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DUAL PROPERTIES AND JOINT SPECTRA
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ABSTRACT. If L is a solvable Lie algebra of operators acting on a Banach
space E, we study the action of the opposite algebra of L, L', on E*. More-
over, we extend Slodkowski joint spectra o4k, or 5 and study its usual spec-
tral properties.
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1. INTRODUCTION

In [1] we define a joint spectrum for a finite dimensional complex solvable Lie
algebra of operators L acting on a Banach space £ and we denote it by Sp (L, E).
We also prove Sp (L, E) is a compact non void subset of L2 = {f € L | f(I?) =
0}. Besides, if I is an ideal of L, the projection property holds. Furthermore, if L
is a commutative algebra, our spectrum reduces to Taylor joint spectrum ([5]).
Let @ be an n-tuple of commuting operators acting on £, ¢ = (ay,...,an).
Let a* be the adjoint n-tuple of a, i.e., a* = (af,...,a,) where a} is the adjoint
operator of a;. Then a* is an n-tuple of commuting operators acting on E*, the
dual space of E. If o(a) (resp. o(a*)) denotes the Taylor joint spectrum of a (resp.
a*), it is well known that o(a) = o(a*). If we consider a solvable non commutative
Lie algebra of operators L contained in £(F), the space of bounded linear maps
on E, its dual, L* = {z* | £ € L} defines a solvable Lie subalgebra of L(E*) with
the opposite bracket of L. One may ask if the joint spectra of L and L* in the
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sense of [1] coincide. In the solvable non commutative case, in general, the answer
is no.

We study this problem and prove Sp (L, E) and Sp (L*, E*) are related: one
is obtained from the other by a translation, i.e., Sp(L, E) = Sp (L*, E*) +c, where
c is a constant. Moreover, we characterize this constant in terms of the algebra
and prove ¢ = 0 in the nilpotent case.

In the second part of our work, we study o5 and o« the Slodkowski spectra
of [4]. We extend then to the case of solvable Lie algebras of operators and verify
the usual spectral properties: they are compact, non void sets and the projection
property for ideals still holds.

The paper is organized as follows. In Section 2 we review several defini-
tions and results of [1]. In Section 3 we study the relation among Sp(L, E) and
Sp (L*, E*), the dual property. In Section 4 we extend Slodkowski spectrum and

prove its spectral properties.
2. PRELIMINARIES

We shall briefly recall several definitions and results related to the spectrum of a
solvable Lie algebra of operators, ([1]).

From now on, L denotes a complex finite dimensional solvable Lie algebra.
E denotes a Banach space on which L acts as right continuous operators, i.e., L
is a Lie subalgebra of L(E).

Let f be a character of L and suppose n = dim L. Let us consider the
following complex, (E ® AL,d(f)), where AL denotes the exterior algebra of L

and

d(f) :EQNL—-EQANTL

k=p
dp(f)e{min- Azp) =D (1) e(me — fme){zi A ATk Ap)
1) k=1
+ Y (D*He(fr,w] Ay ATk AT Ax)
1<k<I<p

where ~ means deletion. If p <0 or p > n+ 1, we also define d,(f) = 0.
Let H.(E Q@ AL,d(f)) denotes the homology of the complex (E ® AL, d(f)).
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DEFINITION 1. Let L and E be as above, the set {f € L*, f(L?) = 0 |
H.(E ® AL,d(f)) # 0} is the spectrum of L acting on F, and it is denoted by
Sp (L, E).

THEOREM. If L is a commutative Lie algebre, Sp (L, E) reduces to Taylor
joint spectrum.

THEOREM. Sp(L, E) is a compact non void subsel of L*.

THEOREM. (Projection property). Let I be an ideal of L and © the projection
map from L* onto I*, lhen

Sp (1, E) = n(Sp (L, £)).

Asin [1], we consider an n—1 dimensional ideal of L, L,,_;, and we decompose
E ® AP L in the following way

EQNL=(EQNLnp.1)®(EQAN " Ln_1) A (za)

where z,, € L and is such that L,_; & {z,) = L.
If f denotes the restriction of f to L,_1, we may consider the complex (E®

® AP Ln_1,d(f)).
As L,,_; is an ideal of codimension 1 of L, we may decompose the operator
dy(f) as follows

dy(f) : EQ NPLy_1 — E® AP~ Ly,

(2) dp(f) = dp(f)
() EQN ™ L 1 Azn) 2 EQAP 'Ly i ®EQAPTL,_1{zn)

(3) dp(f)a A (20)) = (=17 Ly(a) + (dp-1(F)(@)) A {20}
where a € EQ AP~1L,,_1, and L, is the bounded linear endomorphism defined by:

Loe{zi A+ ANapoy) = —e(zn — f(zn)){Z1 Ao Azpo)+

(4) + E (—1)k+le([zk,$n])”\”1"‘Aflk"'/\xp_l)
1€kLp-1

where ~ means deletion and #; (1 < i< p— 1) belongs to L,_;.
Now we consider the following morphism defined in [3] and [2].
Let 6(z,,) be the derivation of AL extension of the map ad (z,)
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a'd(xﬂ)(y) = [xﬂ’y]) Y € L

14
(5) O(za)(mi A Aap) = (23 Ao Aad(zn)(2:) A< Ay
i1

4

0(z,,) satisfies:

(6) 0(zn)(ab) = (0(zn)a)b + a(6(zn)b)

(7) 0(zn)w = wh(z,)
where w is the map
8) w({zg A Azp)) = (1P {zy A= Azp).

Let u belong to AL and &(u) be the AL endomorphism: e(u)v = u Av. As
(AL)* may be identified with AL*, let :(u) be the dual map of e(u) (¢e(u) : AL* —
AL*).

Besides, we consider §*(z,) the dual map of —6(z,).

As e(u Av) = e(u)e(v), t(u A v) = t(u)efv).

As in [3] and [7] we define an isomorphism p

p:AL" = AL
(9) o(a) = ifa) - w

where a € AL*, w={z3 A Azp_1 Az,) and {z;...2,} is a basis of Ln_1; p
applies APL* isomorphically onto A®~PL.

3. THE DUAL PROPERTY

Let L and E be as in Section 2. Let £* be the space of continuous functionals on E.
Let L' be the solvable Lie algebra defined as follows: as vector space, L = L/, and
the bracket of L’ is the opposite of the one of L, that is: [z,y]' = —[=z,4] = [y, 2]
L' is a complex finite dimensional solvable Lie algebra and L =,

As L acts as right continuous operators on E, the space L* = {z*, z € L}
has the Lie structure of the algebra L’ and acts as right continuous operators on
E*.

Observe that in the definition of ¢, ¢ and p, we only consider the structure of
L as vector space. As L and L’ coincide as vector spaces, then AL = AL’ and we
may consider

pi ALY = AL
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If L,_, is an ideal of codimension 1 of L, L}, _, = L,_i is an ideal of
codimension 1 of L. Moreover, if z, € L is such that L,_; @ (zn) = L, then
Ly @(zn) = L.

Let 6/(z,,) be the derivation of AL’ extension of the map ad (z), ad (za )(y) =
[Zn, yn)’. By ([2], V, 3), there exists a basis of L, {z;}, 1 € ¢ € n, such that

(10) [:t:j,z.-] = ZCth (i < ))
h=1

and Lp—y ={z;}, 1€i<n—-1 Ifw= {21 A Az,), then
n
0(zn)w = 0(zn){Z1 A+ ATn) = (Ti A Aziot Alzn, 2] Ao Azn)

i=1
n—1
= (Z c::") {21 A Azp) = (trace ad(za))w.
i-1
As in [3] and [7], if @ € AL*, we have
(11) pO*(zn) = 0(xn)p(a) — t(a)f(zn)w.
Then
(12) pB* (z5) = 0p — (trace ad (zn))p.
As L' has the opposite bracket of L,
(13) p0" (z,) = —(8(zn) + trace ad (z,))p.

Let us consider the maps 1g+ @ 0(x,), 1p- ® p, g« ® 0(24), 15+ ® 0’(5:,,) and
let us still denote then by 8*(z,), p,8(zn), #'(z,) respectively. We observe that
formulas (11), (12), (13) remain true.

Let us decompose, as in Section 2, E* @ APL*(E* ® A"~PL’, respectively) as
the sum:

E*@ANPLL_® E*@AP™ILY_; Afza)
E*QA"PLL_ ®E*®@AP7IL! _| A{zn) (respectively)

where L} _, is the subspace of L* generated by {y;}, 1 < 7 <n-1land{y}, 1<
7 € n is the dual basis of {z;}, 1< j < n
A standard calculation shows the following facts:

(14) PE* @ ALy _1) = (B @A 1LL 1) A{zn)
(15) P(E* ® A~ Loy A () = (B° ® A"7L,_,)
(16) PIE* @ NLj_y = pa—1 A (2}

(17) PIE*® Ny g A {gn) = p-1(=1)""77

where p,_1 is the isomorphism associated to the algebra L,,_;.
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ProprosiTiON 1. Let L, L', E, L.y, p, be as above and f belong to L* and
g to L'?" such that: f(zn) + trace8(zn) = g(zn). Then, the following diagram
commules:

Ly,
E*® ALy, = E @A Lhi(yn)
L _,

E* QAP Alzp) —— E*@APlLl |

where L, _, is the operator involved in the definition of d),_ (g) and Ly, is the
adjoint operator of Ly, map tnvolved in the definition of dpyy(f), (see (3), (4)).

Proof. By (4), (5)

Lps1 = ~(zn — f(zn)) + 8(zn).

Then,
pt1 = —(zn = f(2a)) + 0% (2n).

As the bracket of L’ is the opposite of the one of L, by (4), (5)

Ly—p = —(z5 — 4(z0)) + 0(zn)-
Then

Ly _pp = —(25 =~ 9(zn))p + 0'(zn)p.
On the other hand, by (13)
pLysp = —(z5 = f(zn))p — 08" (25)
= (&} ~ £(@n))p + 0 (2a)p + trace ad (z,))p

= (2} ~ (f(zn) + trace 8(za)))p + Op
= —(z, —g(za))p+0'(zn)p = L:i—pp' 1

THEOREM 1. Let L, L', E, and p be as above. Let {2}, 1 < ¢ < n be the
basis of L defined in (10). Let f belong to L'*" and g to L'2% such that:

g = f + (trace 6(x,) . . .trace §(z,))

where 0(z;) is the restriction of 6(2;) lo L;, the ideal generated by {z:}, 1 < i <
€ n. Then, if we consider the complex adjoint of (E & AL,d(f)) and the complex
(E® AL, d(g)), for each p:

dr_p(9)Pw = pdy , (f)
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that 1s, the following diagram commutes:

d'
E*QANPL —2, E*eAPHL

E* @ A"PL! nep E*® AR=P=1p/
where w is the map of (8).

Proof. By means of an induction argument the proof may be derived from
Proposition 1. 8

THEOREM 2. Let L, L' and E be as above. If we consider the basis of L,
{z:} 1 € i< n defined in (10), in terms of the dual basis in L* = (L') we have:

Sp (L, E) + (trace§(z,) - - -6(Xn)) = Sp (L', E*)
where 0(z;) is as in Proposition 1.
Proof. Is a consequence of Theorem 1 and ([4], 2.1). 8
THEOREM 3. If L is a nilpotent Lie algebra, then
Sp(L,E)=Sp (L, E").

Proof. By ([2], V, 1) the basis {X;} 1 < 7 < n of (10) may be chosen such

that )
i—-1

[z, @) = > chan (i <)
h=1
Then (z;)=0. §

REMARK. Let L be asolvable Lie algebra. Let n = dim(L) and k = dim(L?).
By ([2], V, 3), the basis of (10) may be chosen such that {z;}, 1 < j < k generates
L?. As L? is a nilpotent ideal of L, trace §(z;) =0, 1 < ¢ € k. Then, we have the
following proposition.

PROPOSITION 2. Let L,L' and E as usual. Let us consider a basis of L as
in the previous remark. Then

Sp(L,E) +(0...0,trace §(zs41) . . . trace 8(z,)) = Sp (L', E*).
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Then, as we have seen, if L is a niopoient Lie algebra, the dual property is essen-
tially the one of the commutative case. However, if L is a solvable non nilpoleni
Lie algebra, this property fails. For example, if L is the algebra

L ={z1) ® (z2)[z2,21] = 21.
Then,
tracef(z;) =1, traced(z;)=0

and
Sp(L,E)+(0,1) = Sp(L', E*).

4. THE EXTENSION OF SLODKOWSKI JOINT SPECTRA

Let L and F be as in Section 2. We give an homological version of Slodkowski
spectrum insteed of the cohomological one of [4].

Let Z,(L, E) be the set: {f € L*" | Hy(E ® AL,d(f)) # 0} = {f € L*" |
R(dp+1(f)) # ker(dp(f)}-

DEFINITION 2. Let L and E be as in Section 2
asp(LE)= ) Zp(L,E)

0<psn
oer= |J (L E)U{f €L | R(di(f) is closed)
k<p<n
where 0 < k < n.

We shall see 05x(L, E) and o4 (L, E) are compact non void sets of L* and
they verify the projection property for ideals.

Observe: o5n(L, E) = 04,0(L, E) = Sp (L, E).

Let us see 05 (L, E) has the usual property of a spectrum.

THEOREM 4. Let L and E be as usual. Then o5(L, E) is @ compact set of
L.

Proof. As a5:(L, E) is contained in Sp (L, E), it is enough to prove that
o5x(L, E) is closed in L*. Let us consider the complex (E@APL,dr(f)) (0 < k <
p+1)

Eeontip " P pgarr. . 2D pe A .
This complex is a parametrized chain complex of Banach spaces on L?" in the
sense of [5] and [2]. By ([5], 2.1), {f € L2 /(E @ A*L,di(f)) (0 < k < p + 1)
is not exact} is a closed set of L2+, and then in L*. However, this set is exactly

27T |
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Let L,_; be an ideal of codimension 1 of L and z, in L such that L,_; &
(n) = L. As in [5) and [1] we consider a short exact sequence of complex. Let f

belong to L* and denote f its restriction to Ly_;.
(18) 0= (B®ALney, d(f)) H(E @ AL, d(£)) (£ ® ALn1,d(f)) — 0
where p is the following map: As in Section 2 we decompose £ @ A*L
EQNL=EQNLio1® EQAN L, 1(za)
PE®ALpy)=0
ple{zi A Azpay Azp)) = (1) lelzi A Azpi)
where ¢; € Ln—1, 1 €1k —1.,

REMARK (19).
(i) d(f)IE ® ALn—n = d(f),
(ii) As in [1] Hy(E ® AL,d(f)) = tor V2B, C(f)),
(iii) As in [5] and [1} we have a long exact sequence of U (L) modules, where
U(L) is the universal algebra of L

— Hy(E ® ALa_1,d()) ™ Hp(E ® AL, d()) &5
— Hp1(E ® ALn—1,d(f)) ¥ Hy—1(E ® ALn-1,d(f)) —
where &, is the connecting operator.
(iv) As in [1] we observe if we regard the U(L) module Hp(EQ®ALp_1, d(f))

as U(Ly-1) module, we obtain: torg(L“")(E, C(f)). Then, as U(L,-1) is a
subalgebra with unit of U(L)

f €3 (La1,E) if and only if Hy(E ® ALn-1,d(f)) # 0 as U(L) module.
P

ProPOSITION 3. Let L, Ly_1, E, f and f be as above. Then, if f belongs to
Zp(L, E), f belongs to Zp_1(Lp—1, E)U Zp(Ln-1, E).

Proof. By Remark (19).(iv), f & Zp(La-1, E)JUZ,_1, Eif and only if H:(E®
ALn_1,d(f)) = 0 as U(L) module (i = p,p— 1). By Remark (19).(iii), Hp(E ®
AL, d(f)) =0,ie, f&€ Z(L,E). &

PROPOSITION 4. Let L,L,_1,E, be as usual. Let IT : L* — L}, _, be the
projection map. Then

(osk(L, E)) C 05k(La-1, E)).

Proof. Is a consequence of Proposition 3. 1
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PROPOSITION 5. Let L, L,_1, E, be as usual, and IT as in Proposition 4.
Then: 5 (Ln-1, E)) = H{os:(L, E)).

Proof. By Proposition 4 it is enough to see
Gg’kj(Ln_h E) (_: H(a’.s,k(L, E))

By refinning an argument of [1] and [5], we shall see that if f belongs to Zp(Ln-1, E)
there is an extension of f to L*, f, such that f € Zo(L, E).

First of all, as f € Z,(Ln-1, E) € Sp(L, E), by [1], Theorem 3, if g is an
extension of f to L*,g(L?) =0, i.e., g € L2".

Let us suppose our claim is false, equivalently, H,(E x AL, d(f)) =0V f €
Lz;! o) = f

Let us consider the connecting map associated to the long exact sequence of
Remark (14).(iii), 6.

bup : Hy(E ® ALn-y, d(f)) = Hp(E ® ALn-1,d(f))-

As Hy(E® AL, d(f)) =0 Vf € L¥", I(f) = |, 6.5(f) is a surjective map.

Let k € E® AL, such that d(f)(k) = 0. Then, it is well known that if
m € E @ APF!L is such that p(m) = k : b,p([k]) = [dp41(f)(m)], where p is the
map defined in (18). Let us consider m = kA2, € E® APLy_3 A (zn). Then:
p((-1)Pm) =k, and

bup(F)([K]) = (1) [dps1(F)(m)].

As

dp41(f)(m) = dpy1 (F)(k A (20)) = (d()(E)) A (2n) + (=1)P+ Lpia (k)

= (=1 Lyi(k) € EQ APLn-y
Sup(f)[k] = —[Lps1(k)].
Moreover, by equations (4) and (5): Lp41(k} = —k(zn — f(2n)) + 6(2.)(k). Then
0= dp(F)dps1(F)(m)) = dp(H)(~k(zn = f(2n)) + dp(£)0(2n) (k)
= (=& (NB))(@n = f(2n)) + dp(F)O(za) (k) = dp(F)B(zn)(K).
Which implies: ‘
bup(f) = [k)(zn — f(2a)) — [6(zn)R].

Let us consider the complex of Banach spaces and maps
(20) EgntL D p o D poar-1L,
Then, this is an analytically parametrized complex of Banach spaces on C exact
Y f € L* 1I(f) = f and exact at oo ([5], 2], [3])-

As 6., differs by a constant term of the connecting map of ([5], 1.3), the argu-
ment of ([5], 3.1) still applies to the complex (20). Then Hy(E® ALn-3,d(f)) =0
as /(L) module. By Remark (19).(iv) we finish our proof. #
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THEOREM b. Let L and E be as usual. Let I bean ideal of L. Then
oI, B = Hosp(L, E)
where IT denotes the projection map.

Proof. By ([2], V, 3, Proposition 5) and an inductive argument we conclude
the thcorem. B

THrorEM 6. Lel L and E be as usual. Then asp(L, E) s a non veid set of
L.

Proof. 1 is a consequence of ([2], V, 3), Theorem 5 and the one dimensional

casc. 1

T

Toeorkm 7. Let Loand 1 be as wswal, and L', {z;}, 1 € 1 € n and
ﬁ(a:il), 1 €7 € n as in Theorem (2). Then, in tlerms of the dual basis of
{z:}, 1€i<n

() osp(L, ) + (trace()(m,-) .. Arace (5(&,,)) =on(L, E*);

(i) onr (Lo, E) = asn_p (L', 7} — (race (5(.1'1) ...trace (3(::,,)).

Proof. It is a consequence of ({4], 2.1) and Theorem (1). 1

TurorrM & Lel L oand 2 be as usual. Then opp (1, E) is @ compact subsel
of L* and if 1 is an ideal of 1. and II the projection map from L* onto I*

b (L, B) = Hoa (L, F).
Proof. Tt is & consequence of Theorem (4), (6), (7) and Proposition (3). 1

REMARK, In [1] we see the projection property for subspace which are not
idcals fails for Sp (L, E). As ago(L, L) = 05,(L, ) = Sp (L, E), the same result
remain true, in general, for o4, (L, £) and oq (L, £7).

THEOREM 9. Let L, B, L, {z:}, 1 € i < n, and 0(zi), 1 € i < n as in
Theorem (3). Then

() osk(L, E) = ane (L', E*),

(i1) oxp(L, E) = osn—w(L', E*).

JProof. It is a consequence of Theorem (7) and the fact: §(z;) = 0 ([2],IV,1). ¥
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