DUAL PROPERTIES AND JOINT SPECTRA FOR SOLVABLE LIE ALGEBRAS OF OPERATORS

ENRICO BOASSO

Communicated by Norberto Salinas

ABSTRACT. If L is a solvable Lie algebra of operators acting on a Banach space E, we study the action of the opposite algebra of L, L', on E^* . Moreover, we extend Slodkowski joint spectra $\sigma_{\delta,k}$, $\sigma_{\pi,k}$ and study its usual spectral properties.

KEYWORDS: Lie algebra, ideals of Lie algebra, n-tuple of commuting operators, joint spectrum, Slodkowski joint spectrum.

AMS SUBJECT CLASSIFICATION: 47D99

1. INTRODUCTION

In [1] we define a joint spectrum for a finite dimensional complex solvable Lie algebra of operators L acting on a Banach space E and we denote it by $\operatorname{Sp}(L, E)$. We also prove $\operatorname{Sp}(L, E)$ is a compact non void subset of $L^{2^{\perp}} = \{f \in L \mid f(L^2) = 0\}$. Besides, if I is an ideal of L, the projection property holds. Furthermore, if L is a commutative algebra, our spectrum reduces to Taylor joint spectrum ([5]).

Let a be an n-tuple of commuting operators acting on E, $a = (a_1, \ldots, a_n)$. Let a^* be the adjoint n-tuple of a, i.e., $a^* = (a_1^*, \ldots, a_n^*)$ where a_i^* is the adjoint operator of a_i . Then a^* is an n-tuple of commuting operators acting on E^* , the dual space of E. If $\sigma(a)$ (resp. $\sigma(a^*)$) denotes the Taylor joint spectrum of a (resp. a^*), it is well known that $\sigma(a) = \sigma(a^*)$. If we consider a solvable non commutative Lie algebra of operators E contained in E (E), the space of bounded linear maps on E, its dual, E = E defines a solvable Lie subalgebra of E with the opposite bracket of E. One may ask if the joint spectra of E and E in the

sense of [1] coincide. In the solvable non commutative case, in general, the answer is no.

We study this problem and prove $\operatorname{Sp}(L, E)$ and $\operatorname{Sp}(L^*, E^*)$ are related: one is obtained from the other by a translation, i.e., $\operatorname{Sp}(L, E) = \operatorname{Sp}(L^*, E^*) + c$, where c is a constant. Moreover, we characterize this constant in terms of the algebra and prove c = 0 in the nilpotent case.

In the second part of our work, we study $\sigma_{\delta,k}$ and $\sigma_{\pi,k}$ the Slodkowski spectra of [4]. We extend then to the case of solvable Lie algebras of operators and verify the usual spectral properties: they are compact, non void sets and the projection property for ideals still holds.

The paper is organized as follows. In Section 2 we review several definitions and results of [1]. In Section 3 we study the relation among $\operatorname{Sp}(L, E)$ and $\operatorname{Sp}(L^*, E^*)$, the dual property. In Section 4 we extend Slodkowski spectrum and prove its spectral properties.

2. PRELIMINARIES

We shall briefly recall several definitions and results related to the spectrum of a solvable Lie algebra of operators, ([1]).

From now on, L denotes a complex finite dimensional solvable Lie algebra. E denotes a Banach space on which L acts as right continuous operators, i.e., L is a Lie subalgebra of $\mathcal{L}(E)$.

Let f be a character of L and suppose $n = \dim L$. Let us consider the following complex, $(E \otimes \wedge L, d(f))$, where $\wedge L$ denotes the exterior algebra of L and

$$d_p(f): E \otimes \wedge^p L \to E \otimes \wedge^{p-1} L$$

(1)
$$d_{p}(f)e\langle x_{1}\wedge\cdots\wedge x_{p}\rangle = \sum_{k=1}^{k=p}(-1)^{k+1}e(x_{k}-f(x_{k}))\langle x_{1}\wedge\cdots\wedge\widehat{x}_{k}\cdots\wedge x_{p}\rangle + \sum_{1\leq k\leq l\leq p}(-1)^{k+l}e\langle [x_{k},x_{l}]\wedge x_{1}\cdots\wedge\widehat{x}_{k}\cdots\wedge\widehat{x}_{l}\cdots\wedge x_{p}\rangle$$

where $\hat{}$ means deletion. If $p \leq 0$ or $p \geq n+1$, we also define $d_p(f) \equiv 0$. Let $H_*(E \otimes \wedge L, d(f))$ denotes the homology of the complex $(E \otimes \wedge L, d(f))$. DEFINITION 1. Let L and E be as above, the set $\{f \in L^*, f(L^2) = 0 \mid H_*(E \otimes \wedge L, d(f)) \neq 0\}$ is the spectrum of L acting on E, and it is denoted by $\operatorname{Sp}(L, E)$.

THEOREM. If L is a commutative Lie algebra, Sp(L, E) reduces to Taylor joint spectrum.

THEOREM. Sp (L, E) is a compact non void subset of L^* .

THEOREM. (Projection property). Let I be an ideal of L and π the projection map from L^* onto I^* , then

$$Sp(I, E) = \pi(Sp(L, E)).$$

As in [1], we consider an n-1 dimensional ideal of L, L_{n-1} , and we decompose $E \otimes \wedge^p L$ in the following way

$$E \otimes \wedge^p L = (E \otimes \wedge^p L_{n-1}) \oplus (E \otimes \wedge^{p-1} L_{n-1}) \wedge \langle x_n \rangle$$

where $x_n \in L$ and is such that $L_{n-1} \oplus \langle x_n \rangle = L$.

If \tilde{f} denotes the restriction of f to L_{n-1} , we may consider the complex $(E \otimes \otimes \wedge^p L_{n-1}, d(\tilde{f}))$.

As L_{n-1} is an ideal of codimension 1 of L, we may decompose the operator $d_p(f)$ as follows

(2)
$$d_{p}(f): E \otimes \wedge^{p} L_{n-1} \to E \otimes \wedge^{p-1} L_{n-1}$$
$$d_{p}(f) = \tilde{d}_{p}(\tilde{f})$$
$$d_{p}(f): E \otimes \wedge^{p-1} L_{n-1} \wedge \langle x_{n} \rangle \to E \otimes \wedge^{p-1} L_{n-1} \oplus E \otimes \wedge^{p-2} L_{n-1} \langle x_{n} \rangle$$

(3)
$$d_p(f)(a \wedge \langle x_n \rangle) = (-1)^p L_p(a) + (\tilde{d}_{p-1}(\tilde{f})(a)) \wedge \langle x_n \rangle$$

where $a \in E \otimes \wedge^{p-1} L_{n-1}$, and L_p is the bounded linear endomorphism defined by:

$$(4) L_p e\langle x_1 \wedge \dots \wedge x_{p-1} \rangle = -e(x_n - f(x_n))\langle x_1 \wedge \dots \wedge x_{p-1} \rangle + \sum_{1 \leq k \leq p-1} (-1)^{k+1} e([x_k, x_n]) \wedge x_1 \dots \wedge \hat{x}_k \dots \wedge x_{p-1} \rangle$$

where $\hat{}$ means deletion and x_i $(1 \le i \le p-1)$ belongs to L_{n-1} . Now we consider the following morphism defined in [3] and [2]. Let $\theta(x_n)$ be the derivation of $\wedge L$ extension of the map ad (x_n)

$$\operatorname{ad}(x_n)(y) = [x_n, y], \ y \in L$$

(5)
$$\theta(x_n)\langle x_1 \wedge \cdots \wedge x_p \rangle = \sum_{i=1}^p \langle x_1 \wedge \cdots \wedge \operatorname{ad}(x_n)(x_i) \wedge \cdots \wedge x_p \rangle$$

 $\theta(x_n)$ satisfies:

(6)
$$\theta(x_n)(ab) = (\theta(x_n)a)b + a(\theta(x_n)b)$$

(7)
$$\theta(x_n)w = w\theta(x_n)$$

where w is the map

(8)
$$w(\langle x_1 \wedge \cdots \wedge x_p \rangle) = (-1)^p \langle x_1 \wedge \cdots \wedge x_p \rangle.$$

Let u belong to $\wedge L$ and $\varepsilon(u)$ be the $\wedge L$ endomorphism: $\varepsilon(u)v = u \wedge v$. As $(\wedge L)^*$ may be identified with $\wedge L^*$, let $\iota(u)$ be the dual map of $\varepsilon(u)$ $(\iota(u): \wedge L^* \to \wedge L^*)$.

Besides, we consider $\theta^*(x_n)$ the dual map of $-\theta(x_n)$.

As
$$\varepsilon(u \wedge v) = \varepsilon(u)\varepsilon(v)$$
, $\iota(u \wedge v) = \iota(u)\iota(v)$.

As in [3] and [7] we define an isomorphism ρ

(9)
$$\rho: \wedge L^* \to \wedge L$$
$$\rho(a) = \iota(a) \cdot w$$

where $a \in \wedge L^*$, $w = \langle x_1 \wedge \cdots \wedge x_{n-1} \wedge x_n \rangle$ and $\{x_1 \dots x_n\}$ is a basis of L_{n-1} ; ρ applies $\wedge^p L^*$ isomorphically onto $\wedge^{n-p} L$.

3. THE DUAL PROPERTY

Let L and E be as in Section 2. Let E^* be the space of continuous functionals on E. Let L' be the solvable Lie algebra defined as follows: as vector space, L = L', and the bracket of L' is the opposite of the one of L, that is: [x,y]' = -[x,y] = [y,x]. L' is a complex finite dimensional solvable Lie algebra and $L^{2^{\perp}} = L'^{2^{\perp}}$.

As L acts as right continuous operators on E, the space $L^* = \{x^*, x \in L\}$ has the Lie structure of the algebra L' and acts as right continuous operators on E^* .

Observe that in the definition of ε , ι and ρ , we only consider the structure of L as vector space. As L and L' coincide as vector spaces, then $\wedge L = \wedge L'$ and we may consider

$$\rho: \wedge L^* \to \wedge L'.$$

If L_{n-1} is an ideal of codimension 1 of $L, L'_{n-1} = L_{n-1}$ is an ideal of codimension 1 of L'. Moreover, if $x_n \in L$ is such that $L_{n-1} \oplus \langle x_n \rangle = L$, then $L'_{n-1} \oplus \langle x_n \rangle = L'$.

Let $\theta'(x_n)$ be the derivation of $\wedge L'$ extension of the map ad (x_n) , ad $(x_n)(y) = [x_n, y_n]'$. By ([2], V, 3), there exists a basis of $L, \{x_i\}, 1 \leq i \leq n$, such that

(10)
$$[x_j, x_i] = \sum_{h=1}^i c_{ij}^h x_h \quad (i < j)$$

and $L_{n-1} = \{x_i\}, 1 \leq i \leq n-1$. If $w = \langle x_1 \wedge \cdots \wedge x_n \rangle$, then

$$\theta(x_n)w = \theta(x_n)\langle x_1 \wedge \dots \wedge x_n \rangle = \sum_{i=1}^n \langle x_1 \wedge \dots \wedge x_{i-1} \wedge [x_n, x_i] \wedge \dots \wedge x_n \rangle$$
$$= \left(\sum_{i=1}^{n-1} c_{in}^i\right) \langle x_1 \wedge \dots \wedge x_n \rangle = (\operatorname{trace} \operatorname{ad}(x_n))w.$$

As in [3] and [7], if $a \in \wedge L^*$, we have

(11)
$$\rho \theta^*(x_n) = \theta(x_n)\rho(a) - \iota(a)\theta(x_n)w.$$

Then

(12)
$$\rho \theta^*(x_n) = \theta \rho - (\operatorname{trace} \operatorname{ad}(x_n)) \rho.$$

As L' has the opposite bracket of L,

(13)
$$\rho \theta^*(x_n) = -(\theta(x_n) + \operatorname{trace} \operatorname{ad}(x_n))\rho.$$

Let us consider the maps $1_{E^*} \otimes \theta(x_n)$, $1_{E^*} \otimes \rho$, $1_{E^*} \otimes \theta(x_n)$, $1_{E^*} \otimes \theta'(x_n)$ and let us still denote then by $\theta^*(x_n)$, ρ , $\theta(x_n)$, $\theta'(x_n)$ respectively. We observe that formulas (11), (12), (13) remain true.

Let us decompose, as in Section 2, $E^* \otimes \wedge^p L^*(E^* \otimes \wedge^{n-p} L'$, respectively) as the sum:

$$E^* \otimes \wedge^p L_{n-1}^* \oplus E^* \otimes \wedge^{p-1} L_{n-1}^* \wedge \langle x_n \rangle$$
$$E^* \otimes \wedge^{n-p} L_{n-1}' \oplus E^* \otimes \wedge^{n-p-1} L_{n-1}' \wedge \langle x_n \rangle \text{ (respectively)}$$

where L_{n-1}^* is the subspace of L^* generated by $\{y_j\}$, $1 \le j \le n-1$ and $\{y_j\}$, $1 \le j \le n$ is the dual basis of $\{x_j\}$, $1 \le j \le n$.

A standard calculation shows the following facts:

(14)
$$\rho(E^* \otimes \wedge^p L_{n-1}^*) = (E^* \otimes \wedge^{n-p-1} L_{n-1}') \wedge \langle x_n \rangle$$

(15)
$$\rho(E^* \otimes \wedge^{p-1} L_{n-1} \wedge \langle y_n \rangle) = (E^* \otimes \wedge^{n-p} L'_{n-1})$$

(16)
$$\rho|E^*\otimes\wedge^p L_{n-1}^*=\rho_{n-1}\wedge\langle x_n\rangle$$

(17)
$$\rho|E^*\otimes \wedge^{p-1}L_{n-1}\wedge \langle y_n\rangle = \rho_{n-1}(-1)^{n-p}$$

where ρ_{n-1} is the isomorphism associated to the algebra L_{n-1} .

PROPOSITION 1. Let L, L', E, L_{n-1}, ρ , be as above and f belong to $L^{2^{\perp}}$ and g to $L'^{2^{\perp}}$ such that: $f(x_n) + \operatorname{trace} \theta(x_n) = g(x_n)$. Then, the following diagram commutes:

$$E^* \otimes \wedge^p L_{n-1}^* \qquad \xrightarrow{L_{p+1}^*} \qquad E^* \otimes \wedge^p L_{n-1}^* \langle y_n \rangle$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$

$$E^* \otimes \wedge^{n-p-1} L'_{n-1} \wedge \langle x_n \rangle \qquad \xrightarrow{L'_{n-p}} \qquad E^* \otimes \wedge^{n-p-1} L'_{n-1}$$

where L'_{n-p} is the operator involved in the definition of $d'_{n-p}(g)$ and L^*_{p+1} is the adjoint operator of L_{p+1} , map involved in the definition of $d_{p+1}(f)$, (see (3), (4)).

Proof. By (4), (5)

$$L_{p+1} = -(x_n - f(x_n)) + \theta(x_n).$$

Then,

$$L_{n+1}^* = -(x_n^* - f(x_n)) + \theta^*(x_n).$$

As the bracket of L' is the opposite of the one of L, by (4), (5)

$$L'_{n-v} = -(x_n^* - g(x_n)) + \theta(x_n).$$

Then

$$L'_{n-n}\rho = -(x_n^* - g(x_n))\rho + \theta'(x_n)\rho.$$

On the other hand, by (13)

$$\rho L_{n+p}^* = -(x_n^* - f(x_n))\rho - \rho \theta^*(x_n)$$

$$= -(x_n^* - f(x_n))\rho + \theta'(x_n)\rho + \text{trace ad } (x_n))\rho$$

$$= -(x_n^* - (f(x_n) + \text{trace } \theta(x_n)))\rho + \theta'\rho$$

$$= -(x_n^* - g(x_n))\rho + \theta'(x_n)\rho = L'_{n-p}\rho.$$

THEOREM 1. Let L, L', E, and ρ be as above. Let $\{x_i\}$, $1 \leq i \leq n$ be the basis of L defined in (10). Let f belong to ${L'}^{2^{\perp}}$ and g to ${L'}^{2^{\perp}}$ such that:

$$g = f + (\operatorname{trace} \tilde{\theta}(x_1) \dots \operatorname{trace} \tilde{\theta}(x_n))$$

where $\tilde{\theta}(x_i)$ is the restriction of $\theta(x_i)$ to L_i , the ideal generated by $\{x_i\}$, $1 \leq i \leq n$. Then, if we consider the complex adjoint of $(E \otimes \wedge L, d(f))$ and the complex $(E \otimes \wedge L', d(g))$, for each p:

$$d'_{n-p}(g)\rho w = \rho d^*_{p+1}(f)$$

that is, the following diagram commutes:

$$E^* \otimes \wedge^p L \xrightarrow{d_{p+1}^*} E^* \otimes \wedge^{p+1} L$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$

$$E^* \otimes \wedge^{n-p} L' \xrightarrow{d_{n-p}'} E^* \otimes \wedge^{n-p-1} L'$$

where w is the map of (8).

Proof. By means of an induction argument the proof may be derived from Proposition 1.

THEOREM 2. Let L, L' and E be as above. If we consider the basis of L, $\{x_i\}$ $1 \le i \le n$ defined in (10), in terms of the dual basis in $L^* = (L')$ we have:

$$\operatorname{Sp}(L, E) + (\operatorname{trace} \tilde{\theta}(x_1) \cdots \tilde{\theta}(X_n)) = \operatorname{Sp}(L', E^*)$$

where $\tilde{\theta}(x_i)$ is as in Proposition 1.

Proof. Is a consequence of Theorem 1 and ([4], 2.1).

THEOREM 3. If L is a nilpotent Lie algebra, then

$$Sp(L, E) = Sp(L', E^*).$$

Proof. By ([2], V, 1) the basis $\{X_i\}$ $1 \le i \le n$ of (10) may be chosen such that

$$[x_j, x_i] = \sum_{h=1}^{i-1} c_{ji}^h x_h \quad (i < j)$$

Then $\tilde{\theta}(x_i) = 0$.

REMARK. Let L be a solvable Lie algebra. Let $n = \dim(L)$ and $k = \dim(L^2)$. By ([2], V, 3), the basis of (10) may be chosen such that $\{x_j\}$, $1 \le j \le k$ generates L^2 . As L^2 is a nilpotent ideal of L, trace $\tilde{\theta}(x_i) = 0$, $1 \le i \le k$. Then, we have the following proposition.

PROPOSITION 2. Let L, L' and E as usual. Let us consider a basis of L as in the previous remark. Then

$$\operatorname{Sp}(L, E) + (0 \dots 0, \operatorname{trace} \tilde{\theta}(x_{k+1}) \dots \operatorname{trace} \tilde{\theta}(x_n)) = \operatorname{Sp}(L', E^*).$$

Then, as we have seen, if L is a niopotent Lie algebra, the dual property is essentially the one of the commutative case. However, if L is a solvable non nilpotent Lie algebra, this property fails. For example, if L is the algebra

$$L = \langle x_1 \rangle \oplus \langle x_2 \rangle [x_2, x_1] = x_1.$$

Then,

trace
$$\theta(x_2) = 1$$
, trace $\theta(x_1) = 0$

and

$$Sp(L, E) + (0, 1) = Sp(L', E^*).$$

4. THE EXTENSION OF SLODKOWSKI JOINT SPECTRA

Let L and E be as in Section 2. We give an homological version of Slodkowski spectrum instead of the cohomological one of [4].

Let $\Sigma_p(L, E)$ be the set: $\{f \in L^{2^{\perp}} \mid H_p(E \otimes \wedge L, d(f)) \neq 0\} = \{f \in L^{2^{\perp}} \mid R(d_{p+1}(f)) \neq \ker(d_p(f))\}.$

DEFINITION 2. Let L and E be as in Section 2

$$\sigma_{\delta,k}(L,E) = \bigcup_{0 \leqslant p \leqslant n} \Sigma_p(L,E)$$

$$\sigma_{\pi,k} = \bigcup_{k \leqslant p \leqslant n} \Sigma_p(L,E) \bigcup \{f \in L^{2^{\perp}} \mid R(d_k(f) \text{ is closed})\}$$

where $0 \le k \le n$.

We shall see $\sigma_{\delta,k}(L,E)$ and $\sigma_{\pi,k}(L,E)$ are compact non void sets of L^* and they verify the projection property for ideals.

Observe: $\sigma_{\delta,n}(L,E) = \sigma_{\pi,0}(L,E) = \operatorname{Sp}(L,E)$.

Let us see $\sigma_{\delta,k}(L,E)$ has the usual property of a spectrum.

THEOREM 4. Let L and E be as usual. Then $\sigma_{\delta,k}(L,E)$ is a compact set of L^* .

Proof. As $\sigma_{\delta,k}(L,E)$ is contained in $\mathrm{Sp}(L,E)$, it is enough to prove that $\sigma_{\delta,k}(L,E)$ is closed in L^* . Let us consider the complex $(E\otimes \wedge^p L,d_k(f))$ $(0\leqslant k\leqslant p+1)$

$$E \otimes \wedge^{p+1} L \stackrel{d_{p+1}(f)}{\longrightarrow} E \otimes \wedge^{p} L \cdots \stackrel{d_{1}(f)}{\longrightarrow} E \otimes \wedge^{0} L \longrightarrow 0.$$

This complex is a parametrized chain complex of Banach spaces on $L^{2^{\perp}}$ in the sense of [5] and [2]. By ([5], 2.1), $\{f \in L^{2^{\perp}}/(E \otimes \wedge^k L, d_k(f)) \ (0 \leq k \leq p+1) \}$ is not exact is a closed set of $L^{2^{\perp}}$, and then in L^* . However, this set is exactly $\sigma_{\delta,k}$.

Let L_{n-1} be an ideal of codimension 1 of L and x_n in L such that $L_{n-1} \oplus (x_n) = L$. As in [5] and [1] we consider a short exact sequence of complex. Let f belong to L^* and denote \tilde{f} its restriction to L_{n-1} .

$$(13) 0 \to (E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \xrightarrow{i} (E \otimes \wedge L, d(f)) \xrightarrow{p} (E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \to 0$$

where p is the following map: As in Section 2 we decompose $E \otimes \wedge^k L$

$$E \otimes \wedge^k L = E \otimes \wedge^k L_{n-1} \oplus E \otimes \wedge^{k-1} L_{n-1} \langle x_n \rangle$$
$$p(E \otimes \wedge^k L_{n-1}) = 0$$
$$p(e\langle x_1 \wedge \dots \wedge x_{k-1} \wedge x_n \rangle) = (-1)^{k-1} e\langle x_1 \wedge \dots \wedge x_{k-1} \rangle$$

where $x_i \in L_{n-1}$, $1 \leqslant i \leqslant k-1$.

REMARK (19).

- (i) $d(f)|E \otimes \wedge L_{n-1} = \tilde{d}(\tilde{f}),$
- (ii) As in [1] $H_p(E \otimes \wedge L, d(f)) = \operatorname{tor}_p^{(UL)}(E, C(f)),$
- (iii) As in [5] and [1] we have a long exact sequence of U(L) modules, where U(L) is the universal algebra of L

$$\to H_p(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \xrightarrow{i_*} H_p(E \otimes \wedge L, d(f)) \xrightarrow{p_*}$$
$$\to H_{p-1}(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \xrightarrow{\delta_* p} H_{p-1}(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \to$$

where δ_{*p} is the connecting operator.

(iv) As in [1] we observe if we regard the U(L) module $H_P(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f}))$ as $U(L_{n-1})$ module, we obtain: $\operatorname{tor}_p^{U(L_{n-1})}(E, C(\tilde{f}))$. Then, as $U(L_{n-1})$ is a subalgebra with unit of U(L)

$$\tilde{f} \in \sum_{p} (L_{n-1}, E)$$
 if and only if $H_p(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \neq 0$ as $U(L)$ module.

PROPOSITION 3. Let L, L_{n-1}, E, f and \tilde{f} be as above. Then, if f belongs to $\Sigma_p(L, E)$, \tilde{f} belongs to $\Sigma_{p-1}(L_{n-1}, E) \cup \Sigma_p(L_{n-1}, E)$.

Proof. By Remark (19).(iv), $\tilde{f} \notin \Sigma_p(L_{n-1}, E) \cup \Sigma_{p-1}$, E if and only if $H_i(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) = 0$ as U(L) module (i = p, p-1). By Remark (19).(iii), $H_p(E \otimes \wedge L, d(f)) = 0$, i.e., $f \notin \Sigma(L, E)$.

PROPOSITION 4. Let L, L_{n-1}, E , be as usual. Let $\Pi: L^* \to L_{n-1}^*$ be the projection map. Then

$$\Pi(\sigma_{\delta,k}(L,E)) \subseteq \sigma_{\delta,k}(L_{n-1},E)).$$

Proof. Is a consequence of Proposition 3.

PROPOSITION 5. Let L, L_{n-1}, E , be as usual, and Π as in Proposition 4. Then: $\sigma_{\delta,k}(L_{n-1}, E) = \Pi(\sigma_{\delta,k}(L, E))$.

Proof. By Proposition 4 it is enough to see

$$\sigma_{\delta,kj}(L_{n-1},E)\subseteq \Pi(\sigma_{\delta,k}(L,E)).$$

By refinning an argument of [1] and [5], we shall see that if \tilde{f} belongs to $\Sigma_p(L_{n-1}, E)$ there is an extension of \tilde{f} to L^* , f, such that $f \in \Sigma_p(L, E)$.

First of all, as $\tilde{f} \in \Sigma_p(L_{n-1}, E) \subseteq \operatorname{Sp}(L, E)$, by [1], Theorem 3, if g is an extension of \tilde{f} to $L^*, g(L^2) = 0$, i.e., $g \in L^{2^{\perp}}$.

Let us suppose our claim is false, equivalently, $H_p(E \times \wedge L, d(f)) = 0 \ \forall \ f \in L^{2^{\perp}}, \ \Pi(f) = \tilde{f}.$

Let us consider the connecting map associated to the long exact sequence of Remark (14).(iii), δ_*

$$\delta_{*p}: H_p(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) \to H_p(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})).$$

As $H_p(E \otimes \wedge L, d(f)) = 0 \ \forall f \in L^{2^{\perp}}, \ \Pi(f) = \tilde{f}, \ \delta_{*p}(f)$ is a surjective map.

Let $k \in E \otimes \wedge^p L_{n-1}$ such that $\tilde{d}(\tilde{f})(k) = 0$. Then, it is well known that if $m \in E \otimes \wedge^{p+1}L$ is such that $p(m) = k : \delta_{*p}([k]) = [d_{p+1}(f)(m)]$, where p is the map defined in (18). Let us consider $m = k \wedge x_n \in E \otimes \wedge^p L_{n-1} \wedge \langle x_n \rangle$. Then: $p((-1)^p m) = k$, and

$$\delta_{*p}(f)([k]) = (-1)^p [d_{p+1}(f)(m)].$$

As

$$d_{p+1}(f)(m) = d_{p+1}(f)(k \wedge \langle x_n \rangle) = (\tilde{d}(\tilde{f})(k)) \wedge \langle x_n \rangle + (-1)^{p+1} L_{p+1}(k)$$

= $(-1)^{p+1} L_{p+1}(k) \in E \otimes \wedge^p L_{n-1}$
$$\delta_{*p}(f)[k] = -[L_{p+1}(k)].$$

Moreover, by equations (4) and (5): $L_{p+1}(k) = -k(x_n - f(x_n)) + \theta(x_n)(k)$. Then $0 = \tilde{d}_p(\tilde{f})(d_{p+1}(f)(m)) = \tilde{d}_p(\tilde{f})(-k(x_n - f(x_n)) + \tilde{d}_p(\tilde{f})\theta(x_n)(k)$ $= (-\tilde{d}_p(\tilde{f})(k))(x_n - f(x_n)) + \tilde{d}_p(\tilde{f})\theta(x_n)(k) = \tilde{d}_p(\tilde{f})\theta(x_n)(k).$

Which implies:

$$\delta_{*p}(f) = [k](x_n - f(x_n)) - [\theta(x_n)k].$$

Let us consider the complex of Banach spaces and maps

(20)
$$E \otimes \wedge^{p+1} L^{d_{p+1}(f)} E \otimes \wedge^{p} L \xrightarrow{d_{p}(f)} E \otimes \wedge^{p-1} L.$$

Then, this is an analytically parametrized complex of Banach spaces on C exact $\forall f \in L^{2^{\perp}} \Pi(f) = \tilde{f}$ and exact at ∞ ([5], [2], [3]).

As δ_{*p} differs by a constant term of the connecting map of ([5], 1.3), the argument of ([5], 3.1) still applies to the complex (20). Then $H_p(E \otimes \wedge L_{n-1}, \tilde{d}(\tilde{f})) = 0$ as U(L) module. By Remark (19).(iv) we finish our proof.

THEOREM 5. Let L and E be as usual. Let I bean ideal of L. Then

$$\sigma_{\delta k}(I, E) = \Pi \sigma_{\delta k}(L, E)$$

where II denotes the projection map.

Proof. By ([2], V, 3, Proposition 5) and an inductive argument we conclude the theorem. ■

THEOREM 6. Let L and E be as usual. Then $\sigma_{\delta k}(L,E)$ is a non void set of L^* .

Proof. It is a consequence of ([2], V, 3), Theorem 5 and the one dimensional case. \blacksquare

THEOREM 7. Let L and E be as usual, and L', $\{x_i\}$, $1 \leq i \leq n$ and $\tilde{\theta}(x_i)$, $1 \leq i \leq n$ as in Theorem (2). Then, in terms of the dual basis of $\{x_i\}$, $1 \leq i \leq n$

- (i) $\sigma_{\delta k}(L, E) + (\operatorname{trace} \tilde{\theta}(x_i) \dots \operatorname{trace} \tilde{\theta}(x_n)) = \sigma_{\pi k}(L', E^*);$
- (ii) $\sigma_{\pi k}(L, E) = \sigma_{\delta n k}(L', E) (\operatorname{trace} \tilde{\theta}(x_1) \dots \operatorname{trace} \tilde{\theta}(x_n)).$

Proof. It is a consequence of ([4], 2.1) and Theorem (1).

THEOREM 8. Let L and E be as usual. Then $\sigma_{\pi k}(L, E)$ is a compact subset of L* and if I is an ideal of L and II the projection map from L* onto I*

$$\sigma_{\pi k}(L, E) = H \sigma_{\pi k}(L, E).$$

Proof. It is a consequence of Theorem (4), (6), (7) and Proposition (3).

REMARK. In [1] we see the projection property for subspace which are not ideals fails for $\operatorname{Sp}(L, E)$. As $\sigma_{\pi 0}(L, E) = \sigma_{\delta n}(L, E) = \operatorname{Sp}(L, E)$, the same result remain true, in general, for $\sigma_{\delta k}(L, E)$ and $\sigma_{\pi k}(L, E)$.

THEOREM 9. Let $L, E, L', \{x_i\}, 1 \leq i \leq n$, and $\tilde{\theta}(x_i), 1 \leq i \leq n$ as in Theorem (3). Then

- (i) $\sigma_{\delta k}(L, E) = \sigma_{\pi k}(L', E^*),$
- (ii) $\sigma_{\pi k}(L, E) = \sigma_{\delta n-k}(L', E^*).$

Proof. It is a consequence of Theorem (7) and the fact: $\tilde{\theta}(x_i) = 0$ ([2],IV,1).

Acknowledgements. The author wishes to express his indebtedness to Professor Raul Curto for his encouragement to study and extend Slodkowski spectrum to the solvable case.

REFERENCES

- 1. E. BOASSO; A. LAROTONDA, A spectral theory for solvable Lie algebras of operators, *Pacific J. Math.*, to appear.
- N. BOURBAKI, Éléments de mathématique, groupes et algebres de Lie, algebres de Lie fasc. XXVI, 1960.
- J. L. KOSZUL, Homologie et cohomologie de algebres de Lie, Bull. Soc. Math. France 78(1950), 65-127.
- Z. SLODKOWSKI, An infinite family of joint spectra, Studia Mathematica LXI(1973), 239-255.
- J. TAYLOR, Adjoint spectra for several commuting operators, J. Funct. Anal. 6(1970), 172-191

ENRICO BOASSO
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria Pabellon I

1428 Nuñez, Buenos Aires Republica Argentina

Received July 8, 1993; revised December 8, 1993.