinuously isomorphic to C"(Q, B/ K).

Proof. Forb € B, let [b] = b+ K € B/K. Define ¢ : C"(Q, B) — C*(Q, B/K)
by ¢(R(w)) = [R(w)], w € Q. First we prove:

(2.2) R(yp) is dense in C*(Q, B/K).
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Fix T € C"(Q, B/K). For each w € Q, choose b, € B such that T (w) = [b,].
Now in Proposition 2.3 take W = B/K and v > 0 arbitrary. Applying that
proposition, we have 3{fi,..., fm} CC*(2) and {b1,...,bn} C B such that

T(w) -y fe(w)[be] <[§3Mr%b~@kv
k=0

k=1

Set R(w) = 3 fu(w)bi, so that

k=1

Q,n

P(R(w)) = D fe(w)lbx].
k=1
Since ¥ > 0 is arbitrary, this proves (2.2).
Clearly, ker(y) = C™*(Q, K). Define
@ :CM(Q,BY/CM(Q,K) — C*{Q, B/K)

by ¢({R)) = @(R) where (R) is the coset R + C*(2, K) in C*(Q, B)/C™(%}, K).
Now ¢ is continuous. We verify that ¢ has closed range, which when combined
with (2.2), proves that ¢ maps onto C*(Q, B/K).

Fix T € C*(2, B). We prove 3 M > 0 independent of T such that

(2.3) {T)llan < Mile((T))lla,n-

This inequality implies that ¢ has closed range. Let § > 0 be arbitrary. For each
w € R, 3K, € K such that

()T (W) = Ko|| < (o) JIT @) +6 < I[THiam +6 = |6(TH] g, + 8-
Apply Proposition 2.3 to T() with W = K and
7= (IS0 + 6).
Thus, 3{f1,...,fm} C C"(Q) and 3{K,,...,Kn} C K such that for some con-
stant Mo > 0, “T(w) - z Felw)Ks “ < Moy. Set J = ): fo(w)Kx € C(Q, K).
The norm of (T') in C"(Q B)/C"(Q K)
(T lan = inf{{|T = Lllan : L € C*(Q, K))}.
Therefore we have shown
(D)l SIT = Jllan < Moy.

Since é > 0 is arbitrary we have proved

KT lnm < MYIGUT)nm

for some constant M > 0. This completes the proof of (2.3}, and thus, the proof
of the theorem. 1
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Because of the way in which the norm on .4, is defined, the quotient module
result in this case is quite elementary. The details are as follows.

THEOREM 2.5. Let (B,|| - |[) be a Banach space, and let K be a closed sub-
space of B. Let Q2 be the closed unit disk in C. Then A,(Q, BfK) is bicontinuously
isomorphic to A;1(Q, B)/A1(R, K).

Proof. Let # : B — B/K be the usual quotient map. For convenience we
use the notation [6] = (b) for b € B. For T € A1(R, B), T(X) = Y ik, let
k=0
o(T) € A1(R, B/K) be given by,

T) = i[bk]A*.
k=0

Clearly ¢ : A1(2, B) — A1(R, B/K) is continuous and ker(¢) = A;(R2, K). We
show that ¢ is surjective. Assume

=Y d)* € 4(Q, B/K)
k=0
{dr} € B/K. Choose {¢;} C B such that [¢;] = di for all k. For each k choose
pr € K such that

llex — pill < Nfexlll + 275
[s.0]
Set by = cx — px for all k, so E lbel] < oo. Letting T(A) = Z brA¥, we have

T € A:(©2, B), and ¢(T) = R. Thus, ¢ is surjective and mduces a bicontinuous
algebra isomorphism between .A4,($2, B}/ A:1(?, K) and A; (2, B/K). 1

We do not know if a quotient result of the type given in Theorems 2.2, 2.4,
and 2.5, holds for A(Q2, B).

Now we consider an application of these gquotient module results to Banach
algebras of vector-valued functions. Other applications will appear in later sec-
tions. Fix B a Banach algebra with unit. Let B be any one of the Banach algebras
C(, B), C*(2, B), A(2, B), or A;(Q, B). Then as noted in Section 1, T € B is
invertible in B if and only if T(w) is invertible in B for all w € 2. Now let 12 be
a radical Banach algebra, and let R; denote R with an identity adjoined. Then
" C(, R) is an ideal in C(Q, R;), and a similar statement holds for each of the al-
gebras of the type considered above. If T € (2, R), then since T(w) € R for all
w, we have A — T(w) is invertible in R; for all X # 0. Thus, A — T is invertible
in C(2, Ry) for all A # 0. It follows that the spectrum of T in C(2, R) is zero.
Since this holds for an arbitrary T € C(§}, R), this algebra is a radical algebra.
The same argument works for all the Banach algebras of R-valued functions under
consideration. This leads to:



OPERATOR PROPERTIES OF MODULE MAPS 93

PROPOSITION 2.6. Let R be a radicel Banach elgebra. Then C(2, R),
C*(, R), A(R2, R), and A1 (2, R) are radical algebras.

For K a closed ideal in a Banach algebra B, kh([K) is the intersection of
all primitive ideals of B which contain K. From the definition it follows that
kh(K)/K is a radical Banach algebra.

ProrosiTION 2.7. Let B be a Banach elgebra with unit 1, and let K be a
closed ideal in B. Set I = kh(K). For T € C(2, B), T is tnvertible in C(2, B)
module C(S2, IC) if and only if T is invertible in C(Q, B) module C($Y, I).

The same result holds for the algebras C*(R2, B) and A,($2, B).

Proof. By Theorem 2.2 and Proposition 2.6,
C(Q,N/C(Q,K)~C(R,I/K),
and this quotient algebra is a radical algebra. It follows that
C(Q, 1) C kh(C((2, K)).

Using this, the result is a consequence of a standard Banach algebra fact ([4], [BA]
2.4). 1

3. SPECTRA

In this section we study the spectral theory of amap T" € (2, B(X)). Although we
state the results and do the proofs for this particular case, many of the same results
hold when T € C*(R2, B(X)) or T' € A1 (R, B(X)). We note this in the statements
of the theorems, but since the proofs in these cases are substantially the same, they
are omitted. A map T € C = C(, B(X)) has a number of interesting spectra. First
note that T is also in the Banach algebras M = M({C(£2, X)) and B(C(£2, X)). Let
o&(T), o&(T), and oc(T) denote the left, right, and usual spectrum of T relative
to the Banach algebra C. To denote the corresponding spectra of T relative to
M, we replace C by M, and relative to B(C(R2, X)), we use no subscript on o. By
Proposition 1.2, op(T) = o(T), and an easy computation (or (3.1) below) shows
oc(T) = o(T). Concerning right or left spectra, we use a result of S. Bochner and
R. Phillips ([5], Theorem 3) which applies in our situation as follows.
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(3.1). Let B be a Banach algebra with unit. If T € C(Q, B)[C*(Q, B),
A1(R, B)] and T(w) has a left inverse in B for all w € £, then T has a left inverse
in C(2, B)[C*(Q, B), A1(Q, B)]. The same result holds for “right” in place of “left”.

Set K = C(Q,K(X)), and define we(T) to be the spectrum of the coset
T+ K in the Banch algebra C/K. The set wc(T) is an essential-type spectrum and
is related to {w(T(y)) : v € Q} where w(T(y)) is the usual Fredholm spectrum
of T(y) in B(X)(w(T(v)) is the spectrum of T(y) + K(X) in the Calkin alge-
bra, B(X)/K(X)). We use obvious extensions of all this notation for the “Jeft”
and “right” cases. The following result elucidates the relationships between these
various spectra.

THEOREM 3.2. Assume T € C(2, B(X)).
(i) oc(T) = om(T) = o(T).
(ii) 0¢(T) = a3, (T), 0¢(T) = o3 (T)-
(i) oc(T) = | H{o(T(w)) : w € Q};
a¢(T) = o' (T(W)) :w € Q};
ol(T) = U{e"(T(w)) :w € Q}.
(iv) we(T) = Ufw(T()) : 1 € 9Q};
we(T) = W (T() : v € QL
we(T) = U{w" (T(7) : v € Q}.
The analogous results hold when T € C*(Q, B(X)) and when T € A(Q, B(X)).

Proof. (i) follows from Proposition 1.2 and (3.1). We prove that ol(T) =
o4 (T) = J{o (T (w)) : w € Q}. The other assertions in.(ii) and (iii) have similar
proofs. First note that (J{o4(T(w)) : w € R} C o§4(T) C o&(T). Now if A - T(w)
has a left inverse for all w € §, then A — T has a left inverse in C(Q, B(X)) by
(3.1). This fact proves that | J{o*(T(w)) : w € 2} = 0&(T), so the result follows.

To prove (iv), first note that J{w(T'(7)) : ¥ € Q} C we(T). Now suppose
X — T(4) is Fredholm on X for all ¥ € . Then by Theorem 2.2, A — T has an
inverse in (€, B(X)) modulo C(Q, K(X)). This proves the first equality in (iv),
and the second two have similar proofs. #

For X a Banach space, let F(X) be the ideal in B(X), F(X) = {T € B(X) :
T has finite dimensional range}. Also let I(X) = kh(F(X)). The operators in
I(X) are called inessential operators ([11], [4]). Often we use the abbreviated
notation: F = F(X); F, the closure of F in the operator norm; K = K(X); and
I = I(X). Asis well-known, F C F C K C I, and also, kh(F) = kh(F) =
kh(K) = I.
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ProrosiTION 3.3. Assume T € C(Q, B(X)). Then

we(T) = {X: A =T is not invertible in C(Q, B(X)) modulo C(Q, F)}
= {X: A =T is not invertible in C(Q, B(X)) modulo C(Q,I)}.

Proof. Let A = {X: X ~T is not invertible in C(2, B(X}) modulo C(Q,I)}.
Since K C I, we have A C we(T). Now I = kh(K), so Proposition 2.7 applies.
Thus, if A g€ A, then A — T is invertible in £(§2, B(X)) modulo C(f,I), and
therefore, A — T is invertible in C(§2, B(X)) modulo €($2, K), i.e. A € wc(T). The
proof of the other equality in the statement of the proposition is the same (since
I=kh(F)). &

Now we combine (3.1) and Theorem 2.5 to derive the following result.

THEOREM 3.4. Let B be a Banach algebra with unit and let K be a closed
ideal of B. Assumv I'={X&C:|A= A< R} end T € A(T, B) has the property

that T(w) = Z bi(w — Ao )* where {bx} C B and E ||| R* < co. Then T(w) is

left (right) mvcrtcblc in B modulo K for allw € I‘ zf and only if T is left (right)
invertible in A(T', B) modulo A(T, K).

Proof. We may assume without loss of generality that I' is the closed unit
disk (see Note 1.1). Assume T(w) is left invertible in B modulo K for all A €
I'. By hypothesis T € Ay(T', B). Let [b] denote the coset of ¥ € B in B/K.
We have [T'(w)] is left invertible in B/K for all w € T, so by (3.1) ¢(7T") is left
invertible in A (T, B/K) (y as in Theorem 2.5). By Theorem 2.5 it follows that
T is left invertible in A (T, B) modulo A (T, K). This implies that T is invertible
in A(T, B) modulo A(T', K). 0

For S an operator on a Banach space, let APc(S) denote the approxi-
mate point spectrum of S ([14], p. 282). The next result relates APo(T) to
{APo(T(w)) : w € Q} when T € M(C(Q2, X)).

THEOREM 3.5. Let T € M(C(Q,X)). Assume X € APo(T(w)) for some
w€EQ. Then A € APo(T).

Proof. By hypothesis, 3{z,} C X, ||z} = 1 for all n, such that
(A = T(w)z,)| = 60 — 0.

Let
Vo = {7 €9 : ||} = T(M))za|| < 26}
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Choose g, < V; such that g,(w) = 1. Then ||zngs[ln = 1, and for all y € Q

(A = T)r)(@agn(I = gn (DA — T(1))znl| < 26
Thus,
H()‘ - T)(xﬂgﬂ)”ﬂ €28, -0 1

COROLLARY 3.8. Assume T € M(C(2, X)) and APc(T(w)) = o(T(w)) for
allw € Q. Then APo(T) = o(T). This will hold if T(w) € K(X) for allw € Q.

There is a converse to Theorem 3.5 when T € C(?, B(X)). We consider this
result next.

PROPOSITION 3.7. Assume T € C(Q, B(X)). If » € AP¢(T), then Jw, €
such that A € APo(T(w,)).

Proof. By hypothesis 3{gn} C C(Q, X) with ||(A — T)gn|la = 6n — 0, and
[lgnlla = 1 for all n. For each n choose wy, € §2 such that ||gn{wn)|| = 1, and set
Zp = gn{wn). Let wy be a limit point of {w, : n 2 1}. Define forn > 1

Un={y€Q:|IT(y) = T(wo)ll <n'}.
Since w, € Uy, for all n and w, is a limit point of {w,, }>1, there exists a subsequence
{wny }x>1 such that w,, € Un,, k2 1. Then
(A = T(wo))zn, |l < H(T(Wo) T(wny ) Znill + I3 = T(wn,))(gni (wn, )]
< + 6nk g 0 .

4. CLOSED RANGE

When S is a linear operator with domain and range in some linear space, we let
NM(S) and R(.S) denote the null space and range of S, respectively. The main ques-
tion in this section is: under what conditions does a module map T € M(C(R, X))
have closed range in C(2, X)?

Many of the results concerning module maps T € M (C) also apply to module
maps T' € M(A(, X)) which are determined by a family of operators {T(w)}wen C
B(X) For in this case by Corollary 1.6, T has a unique extension T e M(@C). If
T has closed range in C, then 3m > 0 such that

IT(Nlla > mllf +NT)lla (f €C).
Here ||f + N(T)|la = inf{||f — glla : g € MT)}. Thus, if N(T) = N(T), we have
_ IT(Nlla 2 mif +UDlla (F € A).
Therefore T has closed range in A.
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PRrOPOSITION 4.1. Assume T € M(C(Q, X)), and R(T) is closed. Then for
allw e Q

NTw)) = {f(w) : f €MT)}".
Proof. Clearly we have the inclusion
{f(w) : f € NT)}™ € N(T(w))-
Now fix w, and suppose that £ € N(T(w)). Forn > 1 let
Vo={yeQ:IT(all <n™'}.
Choose g5, with g, < V;, and gn(w) = 1. Thus,
ITW)zga@DI €277 (weQ).

It follows that ||T(zgn)|lqa — 0. Since R(T) is closed, I3m > 0such that |T(f)||q =
milf + N(T)|la for all f. Therefore 3{fn} C N(T) with {|zgn — fulla — 0. In
particular, at w we have ||z - fo(w)|| — 0. @

CoROLLARY 4.2. JfT € M(C(Q, X)), R(T) is closed, and M(T(w)) is finite
dimensional for some w € Q, then N(T'(w)) = {f(w) : f € N(T)}.

THEOREM 4.3. Assume T = {T(w)} € M(C) has R(T) closed. Therefore
Im > 0 such that

IT(Nlla 2 m|lf + Tl (f € (R, X)).
Then for every w € 2
IT(W)yll 2 mily + UTWHI (v € X),
and thus, R(T(w)) is closed.
Proof. Suppose on the contrary that 3w € Q and 3y € X such that
IT(w)sll < m|ly + (T (w))Il-

Let
V={yeQ:IT(n)yll < mlly + T @)l
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Choose h with A < V and h(w) = 1. Then for all y € 2
IR = ROIT(YI < mily + YT (w))]I.
Therefore
(4.1) llf(yh)lln < mily + T
For any f € N(T)
lly + TN < lly — f@)ll = llyh{w) = F@) < llvh = flla-

Therefore
(4.2) lly + T ()l < llvh + UT)la-
Combining (4.1) and (4.2), we have

IT(wh)lla < mlyh + D)l
contradicting the hypothesis of the theorem. §

Now we characterize when a module map on C(§2, X) has closed range.

THEOREM 4.4. Assume T = {T(w)} € M(C). Then R(T) is closed in C if
and only tf T has the following two properties:
(i) There exists m > 0 such that for allw € Q

IT(w)zl| 2 mllz + NTWHI (= € X).
(it) For allw € Q, N(T(w)) = {f(w) : F EeN(T)}~.

Proof. First assume R(T") is closed in €. Then (i) and (ii) hold by Proposition
4.1 and Theorem 4.3.

Conversely, assume that T satisfies (i) and (ii). Then for all w € 2 and all
f €C, we have

T @) = [T @) F @D 2 m{lfw) + RTW))-
Therefore

(4.3) IT(Hlln 2 mE
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where
X =sup 17 (w) + (T (@)
We use property (ii) to verify that
(4.4) If +MUT)lla < 2
This inequality combined with (4.3) implies that R(T) is closed.
To prove (4.4), suppose f € C(§2, X}, and let ¢ > 0 and w € Q2 be arbitrary.
Choose y € M(T'(w)) such that

17(w) = yll  [|f(w) + YT () + €.

By (ii), 3¢ € N(T) with ||y — g(w)|| < &. Therefore

/(W) = gl < |If(w) = vl + & < [1f () + RTW))I] + 26 < T+ 2.

We have proved that for each w € 2, 3 g, € M(T"} such that || f(w)—gu (w)]] <
X+ 2¢. Let

, Vo= {7EQZi|f(7)-yw(7)“<2+2€}‘

Take a finite cover of Q, {V,,,,...,V,, }. Choose hy < V,,, for 1 € k < n, such
that LG:l hy =1 on Q. Set

n
9= thgw,, € N(T).
k=1
Clearly, ||f — glla < £ + 2¢. Since € > 0 is arbitrary, (4.4) holds. &

COROLLARY 4.5. Let T' € M(C), and assume T(w) € ¥O(X) (Fredholm of
index zero) for all w € Q. The following are equivalent:
(i) T ¢s invertible in M(C);
(i1) N(T) = {0} and R(T) is closed;
(iii) R(T) = C.

Proof. First assume that R(T'} is closed and T(w)~! € B(X) for all w € Q.
By Theorem 4.4 (i), 3m > 0 such that ||T(w)z|| > m(]z|| for all w € Q and all
z € X. Therefore ||[T(w)~!|| < m~! for all w € Q. This implies by Theorem 1.8
that (i) holds.

Now assume that (ii) holds. By Theorem 4.4 (ii), for all w € Q :

NT(w)) = {f(w) : f € D)} ={0}.
Since T'(w) € ¥°(X), we have T(w)~! exists for all w € . Then the argument in
the first paragraph implies that (i) holds. -
Assume (iii). For any z € X, 3 f € C such that T(f) = ¢;,s0 T(w)(f(w)) = =
for all w € Q. It follows that R(T(w)) = X for all w € Q. Since T(w) € ¥°(X),
we have T(w)~! exists for all w € Q. Then as before, (i) holds.
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PROPOSITION 4.6, Assume T € M(('(Q. X)) has the properiy: for each w €
Q2,3A a compact subset of @ with w € ini(A) such that Ta has closed range in
C(A, X), where Tp denotes the restriction of 1" to A, Then R(T) is closed.

Proof. Suppose g € R(T"), and choose {u,} C €(£2, X) with ||T(u,) - glln —

0. For each w € § choose A, a compact neighborhood of w with the properties

given in the statement of the proposition, so in particular, Ta, has closed range.

Let {A1,As,...,A,} be a finite subcollection of {A, : w € Q} such that =
n n

U int{Ag). For 1 € k < n, choose hy < int(A;) with 1 = 3 ki on Q. For each

k=1 . k=1
k, |IT(un)—glla. — 0, so by hypothesis, 3 fi € C(Ag, X) with T(w)(fi ()} = alu)
for all w € Ay. Define f € C(Q, X) by

flw) = Z hk(w)fk(w) (w € Q).
k=1
Note here that hg(w)fx(w) is a continuous function on 2 if we set hg{w)fe(w) =0
forw € Aj. For allw € Q,

T(f)w) =Y T(hafe)w) =Y ha(@)Ta, (fi)w) = 3 hi(w)g(w) = g(w)
k=1 k=1 k=1

Thus, g e R(T). 1

5. UNBOUNDED MODULE MAPS

Up to this point we have dealt only with the theory of bounded module maps.
In this section we briefly consider unbounded module maps, indicating how the
bounded case can give information concerning the unbounded case.

Let {S(w) : w € 0} be a family of closed operators in X. We denote the
domain of S(w) by D,,. The family {S{w)} determines a closed module map on
any one of the four basic modules, denoted by M1, as follows. Let

D(SYy={feM: f(w) € D, for all w € Q, and S(w)(f(w)) € M}.

For f € D(S), let

S(f) = Sw)(f(w)) € M.
A routine computation verifies that S is a closed operator and a module map. We
say § is affiliated with M = M (M) if for some Ay, (Ao —S)™! € M. When S is
affiliated with M, it is convenient, and involves no loss of generality, to assume
that S=' € M.
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THEOREM 5.1. Assume {S(w) : w € 2} is a family of closed operators in
X, and let S be defined as above. Assume T =51 € M.
(1) o(S) ={A"t: X e om(T), A £0].
(ii) For A # 0,
R(A-8) =R =1T).

(iii) For A # 0,
NA-8)=TMA ' -T)).

Proof. All three statements follow from the equations below where A # 0 :
(A=8T =-2xr"! -1,

and
TA-S)f= —,\()\‘1 —-T)f for feD(5). &

As Theorem 5.1 indicates, when T = S-! € M, one can derive considerable
information concerning S by studying T. For example, for A # 0, (A — S) has
closed range if and only if A™! — T has closed range (in fact, these ranges are
the same). Now we give some examples of operators S = {S(w)}wen Which are
affiliated with M(9M) for some modules 9.

EXAMPLE 5.2. Let Q be a fixed compact Hausdorff space. Let X = C|a, b].
Set C = C(R, X), and assume N = {N(w)}luen € M(C). Consider the family of
equations:

(5.1) { 8L = N(w)(v) + o(w,1);

y(w,a) =0 forall weQ.

Here y(w,t) is an unknown function in C(Q,C'[a,b]) and g € C is given. Let
D = {f € C[a,b] : f(a) = 0}, and define S(w) on D by

SW)(f) = f' = N(w)f.

Thus, (5.1) is the equation S(y) = g where S = {S(w)}uen. Also S is affiliated
with M(C) since it has the inverse S™! = T € M(C) given by

T()(g@)® = [ ¥N=g(s,0)ds
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where g € C, t € [a,b]. It is straightforward to verify that T' € M(C). Note that
for each ¢, eNW)t ¢ M(C), and that by Theorem 1.4 it is enough to check that for
any k € C[a, ),

t
/e‘N(“’)’k(s) dsecC.

a

EXAMPLE 5.2. Let § be a fixed compact Hausdorff space, and let X =
L?[a,b]. Set C = C(Q, X). Fix h(w) € C(R) with A(w) > 0 for all w € Q. Consider
the family of equations:

(5_2) { %!tL i g(w»t);

y(w,a) + h(w)y(w,d) = 0.

Here y(w,t) is an unknown function in C(2,Y) where Y is the Banach space of
absolutely continuous functions on {a, ] which have derivative in L2. The function
g € C is given. Let D, be the set of all f €Y such that f(a) + A(w)f(b) = 0. Set

Swf=s  (feDu)

Thus, for S = {S(w)}uen, (5.2) is the corresponding equation S(y) = g. Now
S(w)~! = T(w) exists for each w where T'(w) is the integral operator on L?[a, b]:

t b
T(w)(k) = (1+ h(w))“{ / k(s) ds — h(w) / k(s) ds} (k € L?).

It is clear that 7' = {T'(w)}wen € C(22, B(X)). Thus S = {S(w)}wen is affiliated
with C.

EXAMPLE 5.3. Let I' be a domain in the complex plane, and let {S(7)}yer
be a family of closed operators on X with the properties:

(i) All of the operators S(v) have the same fixed domain D C X;

(i1} S(v)z is holomorphic on T for each z € D.

A family {S(v7)}yer with these properties is called holomorphic of type A;
see [10], p. 375.

Now fix Q a closed disk,  C T'. Assume S(w)~! = T(w) exists for allw € £,
{T(w)}wea C B(X), and 3J > 0 such that ||T(w)}l] < J for all w € . Next we
verify:

(iti) If {wn} C N, wn — w,, and {z,} C X, zn — Z,, then T(wnp)zn —
T(wo)zo-
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Computing, we have

1T (wn)zn = T(wo)2oll < IT(wn)(@a — 2o Il + (T(wn) = T'(ws))ll
< Illen = @oll + [|T(wn)(S(wo) — S(wn))(T(wo )20
<

Il1zn = zoll + JNI(S(wo} - Stwn))T(we)zo)ll-

Then (iii) follows from this inequality and (ii).
Fix w, € int(2) and assume {w,} € Int(§), wp — w,, and wy, # w, for all n.

For any’'y € X, setting z, = T(w, )y € D, we have
Here we have used (i), (i), and (iii).

S{wo) - 5( wn)] (z0) wo)( dS(w)zs
- Wy dw

We have verified that T = {T(w)}wen determines a module map on A(, X).

In fact, T is a module map on A;(Q, X). Assume § = {w : |w —wo| < R}. Let

€’ be an open disk with center w, and such that @ C @' CT. For each z € X,

the argument above shows that T(w)z is holomorphic in €. Thus using (7],

T(wn)y = T(ws)y

Wn — We

= T(wn) [

o0
p. 97, T(w)z has a Taylor series representation in £/, T(w)z = Y zx(w — wo)*.
k=0

Using the Cauchy estimates ([7], p. 97), we have 2 |zx||R* < co. Therefore by

Theorem 1.4 {T'(w)},en determines a module rnap on A1(2, X). This allows us
to study {S(7)}ver locally using results in this paper.

Many specific examples of families of operators which are holomorphic of
type A can be found in [10], Chapter 7, Sections 2 and 3.
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