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ABSTRACT. We show that, given a ¥*-algebra A C L(H), H a Hilbert space,
and an operator J € A which is a Jordan operator of L(H), then J also
admits a Jordan decomposition within A. The constructive proof of this fact
indicates that the structure of the projections of a ¥*-algebra is very rich.

We use this construction of obtain local similarity cross sections for Jordan
elements J € A within the ¥*-algebra A.
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INTRODUCTION

In Hilbert space theory it was a longer development to give an answer to the
following question: For which T' € L(H), the algebra of bounded linear operators
on a Hilbert space H, does there exist a continuocus local cross section to the
conjugation operation

T L(HY ™' — S(T), #7(g) :=gTg™?,

where L(H)™! denotes the group of invertible operators and S(T) := {¢T g~ :
g € L(H)™'} the similarity orbit. After long and profound steps of investigation,
the answer was finally given by D.A. Herrero and L. A. Fialkow and it is



118 KA1 LORENTZ

THEOREM 0.1. (see (10]). #7 admits continuous local cross sections iff T
is a nice Jordan operalor (see Definition 1.3 below).

This implies that such a T has a particular simple structure, namely T is
algebraic and the ranges R(g(T’)) are closed for every polynomial ¢ deviding the
minimal polynomial of T (see [19], 7.13). The requirement that R(a) is closed for
a € L(H) is equivalent to the pseudo-invertibility of a and a is called a regular
element of L(H) in this case (see Definition 1.5 below). In [23] and [24] Theorem 0.1
was sharpened in the following direction (see also the remarks in [1]):

THEOREM 0.2. If T € L(H) admits continuous local similarily cross sec-
tions then S(T') is a locally-L{H)-rational manifold and =7 has a local cross sec-
tion, which is a rational 'morphism from the manifold S(T) into L{H)™! (see the
Remark 4.14.(1) below).

Now, L(H) has of course a lot of interesting subalgebras A. We think of
C"-algebras and algebras of pseudo-differential operators of order 0 on a compact
manifold as well as algebras of rational matrix functions within the C*-algebra of
continuous matrix functions on the circle. These algebras look very different (cer-
tainly from a topological point of view), but they all have the important algebraic
property of spectral invariance within L(H) (i.e. ¢ € A and A(YL(H)™') and
they are *-invariant.

These, properties, together with rather weak assumption on the topology of
A, often imply that there is a good perturbation theory for A although there are no
implicit function theorems known in many cases. This was one of the main ideas
of the article of B. Gramsch [13] who studied extensively the regular elements of
A and gave the following definition of a ¥*-algebra A C L(H):

(i) A is a topological algebra, continuously embedded in L(H),
(ii) A is a Fréchet space,

(iii) A = A*,

(ivie€e Aand ANL(H) ' = A},
having applications to algebras of pseudo-differential operators in mind, which in
many cases fulfill these properties (see [17], [29], [9], [13] for further references on
this subject).

Now coming back to Jordan operators, we want to analyse the following
question:

Given T € A C L(H) with the property that

T
L(H) ' 2gv—gTg ' € Sym—1(T) = {hTh™' 1 h e L(H)™}
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admits continuous local cross sections, do there exist such sections also to the
restricted operation .
AV 39 gT gt € Sus(T) = {hTh ™ :he A1} 7
In order to construct local similarity cross sections in a wide class of subalgebras
A C L(H) we do the following:
(a) we construct a Jordan decomposition within A for operators in A, which are
Jordan operators in L(H);
(b) we construct local similarity cross sections which are #-rational functions and
thus keep values within 4.
It turns out that this program works for ¥*-algebras and moreover in larger
classes of spectrally invariant x-subalgebras, which need not be complete in their

topology. So we give in 1.1 a weaker notion of ¥*-algebras A, which involves the
regular elements of /A and L(H). Our Theorem is

THEOREM 0.3. (see 4.12, 4.14). Let A C L(H) be o ¥*-algebra defined
as in 1.1 below. If T € A and 77 : L(H)™' — Spuy-1(T) has continuous
local cross sections then also 77 : A™! — S4-1(T) admits continous local cross
sections. Furthermore, there exist local similarity cross sections which are rational
morphisms from the locally rational manifolds S4-1(T) into A71.

The constructions within the proof of 0.3 give the following more explicit
statements (sec Lemma 4.8, Theorem 0.3, Remark 4.7):

THEOREM 0.4. Let the assumptions of Theorem 0.3 be fulfilled. Then
(i) There exists a neighborhood Wy of T in A and a *-rational map wy :
Wy — A~! such that

o1 1= wilwyns i @) : WiSa-1(T) = A7Y
is a local cross section of 77 . ' _

(i) If the W*-algebra A is sequentially complete and locally convex then there
extst local similarily cross sections using the holomorphic functional calculus in
one variable and rational operations. In this case there exzisis ¢ neighborhood Wo
of T in A and a holomorphic map wy : W — A~ (holomorphic in the sense of
infinite dimensional holomorphy) such that

g 1= walwans . (1) : W2 1S4 (T) — A7
is a local cross section of nT.

We have p) = w3 on Wi [\ Wa[)S4-1(T) in our construction.

For the nilpotent case (or o(T) = {)Ao}) we obtain the following (see Theo-
rem 4.13):
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THEOREM 0.5. Lei T € A be a nice Jordan operator with o(T) = {Ao}.
Then the conjugation operation 7T : A~! — S4-(T) admils local cross sections,
which are restrictions of rational functions o the similarily orbil.

To prove these results we need to find a Jordan decomposition within A for
elements of A, which are at the same time Jordan operators in L(H). This is done
in Sections 2 and 3 and uses extensively calculations on regular elements of A and
L(H). Our considerations lead to the following:

THEOREM 0.6. (see Theorems 2.1, 3.2,3.10). T € A has a Jordan decom-
position within A iff it has one in L(H). The set of Jordan operators of A is the
union of similarily orbils, each orbit having a locally-A-rational manifold struc-
ture. If o(T) C R (for ezample T nilpotent) then T* is similar to T by a group
element of A.

The last section deals with a functional analytic description of the homoge-
neous topology on the similarity orbit of a Jordan operator of A. This topology
usually differs from the underlying topology of A. For example, if A = L(H),
then these topologies coincide iff the Jordan operator T is nice. To characterize
the homogeneous topology for general Jordan operators we introduce a gap topol-
ogy on the similarity orbit (see Definition 4.1). We show the equivalence of these
topologies (see Theorem 4.2). We further show that the gap conditions, measured
in the weaker topology of L(H) instead of A, also give an equivalent topology to
the homogeneous topology (see Theorem 4.11). This is a very good example of
how spectral invariance and the analysis of regular operators lead to perturbation
results. At the end we have all the tools and structure theorems to finally prove
Theorem 0.3.

1. PRELIMINARIES

NoTaTioN 1.1. In this paper we consider continuously embedded topolog-
ical subalgebras 4 (multiplication is assumed to be jointly continuous in both
variables) of the algebra L(H) of bounded linear operators on the Hilbert space
H with the following properties:

(i) A=A4",

(i1) e € A and AN L(H)™! (spectral invariance),

(i11) A is with continuous inversion,

(iv) the regular elements R(A) and R(L(H)) of A and L(H) (see Defini-
tion 1.5 below) satisfy A(YR(L(H)) = R(A).
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These assumptions should always hold throughout this article. If (i) - (iv) is
fulfilled for A C L{H), we call A a ¥*-algebra.

Note that (ii) implies that the group A~ is open, even in the norm topology
of L(H). So if A is Fréchet then it is known that inversion is always continuous
within A (see [32]). If (i), (ii), (iii) are assumed together with a holomorphic func-
tional calculus in one variable on A {4 for example locally convex and sequentially
complete), then (iv) can always be obtained (see Remark 1.8 below).

We don’t assume A to be Fréchet (as in the definition of ¥*-algebras in [13]
in connection with pseudo-differential operators), so that our results can also be
applied for example to the algebra A = H(S)® B C C(S, B), where § ¢ RN is
a compact identification set and B a C*-algeb;a (see [26], Anbang C). We even
don’t make use of completeness, so that also algebras of rational matrix functions
can be considered (see Examples 2.20, 4.15).

For the following notations we only assume (i) - (iii): in .4 we denote by
P(A) the set of all projections and by P (A) the orthogonal projections. In P(A)

we have the equivalence relation
p~¢ P,qEP(A) :<=pg=¢q and gp=p < R(p) = R(g).

I'(.A) is the set of the equivalence classes, X,, p € P(A). It is a homogeneous
space under the similarity operation on representants and I'(.4) will be considered
in this homogeneous topology (see [13], Section 2). It is known that for 4 = L(H)
the homogeneous topology on T'(L{H )) is equivalent to the gap topology on closed
subspaces, i.e. d(X,Y) = [|Px — Py|| where Px and Py are the corresponding
orthogonal projections on the closed subspaces X, Y C H (see for example [21],
(13}, 4.13, [26], 1.4.3). ‘

For T' € A we denote by S4-1(T) :={gT ¢! : g € A~'} and Sy (T) =
{gT g~ : g € L(H)™'} the similarity orbits of 7" in A or L{H) respectively.

REMARK 1.2. Let A C L{H) with (i) and (ii). For p € P(A), the unique
orthogonal projection p on R(p) is given by the x-rational formula

pr=pp*le—(p-p")")"' (also =ple+p-p*)7")

(see [20}, Theorem A, p.20 and [28], 2.15) and is contained in .A by the property

of spectral invariance.
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DEFINITION 1.3. We put

001 0 ... 0
00 1 ...0

g = | “oo | e L(CR)
: R
0 ... ... ... 0

(for a suitable orthonormal basis in C*) and call J € L(H) a Jordan operator (see
[19], 7.4) if J is similar to an operator of the form

n k;
i=1 i=1 '

where n € N, A;,..., A, distinct complex numbers and 1 € ay; € 00, kj € N,
ng’) €N.

J is called nice if a;; = oo for at most one ¢ € {1,...,k;} for each j €
{1,...,n}.

It is known that J € L(H) is a Jordan operator in L(H) iff J is algebraic
and R(q(J)) is closed for every polynomial ¢ dividing the minimal polynomial p
of J (see [19], 7.13). We call J Alg(L(H)) the set of all Jordan operators and
JN(L(H)) the set of Jordan nilpotents in H.

To define J € A to be Jordan operator in the Algebra A, we want the
existence of a system of projections in A, such that these projections reduce J in a
way it can be reduced as a Jordan operator in L(H). We give the following rather
long definition, which expresses the idea of a Jordan decomposition of J € A
within A in a set of algebraic relations, which we require to hold in A:

DEFINITION 1.4. We call J € A a Jordan operator (or Jordan element)
within A, if the following holds:
(1) There exists a natural number n and projections (..., p™) € A such
that:

@) pM 4+ +p™ =, (b) ppY) = 6;p® (5,5 €{1,...,n}).
(i) For every j € {1,...,n} there exists a k; € N and projections p(lj), ey
. .,pg;} € A such that:

(@) P4+ pd) =p), (b) pp() = bupl’ (k1€ {1, k).
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(iii) For every j € {1,...,n} and i € {1,..., k;} there exists an n,(-j) € N and
projections p(J) . ,p(’)m € A such that:
(a)1<n()<n()< . <n(;_)’
(b) p(J) +- +p(J) o= pSﬁ’
(Qp%ﬂ?—ﬁmm (k1€ {1,...,n9").
(iv) For every j € {1,...,n} and i € {1,...,k;} there exist clements (matrix
units in C*-algebras) I € pSJ,)_Ap(’) CA(rse{l,...,n"}) such that:

(@) B =9, ()L Bi=1i (nstefl,... ).

(v) There exist n distinct complex numbers A;, ..., A, such that the follow-
ing relations hold:
(a) pJIpU) = 0 for 1,5 € {1,...,n} such that i # j,
() p TP =0for k£ 1 (G e{l,...,n}, kI €(1,.... k),
(c)p,,)pr,)—Oforr<s—1andr>s(rs€{1 (’)})
(d) p(’)Jp(") )\,pf’r) vre {1,..., E’)}_,
(@) 80P = By e (1,0 - 1),
In this case J can be written as

n ka1 k; a1

J = ZZZ,\JPE’HZZ S i, = Z p(:);rz S il

j=li=1r=1 j=li=1 r=1 i=1 r=1

We denote by J Alg(A) the set of all Jordan operators and by JN(A) the
set of Jordan nilpotents in A.

One aim of this paper is to show that all these algebraic relations, which
I for example essentially needed in the construction of *-rational local similarity
cross section, in fact can be realized within A only if J € A J Alg(L(H)) (see
Theorem 3.2 below, A C L(H) a ¥*-algebra). Symbolically

AN J Alg(L(H)) = J Alg(A).

DeriNiTION 1.5. Let A C L(H) with (i) - (iii) of Notation 1.1. We call
a € A a regular element (or relatively invertidle or pseudo-invertible) if there exists
a € A such that

ada=a and aaa = a.

Ra denotes the set of all such @ and R(A) the set of all regular elements in A.
R(L(H)) is the set of operators with closed range. For a € R(A), @ € R, we put

u(b) := ua 3(b) := d(e + (b — a)a)™?
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defined in a neighborhood W(a) = W;(a) of a (A~! is open).

We state the following propositions, which are by now basic facts in Func-
tional Analysis when dealing with regular elements in operator algebras:

PROPOSITION 1.6. Let b € A such that u(b) ezisis (a,a fized). Then
(i) u(o)bu(b) = u(b); (u(B))? = u(B)b; (bu(b))? = bu(b);

(i) u(b) = d(e + (b — a)a)~! = (e + @(b —a))~'a;

(iii) u(b)b = e — (e + @(b — a))~ (e - da);

(iv) u(b)bda = aa; dau(b)b = u(b)b.

Proof. See [13], Definition 4.1. &

THEOREM 1.7. Let A C L(H) with (i) and (iii) of Notation 1.1. The set
R = R(A) is a homogeneous space under the group aciion

T AT X AT X R — R, w(g,§,a) = gag™!

(note that @ € Ry = §59~ € Rya3-1)- R carries a natural topology T(R), finer
than 7(A), which can be described in three equivalent ways:

(i) the homogeneous topology defined by the above group action.

(1) the topology given by the following system of neighborhoods of a € R:

Va(a) = {b € Wa : b= bug a(b)b), &€ Ra.
(iil) the coarsest topology on R, such that the maps
R3brrbe (A (A) and R Ibr—— kerb:=X,_;, € (T(A), 7(T(A)))
are continuous (note thai kerd = X,_;, is independent on be Rs ).
Proof. See [13],4.2-4.7. 1

REMARK 1.8. Let A C L(H) with (i), (ii), (iii} of Notation 1.1 and holo-
morphic functional calculus. For b € A(\R(L(H)) one has the unique orthogonal
pseudo-inverse b of b (i.e. bb and e — bb are orthogonal projections) within the
algebra A. It is given by the formula

b= (p+b*0) "0,
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where p € A is the orthogonal projection onto N(b) = N(b*d), which can be
expressed as a Cauchy integral in A. So

ANR(L(H)) = R(A),

and this relation also holds topologically. For reference see ([13], 5.7; [27], 1.5, 3.3,
3.5, 3.8,3.9 and 1.9).

ProprosiTION 1.9. The topology T(R(A)) is equivalent to 7(A) together with
the restriction of T(R(L(H))) on R(A).

Proof. We have to show that 7(A) () 7(R(L(H))}|r(a) is finer than 7(R(A)}).
To do so we fix an a € A, @ € R(A), and consider the function u, z, defined in
a L(H)-neighborhood of a. For b in this neighborhood intersected with A the
function u takes values in A because of spectral invariance. Now the topology
T(R(L(H)))|r(a) forces b = bu(b)b locally and this algebraic relation also holds
within 4. But this gives the topology 7(R(A)), since u is continuous with re-
spect to 7(A) and 7(.A4) is assumed to be contained in the topology on R(A) (see
Theorem 1.7). 1

LEMMA 1.10. Let A C L(H) be a W*-algebra as in Notation 1.1. Then for
a € R(A) the unique orthogonal pseudo-inverse of a is in A.

~Proof. Let a € R(A), @ € R(A).. Put
a:=(e—(e—aa) ) -a-(ad)L € A
(see [14], 4.5, [18], 6). Then

ad = ai(ad) — a(e—da)y  @(ed)y
N’
=a(e—&a)(e—da), =0
= (ad)L € PL(A)
and -
e—da=e—(e—(e—aa)y)d(ad)La
N~
=¢—=(e—(e—da)) (e— (e —da))
(e=(e~da).) '

= (e —aa)1 € PL(A).

From this we obtain ade = (ad) a = a and Gad = d(ad) = 4. W
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2. CONSTRUCTION OF JORDAN NORMAL FORMS IN THE NILPOTENT CASE

In this section we show the following

THEOREM 2.1. Let A C L(H) be a ¥*-algebra and let b € A nilpotent of
order n. Then b is a Jordan element in A iff R(b*) ts closed for all1 K v < n—1.

We first give a short outline of the proof of Theorem 2.1:

The implication that Jordan nilpotents b € A have closed ranges R(b") (1 €
v € n-1)is obvious and also follows directly from the known result of D.A. Herrero
on the general Hilbert space situation ([19], 7.11). The crucial point is to prove the
reverse implication and for this to construct projections within the algebra A for
the occuring Jordan reducing subspaces of H. To begin, we take the orthogonal
pseudo-inverses b € A of the powers b for all 1 € v € n—1. With these pseudo-
inverses we have the orthogonal projections on N{#") and N(6*)© N(b*~1) in the
algebra A and we have the natural triangular decomposition of the nilpotent b
within the algebra. So we write

0 bia ... ... byn
0 0 bog ... Dban
b= oo b = Quby,
: 0 bn-l,ni
o ... ... ... 0

where Qs — N(b) © N(b¥~1), Q; — N(¥) @ N(BI~1).

To construct now a Jordan normal form for b, we proceed as in finite dimen-
sional linear algebra (see for example [5], Section 2.9), and consider the injective
induced mappings

H/NG™Y) 2ot Ner-1) N 6™2) 22 5 N ()N () B N(b) — 0,
defined by
b(z+ N@®")):=bz+N@®""Y), zeNP®*), 1<v<n—~1.

These induced mappings are in fact completely determined by the first upper
diagonal entries of the triangular decomposition of b.

To obtain a Jordan normal form one constructs a projected complement of
the image of b, in each quotient space N(6*)/N(b*~!). From this complement one
passes to a maximal linear independent system of generating vectors in N(b").
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This generating system (which, as it turns out, can be chosen to be projected in
A), together with the iterated applications of b, form Jordan chains of length .
Combining all the possible length (€ n) of Jordan chains one obtains a Jordan
normal form of b.

The critical point in construction is that we require every occuring subspace
related to the operator b to be projected in .A. This will lead at the end to a
Jordan decomposition of & within the algebra A. '

The whole proof is constructive.

Now we pass to the proof of Theorem 2.1:

LEMMA 2.2. Under the assumptions of Theorem 2.1 there exisls for every
ve{l,...,n—1} a pseudo-inverse b e A for b such that

)] b*b¥ is the orthogonal projection onto R(b), and

(ii) e - bb¥ is the orthogonal projection onto N ().
Forv=20,0b"=¢e we putbo =e¢; and forv=mn,b0" =0 let i = 0.

Proof. This is a consequence of Lemma 1,10. B

REMARK 2.3. For g < v we have (b#6#)(b78") = b*b and from the orthog-
onality of these projections we also get (take *) (b¥b”)(b#4#) = b*b¥. Therefore we
have for all p,v < n

(bPE9) (b b¥) = bebe, o = max (p, V).
Similarly one obtains
(e — bRb*)(e — bVb) = e — 628, o = min (,v).

DEFINITION 2.4. Let Pj :=e— beJ 1€j€n—-1,P, :=e.
By Remark 2.3 we have P, P; = Pm,n(,,,)‘v'z,]
Further define Qy := Py and Q,, := P, — P,_1, 2 <v<n ThenQ, = Q2 =

Q; €A, Qqu = 6uuQv and 21 Qv =e.
LEMMA 2.5.
() bP =0, bP; = P;_1bP; for2< j<ny;
(i) QibQ; =0 fori > j.
Proof. (i) bPy = b(e — bb) = 0. Now let j € {2,...,n)
P;_1bP; = (e — bi—1bi~Y)b(e — bibi) = (b — bi =16/ )(e — B/
=b—bbib = b(e — bib) = bP;.
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(i1) Let ¢ 2 j. For j = 1 we have for arbitrary #: Qi4Q; = @Q:0P, = 0.
Now let 7 2 2 (then i > 2)
QibQ; = (P; ~ Pi_y)b(P; — Pj_y)
= PibP; = PibPj_y — Pi_1bP; + Pi_1bPj_4
= PP 1 0P — P:'Pj-z bP; .y — PPy WP+ Py Pjoa bPy oy
N o’ © N~ — N s N, s
=P;_ =P;_3 =Pj- =Pj_3
=0. 0
LEMMA 2.6. Let1 < j < n~1 Then the induced map
b i NYH)/N(H) — N )/NE )
is gi"ven by ijQj+l'
Proof. Let z € N(b/t), that is z = Pjyiz. Then z + N(¥) = Pjyz +
N¥) = Qjpz+ Pz +N¥) = Qj41z + N(¥). Therefore
—
EN(bF)
bi(z + N(¥)) = 3;(Qjz + N(¥)) = bQj 1z + N(¥ 1)
= QjbQj 412 + Pj-1bQinz +N (™))
S ot
EN(bI=1)
= (QidQj)e + N ™1). ¥
LEMMA 2.7. Let 1 < v < n— 1. There ezists (QubQu41)™ € Qu+1AQL N
RQ,bQu4r such that (Qu0Qu41)~(Qu0Qu41) = Qusi-

Proof. We h‘avc
QubQu 41 = (=101 — BV )b(HPbY — beF1p¥H)
= (=16 — B (BbY - b gAY
e St eV o T TA LY O T s 17 el
= br=1b (e — BB HY) = =10 Py

PUt (Quva+l)~ = v+lb’;by~1Qu e Pub‘; byalQu +Qv+l£‘;bu—1QV € QU+I-AQV‘

=0
Then _
(QubQu+1)~(QubQu41) = Pugrb’0" ™ Qb1 Py
M el

=h—::—‘b"Pu+|
= ,,+lb" by lpv—1p¥ Pp+1
=pv
= (e — b1 )vh Popy = Qua.

-
=Qu 41
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From this we get

(vaQu+1) '(QubQuH)N '(Quva-H) = (QubQUH)

and
(Q,,bQ,,+1)~ ) (QubQuH) ) (QubQV+1)~ = (vaQuH)N' B
DeFINITION 2.8. For j € {1,...,n — 1} we define
R; = Q; — (QibQ;11)(Q6Q;41)",
and

Rn':: Qn.

From Q,Q, = 6,,Q., we get R R, = 6,,R, for all v,y < n.
Now we look at the iterated applications of bon R; : b*R;,v=1,...,j— 1.
For v = j we have ¥ R; = ¥ Q;R; = 0.

LemMa 2.9. Letje{2,...,n},ve{l,...,j—1}. Then
(R;b") - (v R;) = R;.
In particular le;’ € RyvR;.
Proof. wv<j—1=>bt0"Q; = bbv(bi—1bi-1 —bibi) = Q;.
= R;j0"0’R; = Rjb"0"Q;R; = R;Q;R; = R;. W
DEFINITION 2.10. For j € {1,...,n} we define
SU = bR b, p=1,...,].
Then S'J(j) = R; and from Lemma 2.9 we get that all S,(,j) are idempotents in A.
LEMMA 2.11. We have
() bSY) = 0 for all1 < j < n.
(i) 5SY) = 0,659 for all2< j < n and 2< v < 4.

Proof. (i) bSY) = bbi-1R;65-1 = b R, bi—1 = 0.
S
=0
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(i)
S9) 684 = b v+ R bi—v+1pb =Y R b
= bj_u+1Rj bjmlbj-HFIQj ijT:’
‘hl——-—\,‘-_—d
=Q;
(since j — v+ 1< j — 1 because of v 2> 2),

=b-bYR;bi~v =b.50). u
LEMMA 2.12. Let2< i< nand 2< v < j. Then
Sﬁ!}lbsz(ej) : SUNH) — S,(,’Ql(b’) is bijective.

Proof. ' (i) Injectivity: _ .
Let S.(,’_)le,(,’)z =0,z= S,(,’):c € S,(;')(H). Then bS,(,’)z = 0 by Lemma 2.11.
Now ) ) o
0=05z=0bb"" Rjbi-vz
[
=yeR;(H)CQ;(H)
= Vil

Since j-v+1<j—1land y€ Q;(H) = N(¥)o N(¥-1) it follows y = 0 and
therefore $¥0z = b-ry=10. :

(31} Surjectivity:

Let y € SY) (H) be given. Then y = S,y = U‘”“R,-bimly. Put
2= WU Rb -+ B2 iy g b~ pibi vty €S9 ().

Then bz = bi'”*'lebf:;;ly = .S'I(_,j_?ly =y 1

LEMMA 2.13. We have

() H/N@®™) = (Ru(H) + N@-0) /NG, |

i) N()/NW) = (B (H) + N -)/N =) 45 (N )N ) for
1€<5<n-1.

Proof. (i) This is obvious, since R, = @, by definition and @n(H) +
N2 =H.
(i)
(a) Let y+ N(¥ ') € N(b/)/N(¥~1) be given, y = Q;y without loss
of
generality. -
= y=Qjy= Riy+(Q;¥Q;+1) (Q;4Q;41)"y
o s
=:2€Q 41 (H)CN(b+)
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= y+ N ) = (Riy+ N 1) + (@;Qj41)z + NV 1))
2 (Riy + N(H 1) + bi(z + N()).
(b) Let Rjz + N(¥~") = b;(y + N(V)) = Q;bQj 41y + N(¥ 1)
= z:= Rjz — Q;jbQ;+1y € N(bj"l) = Pj_1(H)
=z = P,-_lz = Pj_le z— Pj..1Qj bQ_,-.Hy =0
\—:g—t/ \u—;.g—n/
= Rjz = QjbQj41y
multiplication by R; = Q; — (Q;0Q;+1)(Q;0Q;j41)™ from the left yields

Riz=0=Q;6Q;41. 1

LEMMA 2.14.

Proof. (i) We first show linear independence of the spaces S )(H )
We are in the following situation:

b~ 1R.(H)
; b 2R,_1(H)
bzR,;(H) b’Rn;l(H) o b2R3(H)
bR, (H) bR._(H) --- -+ bR3(H) .bRy(H)
Rn(H) Roy(H) -+ -+ Ra(H) Ra(H) Ry(H),

where ¥ "YR;(H) = S,(,j)(H), since by construction 5 is a projection onto
RW¥-'R;)(1<j<n 1<y <))
Now let

n j—1
(1) ZZ /\.',jb'.:c,',j =0,
i=14=0

where z; ; € R;(H)\ {0} and therefore b"z;; # 0 Vv < j — 1. We have to show
that all ); j vanish. First, we change order of summation in (1), and we get

(2) 0=(1) :Z":i)‘j—l.jbj_Ixj—l.j~

=1 j=i

We show per introduction on {

(+) A1 =0 Yie{l,...,n}
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fori=nn-1,..., 1
l=n: The application of 6"~ to (2) yields
/\O,n ' bn-lmo,n =0 = AB,n =0.
N, s’
#0
Now let (*) hold for i =n,n~1,...,u#+1 (1 £ » € n—1). Then (2) becomes

v n

(3) ZZ/\j_f’jbj-‘xj_;'j =40.

=1 j=I

Application of 4~ to (3) yields
v n

.. j=lpw-1, —
)IDIPTMY ¥ Lj-1j =0
I=1J‘=l \.-——\v___—./
=0 for j—I4v—-12jv-12!
n
j~1

(4) =D Xow¥ e =0

i=v

n -
= b1 (z ka_,,,jb""a:j_,,vj) =0

i=v
(5) = Aju¥ Yz, € N
j=v
n . - .
= L AP V2 +N(Y)) =0 € N(B)/N(BY)
j=v N
EN(b)
- n .
= 0= Do (20u+ N ™))+ I Ajoui(B ™ zimu s+ N(E™))
j=vdl .
_ ' . |
= doo(Zou+ N ("~ 1))+b, | Z Aj_y,,-b?-"-’zj_u,,.q»N(b")).
izvl

EN(iv+)
From Lemma 2.13 we obtain Ap, = 0 and

n

Bl D XV T e+ N(b")) =0.
f=v+1

From the injectivity of b, we deduce

n
(6) z Aj—vtjb]—y—lmj_”lj e N(bu)'

J=v+1
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. As in equation (5) it follows from equation (6) that Xy ,,44 = 0 and
n -
Y XV € N(BT).
j=v+2
Iterating this argument yields Ay y42 = -+ = Ay, = 0. This given (x) for I = v.
(ii) We show per induction on » (1 € v € n)

N(b) = oy +7=:SF(H).

For v = n this will give the Lemma 2.14.
p=1 N@®) =47, 59 (H):
The inclusion ‘D’ is obvious. Now let z = @z € N(b). We show per

inductionon { = 1,...,n — 1 that & has a representation as
!
(%) z = Zb""lRaz‘a +b'Quzyr VISISn—1
a=1
l=1:

z=Qiz = Riz + (Q16Q2) (Q16Q2)"x
N’
= Riz + Q1bQ2z2 = Riz + b6Q3z3.
!
Now let z = 3 b IR zo + biQH,lzz.H, 1<!<n—-2 Then

a=1

V' Qri1zip = b (Rip1zie + (Q1+15Q1+2)gQr+1sz+z)~xl+1l)
=71—'i+2=‘6+231+2
= b'Rip12041 + ' Qie16Qrya zog2
et

—pl4L
= b Riprzi41 + 0 Quypazigs
41
=z = Z b* 1 Razo + 0 Quirzigr
a=1
= {(xx) for { + 1.
From (*#) for I = n — 1 we obtain
n-1
z = b Rozq +0"1 z
; Qo Qﬂ n

=R,

=3 6 Rozq € 472, ST (H).

az=1
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Now let 1 < ¥ < n — 1 and assume N(*) = +4o) 47 S (H). If v = n — 1 then

H=N@") = [N@E") o N Y] N(6™ )
= Qu(H)® N("™1) = Ra(H)® N(*™1)
= Ru(H) @ 475 40,8 (1)) = 41, 42,59 (m),

since R, = S(") by definition and the proof is complete. So assume v < n—1 and

show N(b"'“)— vl J_,S'(J)(H)

The inclusion ‘2’ is clear. Now let z = P, 41z € N(b"*+'). We show that for

every | € {1,...,n— v — 1}z can be represented as
i
(% * %) T = Z b* 'R, 40Ta + b’Q,,+;+1:r;+1 + Py,
a=1
with zy,..., 2141, m € H.
l=1:

z=P412=Qyp1z+ Pz
= Ryp1z +(Qu18Qu42) (Qv418Qu12) "z +Poz
=x,=Qu42%

= Ryp1z 4+ (Qu41bQu42)21 + Pz

= Ry312 +0Qp 127y — P, bQu+2r1 + Pz
= yl—Pu!Jl

= Ry412 +0Qu4271 + Py

= (xxx)fori=1.

Now let

i
= Z‘ba_le+a~"a + b'Qu+r+1$r+1 + Py,
a=1
i ~
= b'Quyrp1 %141 = ' Ruprp1zigr +b (Qu41+18Qu 4142} (Qu41416Qu4142) " Tigy
il
=:Z142=Qu 41428142

I '~
=b Rz + 0 Qupir bQuyigaziyn
rrtitl

=Py ¥ Qupin
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= b Rypip12141 + Poi1 V' Qu1416Qu 1142T142
= b Rypi412i41 + Quirb' Qu i 16Qy 1422142
— P Quiis1bQutrsazipe
=¥ Rypir12i41 + Quird 1 Quirsatipn
~ Pb'Quii1bQutisazin
=¥ Ry 1201 + Qo Qupigatign
— Pb'Quy1416Qu 4142142
=V Rypip1214 + 6 QuyrpaTipe

i '}
=P,0"Quiiaziee — Pob Quars10Quir422t42

=y EN(E)
1+ 7
—=z= Z b Ry pae + 81 Qu piraTive + Pyt
a=1
ey (% %) for I + 1.
Now (** ) givesfor [=n—v—1
n-v—1
z = Z b&—lﬂu—{—a:’:a + vl Cn Tnow + Putyn-v—1
a=1 ::
n—-y

= Zba_le+axa+Puyn—v—-1 .
N e

a=1
ES‘(,T;")(H) EN(b¥)

This shows z € +:'__'f11+;‘ -Sm(H) and finally completes the proof of the

=17
Lemma 2.14. 1

LEMMA 2.15. Let b € A; p,q € P(A).
(i) If a := pbg : R(¢g) — R(p) has closed range, then there exzisis a €

gAp(Rs.
(ii) If a : R(q) — R(p) is bijective, then & from (i) fulfills

ai=p , aa = q.
(iii) If bg = pbq then also bg’ = p'bg’ for allp’ ~ p and ¢’ ~ g.
Proof. (i) By assumption the orthogonal pseudo-inverse @ of a lies in A. Put
@ := gip € qAp
= ada = ag d pa =a

o N~

=a =a
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and

(ii) Let =z = gz € R(¢), put y := daz € R(g). Then ay = adaz = az and the
injectivity of a on R(q) gives y = z. Therefore aax = z and this implies da = ¢
since aa € qAq.

Let y = py € R(p). Then there exists an z = gz € R(g) such that az = y.
This implies ady = adaz = az = y. Therefore ad = p since aa € pAp.

(iii) bg = pbg == p'bg’ = p'(bg)q’ = (P'P)baq’ = (pbq)g’ = bgq' =b¢’. 8

PROPOSITION 2.16. Let p,q € P(A) with R(p)+R(q) = H. Then there
exist projections p’ ~ p and q¢' ~ q in A such that e — p' = ¢'. In particular
plql —_ 0 _— qlpf.

Proof. First step: Replace p and ¢ by the orthogonal projections on X :=
R(p) and X5 := R(q). These projections are in A by 1.2 and fulfill the same
assumptions as p and q. So without loss of generality p = p* and ¢ = ¢*.

Second step: We show that (e — p)g(e — p) € (e — p)A(e — p) is invertible
in (e — p)L(H)(e — p) and therefore also in (e — p)A(e — p) because of spectral
invariance.

Since H = X;+X, we also have H = X+ X+ (because X;, X2 and X;+X2
are closed, the projection P onto X; with kernel X3 is continuous and the contin-
uous projection P* has range X5 and kernel Xi). Let

(e—ple(e—p)z =0

= g(e —p)z € N(e —p)(N R(g) = R(p) N R(q) = {0}
= qle-plx=0

=> (e—p)e € N()\R(e~p)= X3 NXi = {0}
= (e—-p)z=0

= (e — p)q(e — p) is injective (on R(e — p)).

Let z = (e — p)x € R(e — p)

=> =1z, + I, where 2y = pzy € Xi,292 = qz2 € X

= z=(c-p)z = (e—p)z1 +22) = (¢ — )2 = (e~ P)g2.
Now @ = y1 + y2, where g1 = (e— p)ys € Xi,y2 = (e — p)yz € X3

= z2=g22=q(y1 +¥2) =g = qle - pP)n

= z=(e—p)gz2=(e—plale —p)ur

= surjectivity.
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Third step: Construction of a similarity: Put g := p+¢(e —p) € A. In
p-coordinates we can write
o= (p pale—p) )
0 (e—plg(e—p)
_ (p m(e—p)[(e—p)Q(e-p)]‘1> . (p 0 )

0 e-p 0 (e—p)gle—p)
=191-92
g1, g2 are invertible, so g is invertible
oot = (p —M(e-—p)[(e—p)Q(e—p)]“) oot = (p 0 )
0 ¢—p C 0 [(e—p)gle - p)]™!

1

Define p' := gpg~' = (p+ q(e — p))pg~"! = pg~!. This directly gives pp’ = p’. On

the other hand
Pp=gqigpgieTp=p = p' ~p.
MW—/
:p =p
Now ¢ :me—p' =gle~plg~' = (p+qle —p))e - p)g~' =q(e —p)g~*
= q¢' =¢ = R(¢') C R(9).
But H = R(p)+R(e~p) = R(p)+R(¢") and H = R(p)+R(g). Since R(¢') € R{q)
we must have RB(¢’) = R(¢) and therefore ¢’ ~q. §

PROPOSITION 2.17. Let Py, P, € Py (A), R( Pl)ﬂR(Pz) = {0} and R(P, )+
R(P,) closed. Then
( ) R(P1 + Pz) = R(P1)+R(P2)
(ii) The orthogonal projection P on R(P1)+R(P2) is in A.
(iti) There exist projections P{ ~ Py, Py ~ Py in PAP such that

P!P,=0=P)P! and P/+P,=P.

Proof. (i) The inclusion ‘C’ is clear. Show R(P;) C R(Py + P;). Let
Xy = R(P), X2 = R(P;). Since X;[)X, = {0} and X; + X, is closed, we
have Xi- + X3 = H. But P, doesn’t act on X{, so Pi[xs : X3 — R(P1) is
injective. Therefore we can find for z = Piz € R(P)) and y = (e — P)y € X3
such that Pyz = y. This gives (P, + Pp)y = Piy + Poy = Py = z. Similarly
R(Py) C R(P1 + P).

(ii) P1 + P; € A has by assumption the closed range R(P;)+R(P;) and the
orthogonal projection P on R(P;, + P;) = R(P,)+R(P,) is in A because A is ¥*.

(iii) Let P be the orthogonal projection onto R(P;)+R(P2) constructed in
(it). Then R(P;) C R(P), so PP; = P; and taking * we have ;P = P; (i = 1,2).
Now we apply Proposition 2.16 on the ¥*-algebra PAP C PL(H)P,P(H) =
Pi(H)+P,(H) and we get the desired projections. 1§
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ProPoOSITION 2.18. Lel py,...,pn € P(A) such that the sum py(H) +-- -+
pnl(H) is direct (some p; = O possible) and p;(H) + -+ pi(H) are closed for
i=2,...,n. Then the orthogonal projection P on py(H)4 - +pa(H) is in A and
there exist projections p; ~ p; in PAP (1 < j < n) such that

13
pip =650, and ) pi=
=

In particular, if in this situation py(H)+ -+ +p.(H) = H, then there exist projec-
tions p} ~ p; in A (1< j < n) such that

n
Pip; = 65pi and Y pj=e.
i=1

Proof. As a first step we choose all p; € A to be the orthogonal projection
on its range by Remark 1.2. Now we start an iterative construction process and
apply Proposition 2.17 to the orthogonal projections p; and p;. This gives the
orthogonal projection Ty € A on p;(H)+pa(H) and projections p} ~ p1, py ~ p2
in T, AT, such that p}{ + p5 = T and in particular pip5 = 0 = pip!.

Now let us assume that we already have constructed the orthogonal projec-
tion Tj—1 € A on py(H)+- - - +p;j_1(H) and projections p}, ...,p;_; € Tj—1ATj_1
with the properties

D) ) ~p1, Py ~ pioa

(i) Pt + -+ Py = Ty

(§8) PP, = buup), Vi, < = 1.

Then we apply Proposition 2.17 to the orthogonal projections p; and T;_; € A and
obtain the orthogonal projection T; € A on Tj_1(H)+pi(H)=p:(H)+ - - -+p; (H),
together with idempotents T]_; ~ T;.1,p} ~ p; in T; AT} such that T]_;+p; = T},
in particular Tj_;p; = 0 = p;Tj_;. Now we put

PV =T gs o Py =P T B =P € A

Since pi(H)=p:(H) C Tj_1(H) = ’-_I(H), we have 7;!—117:' =piforlg<ig<j-1
and pY,...,p{_,,p} are projections in T;AT;. Now we show (i)-(iii):
(i) p{ := p} ~ p; by Proposition 2.17. Let i € {1,...,j — 1}. Then
pip! =pipiT{., =p; and p{p}=p,Tj_,p; =p;
\-—v—v‘
=p!

=> pi' ~ pi ~ pi.
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(ii)

j-1 -1
"o_ ’ R T B oY

}:Ps‘ = (ZP;')T}A =TT =T,

i=1 i=1
i
— Zp:/ = ’]}'_1 +p; =T;.
i=1
(iii) For v, p £ j — 1 we already have pf,p:‘ = b,,p),

11,11

= PPy = puT’ lpp T -1~ 60;;?,, -1 = 6”!‘py
\#V—-/
:p‘u

and
it

p] P, = p] pg = p;?}'_lpi,' = 0:
=Ti..p0
pori = p, 1405 = 0.
After j = n — 1 steps the process finished with P =T, € A. 1

LEMMA 2.19. There is an enumeration of the subspaces S,E”(H) (1€v<
5 1€ j € n), such that the ilerated direct sums are closed.

Proof. We chose the enumeration of the subspaces as follows: In the picture
of the proof of Lemma 2.14 we start with the top line until the bottom line and
within each line we pass from the left to the right.

(1) First, we show that within each line the iterated direct sums are closed:
Let i, € {1,...,n},i # j,0 < v < min{¢, j}. Then

Qibvb? = (=161 — BB )Brb = (b1 — Bb) = Qs
= S, .Y, = v Rib"¥ R;b |

= b RiQib"b” R;b¥
= bR QiR; b = 0.
=0

Therefore, all possible combinations of these subspaces have a positive angle.
(ii) Next, let .
L; = Z S(J) _,)(H
j=n-i4l
be the subspace determined by the i-th line of the scheme, 1 < i < n, which
is closed by (i). Because of R(b"~*) = Ly+---+L;, we see that L+ --+L; is
closed. #
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Finel proof of Theorem £2.1. We have by Lemma 2.14
H= 'i'?:l'i'jzlssj)(H)J St(lJ) € A.

From Lemma 2.18 we get the existence of projections .5’,(,")r ~ S'.(,j), 5.(,5)’ € A with
the properties

n j
S,(,j)'S,(,j)' = 5,-j6,,,,8,(,j)l and Z Z Sf,")' =e.
j=lv=1
Lemma 2.15, (iii) together with 2.11 gives
bs9 =0 Vigjign
bSW) = S bSUY vagign, 2<v <

From this we obtain a Jordan decomposition of b:

b=b.e= b(z"jisgn') =30 hsy

j=1lv=tl j=1tv=l1
i noj
=SS = 33 s ese,
i=2v=2 ji=2v=2

where SU1659) : R(SY') — R(SY),) is bijective since SU) 5% : R(SY)) —
R(S,(,’;)l) is bijective by Lemma 2.12 and R(S,(,j_)‘l) = R(Sl(,j__)l), R(S,(,j)’) = R(S.(,”)
(7222<v<j).

Now let j € {2,...,n} be fixed. To complete the proof of the theorem it
remains to show the existence of operators

19 € SP'ASY; a,pe{1,...,5)

with the properties
() 182 =58, 1<a<;
(ii) 1§41 = S¥7b50)), 1<a<j-1
(i) 19219) = 18} va,B,y€{1,...,5)
The operators 14(11;21:1331+1 we define by (i) and (ii) respectively. Next we define

F

forae{1,...,5 -1}, I((,j_zl.a = If,",lﬂ € S((,j_,)_lASE,fy by Lemma 2.15;

= I£J,<)1+1Ig421,a =5¢" and Ig—{)-l,alg,l+1 = Sffll
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We further put

749 :={I£J:‘)I+1 Igja)l.ﬁ for a<p -
*P IL('i?x—l. I};Qm for a>p

This directly implies
IOIS) = 56 Vigo, <
As a last step one easily checks the relations
Lplipn = Topn (B<)

Ig}il;(ﬁl,l)i-l = Ic(xj}iﬂ (8>1)
I(j) I(J'Z* = Igj—)l,ﬁ (a > 1)

a~1,0"a,

IgJZl,aIg,;)s = Ic(xj-})-l,ﬁ (o < 4)

for the possible cases o < §,a = B, > § and this implies (iit).
Now the proof of Theorem 2.1 is complete. 8

To illustrate the calculations of the proof of Theorem 2.1, we give the follow-
ing:

EXAMPLE 2.20. Let S C RM be a compact identification set of complex
open neighborhoods of S, which is a real smooth compact manifold at the same
time (for example S = [0,1) C C). We consider the *-algebras A = C(S, L(C")),
Ck(S, L(C™)), C*(S, L(C™)), H(S) ® L(C™), R(S, L(C™)) (the algebra of rational
matrix functions with poles outside S’cendowed with the topology of H(S) ® L(C™)),
all within the C*-algebra C(S, L(C™)). ‘

Or take S = ! € C and consider A = ’H(S)@L(C)") or R(S, L(C)) with
the adjoint operation f!(z) := (f(1/2))* on holomorphic germs of functions in a
neighborhood of S not containing 0. Then f1(z) = (f(2))* for z€ Sand 1+ fIf
is always invertible in A.

These algebras have properties (i), (ii) and (iii) of Notation 1.1 (see [31]
for the holomorphic case). Now for a € C(S, L{(C")) having a pseudo-inverse
d € C(S, L(C™)) is equivalent to the property rank a(z) = const on S, and this also
characterizes the regular elements in the other algebras (for R(.S, L{C")) see [26],
6.0.1). In all the cases the unique orthogonal pseudo-inverse is within the algebra
(so (iv)) of Notation 1.1 is fulfilled). These results can be obtained constructing
the pointwise orthogonal pseudo-inverse of a matrix function with the function
u(-) of Definition 1.5 together with the definition of Lemma 1.10 and using the
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fact that S is an identification set (see [26], 6.0.1). The constructions of this
section can be applied to nilpotent matrix functions f : § — L(C") and the
question of A-morphic possible choices of Jordan normal forms to f. For example,
a nilpotent b € C(S, L(C™)) is a Jordan nilpotent in C(S, L(C™)) iff there is a
continuous choice of Jordan normal forms for b. Similar interpretations holds in
the other algebras for a nilpotent b € A being a Jordan nilpotent within A. Now
under the assumptions of Theorem 2.1 the constructed Jordan normal form of b
is contained within the considered algebras. In this context we can read 2.1 and
the constructions of this section as follows:

Let & € A be nilpotent of order m. Then

(i) b is a Jordan nilpotent within A iff rank b” is constant V1 < v < m — 1.

(ii) If there exists a continuous choice of Jordan normal forms for b then there
exists such a choice within A.
See for example [5], [11], [12] for related results.

3. FURTHER CONSTRUCTIONS

First, we generalize Theorem 2.1 to the situation of algebraic operators:

LEMMaA 3.1. Let A C L(H) be a ¥*-algebra and J € A a Jordan operator
in L(H). Then the spectral projections

Q) ;:531; j{ (Ge=J)1dx (A € o(J))
PA=ajl<e;

are in A.

Proof. Since J is a Jordan operator in L(H), R(@x;(J)) = R((Aje — J)™)
is closed and we get a projection P; € Aon N{(Aje = J)™) (using for example
the orthogonal pseudo-inverse of (A;e — J)™i, which is in A), j = 1,...,n. Now
H = 2., P;(H), P\(H)+---+P(H) is closed for 1 € i < n by the functional
calculus of L(H), and so we can apply the constructions of Propositions 2.16
- 2.18 to obtain within .A the unique set of projections Q1,...,&, such that
R(Q:) = R(P;) and QiQ; = 6;;Q; (i,j = 1,...,n). Since the spectral projections
fulfill the same, we must have @ ;(J) =Q; € A,j=1,...,n. 1§
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THEOREM 3.2. Lel A C L(H) a U*-algebra and J € A an algebraic operator,
p(J) =0 for p € C[z). Then J is a Jordan element in A iff R(¢(J)) is closed for
every polynomial q € C[2] dividing p.

Proof. If J is a Jordan element in A, then J is also a Jordan operator in
L(H) and R(q(J)) is closed for every polynomial ¢ dividing p by ([19], 7.13).

Now we prove the converse. Let p(z) = H (z — A;)™i. Then because of spectral
invariance we have 0 4(J) = or)(J) = {AI, .., Am} and the spectral projections
pli) = @»;(J) € A reduce J, ie. y

n
TP = gDy = pidg, pp) = 55p®, Y p =,

Now we consider for 1 £ j € n the nilpotent operators
N; 1= pDJpd - 2 pl) € pli) ap)

and show that R(Nl) is closed for all 1 € { € m; — 1. To do so, we define g € C[z]
by ¢(z) := (z — A;)!. Then ¢/p and

o(7) = (J = M) =3 (M Tp™) = Xp) + N
v#j

For v # j (p")Jp) — X;pN 2 p)(H) — p(")(H) is invertible and therefore
R(a(J)) = [umsp®(H)] +R(N))

and R(N]) C pU)(H) has to be closed.

Let j € {1,...,n} be fixed and put p := = pl) and N := N;. Then the
orthogonal projectlon py on R(p) is also in A and we define N := Np; € py Ap,.
Then

(NY =N'p, and (N)p=N' VIeN
and so it is easy to see that N’ is nilpotent of order m and (R(N')") is closed for
all1 €1 <€ m—1. By Theorem 2.1 N’ is a Jordan nilpotent within the ¥*-algebra
pLApL _C_ pi L(H)pL. Now, multiplying the Jordan decomposition of N’ and the
corresponding projections by p from the right we conclude that N has a Jordan
decomposition within pAp. This completes the proof. 1

Our next aim is to show that the similarity orbits of Jordan nilpotents in
U*-algebras A are invariant under the x-operation. We do this in the following
lemmata:
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n =1

i Il(.Js?H € JN,(A). Pul b= z I (i)la

j=14=1

LEMMA 3.3. Let b
Then

OV ery W,

(i) b € Sa-1(b).

||Ma

Proof. (i) This is direct computation and can be found in ([26], Anhang B).
(ii) Let T} := z %)= ): 5 € P(A). Put A; := T, AT;.
Then

;= . R N i-1
b =0Ty =TTy = 3 1%, b =BG =T8T = YOI
i=1 i=1
We construct g; € (A4;)~! such that 3_,- = g;bj9; 1. Define
0 O | I§{,),
: 15’),_‘ 0
9 —ZI(J-H"I_ : . : €A
i=1 ' : .
_ Iy(aj-)1,2 :
1'(‘12 0 -0 .. 0
Then g} = Tj, so g; € (A)~! and
S0 Y[
95 blgj =gjbjg; = gj ( sJH-l) (Z Ik’,j-kn)
i=1 k=1
LN NN i =
= (L3 Bt = (S0 ) (T 2)
izl k=1~ N i=1 i=1
T =64, ul,’,)_.
i -l W) k_,_',:'—l _) N
—ZZ IiJ, I4+1 :,J;—; = I£J+1,k= i
=1 i=1 Y——SN k=1
=65-’+!:"I,('J-)-'+x,j—i
Finally define g := gy +-- - + gn. Then g? = ¢ and gbg~' = gbg =%

: o N7
LemMa 3.4, Letb= 3o 5 19, € INu(A) such that 19" = 1) Vij,i (ice.
j=li=1
the Jordan reducing projections are orthogonal). Then b* € S,-1(b).
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Proof. Let j € {1,...,n} fixed. We have

i-
b; =0"T; = T30"T; = zlz(ﬂ_l where Il(H_1 € S,(i)lAS(J)
i=1

by the orthogonality of the occuring projections. We will show that b is similar
to b; (defined as in Lemma 3.3) in Aj;. Forv=1,...,j— 1 we define

bj v = I§]2) e IS{BH € ng)AS:(;Qi C A

and
bjv = I;(/J+)1 v I§]1) € S:(/J-BlAsgj) CA;.
Then b;, ,,ij = ng),zj,,,bj,,, = 1(112’1: soi;j,,, € Rs,,,. Moreover, since T,-—Z,-,,,b,-,,, =

T; - S,,_B] and bj,,,gj,,, = S?) are orthogonal, ’l;j,,, is the unique orthogonal pseudo-

inverse of b; , in A; and is thus given by
(7 bjw = (Pr(os.) + 85,0570,
where Py, ) = T; — S,(,Ql is the orthogonal projection on N(b; ,). Put

gjv = ((]77 - 51(11-31) + b;,vbj,l’)_l 5 'Aj_l) v= 1: v sj -1

and
95 = gig-1 g € A7
We have g7, = diag (SU) 80, [t 522""’5?)) and
gi = diag (59, 0 [,u i) 50 57), 0
9,-_1 = gfll . '9,'_,,'1_1 = diag (ng)’ [67,165,] - [b” 1655~ 1])
and

gJ = gj,j—l . 'gj,l pmi diag (Sg"), [b;llbj,ll_l ey [b;’j_lbj’j.;l]-l) .
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s -1
Now consider g;b]g;

7 o E
=9j -diag (9, [85,185] - [6],5-ab55-1] )
: ey
\ o ... 19 0
=9g;- I?z) + Iga) [65 16,1+ -+ I,g-)x,j[‘b},j—z b i-2] |
S’ Sr———

\ =3 O

= gj - (03155 0050 + -+ 55 5 _185,5-2)

= diag (ng), [b;,lb'.l]_l Yooy [b;,j—l‘bi»ﬁ—ll_l) X
0 . ce 0
b, 0 :
X 0 b},zbj,l 0
0 ‘b;,j—lbj,f—l’ 0
- 1. :
[6,165,0] 7 854 ¢
= 0 [b;,2‘biu2] B b;lzbj’l 0
0 . [b;IJ_lbj.J-I] -1 b;’j—lbjaj_z 0
-1

= [B5005) 7 B3y + [8.005,2) B abin + oo (b5 10,5-1]
= gin by + 95285 0bi0 -+ gy b5 by

@ Zj,l +3',2bj,1 + - ‘+’5j,j—lbj,j—2

= IR+ QL) + -+ () D) 1, )
= I+ 400 =8

G
b7 155,52

Finally define g === gy 4 --- 4+ gn € A~1. Then b= gb*g~1. From Lemma 3.3 we
deduce b" € Sz-1(b). 1

DeriniTION 3.5. Gram-Schmidt orthogonalizing process for systems of
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idempotents: Let N € N and

N
pN(A) = {(pl, ...,PN) € 'p(.A)N Lpip; = ‘6§jp;,2p'- = e},
i=1
PY(A) = {(p1,...,pn) € PN(A) : pi = p} Vi}.
For p € P(A) we define

GSa(p) :=p1 :=pp*(e = (p=p")?)' €A (see Remark 1.2)

the orthogonal projection on R(p). We further define GSn : PV(A) — PY(A)
by

GSN(pl, . ,pN) = ([GSN(pl, N ,PN)]I, . (;[GSN(pl, AN ;PN)]N)
[GSn(p1,-- -,PN)]l = GS2(p1)

j j-1
[GSNn(p1y. .., pN)]; = GSa (ZP&) -GS, (Zpi), 1<j<N.

i=1 i=1

PROPOSITION 3.6. We have (see [3], "3, 1.4)
() R(pr+---+p;) = R([GSn(p1, ..., pN)i +- - +([GSN(p1, - .., pN)];), 1<
J<N.
N
(i) U := E[GSN(p],...,pN)]j -p; € A and [GSNn{(p1,...,pN)); = U -

p,-f]"l Vi< < N The proof of [3] even works for all unital x-algebras A such
that {e + a*a:a € A} C A~

CoROLLARY 3.7. Let J € J Alg(A) be a Jordan operator. Then there exists
J" € Sa-1(J) such that the projections associated to the Jordan decomposition of
J' are all orthogonal. '

k ﬂ.(',)—
Proof. Let J = Z [/\,p(’) + Z z Iilr+1] Consider the N-tuple
J i=1 r=1
. n kJ
(g1,...,qn) = (pf’,?. \]$n,1<i<kj,1<r€n?)), N = ZZn(J)
j=1i=1

endowed with an ordering. Then J/' :=UJU~!, U := Z;LI[GSN(QI, o g s
has GSn(q1,...,9N) € PiV(A) as a set of Jordan reducing projections. N
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THEOREM 3.8. Let b € JN(A). Then b* € Sq-1(d).

Proof. Let b = UbU~! € §4-1(b) as in Corollary 3.7 with orthogonal decom-
position. By Lemma 3.4 (§')" € S4-1(’) = Ss-1(d), so (') = gbg~1,g € A7L.
Now: b= U~V = b* = U*(¥)*(U*)~} = U*gbg~"(U*)~ = [U*g]b[U*g] ! €
Sa-1(b). ®

n
CoroLLARY 3.9. Let J € Y (A\p¥) + N;) € J Alg(A) with A; € R. Then
=t
J* € S4-:(J).
Proof. Let J' =UJU ! = T ();pV Y+ Nj) with orthogonal decomposition
i=1

e= Y p¥)'. Then
i=1

(N})" = g; Nig;it, g5 € (W ApUY)~1, 1
= e+ N = (5P + Mgt 1<
= () =9J¢", g=g+---+gacd”’
= J* = (U_IJ'U)' = Ut(Jl)t(Ut)—l — Uthfg—l(Ut‘)—l
[U*gUJ{U*gU]~t. n

£isn

AN =

n

THEOREM 3.10. Let A C L(H) be a ¥*-algebra.

(i) The set JN(A) of nilpotent Jordan operators is the union of similarity
orbits, each orbil being a locally-A-rational, *-invariani manifold in the homoge-
neous topology.

(i) The set J Alg(A) of all Jordan operators is the union of similarity orbits
and these orbits are locally-A-rational manifolds in their homogeneous lopolagies.
Ifo(J) CR for J € J Alg(.A), then the similarity orbit of J is *-invariant.

Proof. This is now a combination of the results of [24], 1.7 (see also [23],
1.7) and 3.2, 3.8, 3.9). For the notion of locally-A-rational manifolds see ([13],
Section 1). It essentially means that changes of coordinates are given by purely

algebraic operations. @8
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4. CHARACTERIZATION OF THE HOMOGENEOUS TOPOLOGY ON THE SIMILARITY
ORBITS

In this section we give functional analytic description of the homogeneous topology
of the similarity orbit S4-1(J) of a Jordan operator J in a ¥*-algebra A.

k; n$ -1

n R £ -
Dermimion 4.1. Let 7 = 3> [p® + 5 & ] € A be a Jordan
i ' i=1 =1 r=1 '
operator. Put m; = nk’j ) (= order of nilpotency of (Aje — J) restricted to

pU)(H)). We define 7 to be the homogeneous topology on S4-1(J), induced
by A~1. Second, we define 7, to be the coarsest topology on S4-1(J), such
that the finite number of mappings (S4-:(J),72) 2 b — b € (A, 7(A) and
(Sa-1(7),72) 3 b ker(Aje — b) = Xe..((,\;;:b)?}(,\',-e—b)* € (I'(A), 7(T(A))),
Jje{l,...,n}, 1€ {l,...,m; — 1} are continuous.

The aim is now to show

THEOREM 4.2. 71 = 73 on Sy (J).

It is easily seen that 7y is finer than 7y (see [26], 3.1.5). The converse is done
in the following construction, which leads to explicit formulas for local similarity
cross sections.

Let j € {1,...,n} be fixed. For (Aje — J) we choose a pseudo-inverse
(Aje—J) as in Lemma 3.3. For j € {1,...,n} and I € {1,...,m;} (fixed) we

— 1
locally define u;(8) := uqa((Aje—b)'), where a = (M je=J), a= [()\,-e - J)} ;
ie.

-1

© w0 = [5e= D] [e + (e -9 - ye =) [oye= )] |

We get an A-neighborhood Wy of J, such that all u;; are defined on W;. We
further define for b € Wy

Pa(b) := e~ uju(b) - (Aje = b)'

(Ge{1,...,n},1 €{1,...,m;}). These are rational functions of b € W;.

LEMMA 4.3. There ezists a mo-neighborhood W} of J in Sx-1(J) (W} C
Wi Sa-1(J)), such that for allb € W} and j € {1,...,n},1 € {1,...,m;} we
have

(Aje—b) - uja(b) - (Ase—b) = (\je—b) .
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In particular

Pia(b) e P(A)  and  Pj(b) € ker (Aje — bY'
for allb € W} and all j,1 by Proposition 1.6.(i)).

Proof. We consider S4-:(J) with the topology 2. Let j € {1,...,n} and
1€ {l,...,m;} be fixed and put

M= {(\je—b) b € Sa-1(J)} = Sa-s((Aje — I)) S R(A).

We have a natural surjective mapping 8 : S(J) — M, given by A(b) := (Aje — b)'.
We consider on M the final topology 7 such that 8 : (Sa-1(J),m2) — (M, 7) is
continuous. Now we show 7 is finer than 7(R(A)) on M. To do so, we have to
show the continuity of the maps

(M, 7) 3 m— m € (A, 7(A))

and

(M,7)2m s kerm € (T(A), 7(T(A)))

by Theorem 1.7. The first one is easily seen to be continuous, simply because 8 is
continuous. The second one is continuous since

ker of(S4-1(J), 72) 3 b+ ker (B(b)) = ker (A ;e — b)' € (T(A), 7(T(A)))

is continuous by the assumptions on 7. For ! = m; this map is continuous
into (T'(A), 7(T'(L(H)))) by the Functional Calculus in L(H}), since the spectral
projections Qx;(b) = 3= (Ae —b)~1dX € ker (Aje — b)™ for b€ S4-1(J).

27
A=Ajl=e;

Since 7(.A) is contained in 7 this map is also continuous into (I'(A4), T(I'(A})) by
Proposition 1.9.

Now put a := (Aje — J)! and & a pseudo-inverse as in Lemma 3.3. By
Theorem 1.7 there is a 7(R(A))-neighborhood W of a in M, such that

m-uga(m)-m=m

for m € W. Since r is finer than 7(R(A)}, W is also open in 7. Put W_‘;’l =
B~1(W). Then W3 is a 1p-neighborhood of J in S4-1(J) because of the continuity
of . Now for b € Wi we have the construction

B(b) - ua,a(B(Y)) - B(b) = B(b),

and this is what we had to show since u;1(b) = ug,5(8(b)). Finally take W} as the
intersection of the W3’ and we are done. 8
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LEMMA 4.4. Let j € {1,...,n} and Lk € {1,...,m;} be fivred. Then we
have for-all b € W} (constructed as in Lemma 4.3.)

Pja(b) - P e (b) = Py (b) - Pji(b) = Py, min(,) (b)-

Proof. Let I < k without loss of generality. Since N((A;e — b)') C N((Aje—
b)¥) we must have P;; - Pj; = Pj;. On the other hand

uji(B)(Aje = b)'u; k(b)(Aje — )
D u;(B)(Ase - bY
o e -1
[oye= ) "-(e+((,\je ) = (Aje=J)F) [().,-e-.f)]k) (e - b
—_ 11 —— k-1
= uwia(B)e = 8) - [hye= D) - [ye =)

(e (Oye =0 = (e = 9 [e= ) N7 e
(1:0L5) { - [ +[e= ) - (Ose =8 = e - J)‘)] B
(e [0e= 2] e J)')} Jove= ) fove= ]
(e +((hje = b)F = (e = 1)) [(he - JJ]") 7y — by
= [oye= 9] (e Oge =0 = e = 1) [0 = ")) " Oge b
= uj e (B)(Aje — b)E .

Therefore

Pia(b) - Pik(b) = (e — uji()(Aje — b)) - (e = uj x(b)(Aje — b))
= (e — uj p(b)(Aje — 0)*)
= Fju(b). 8

LEMMA 4.5. Let J,W; as above. There ezxisis a neighborhood W;(C Wy)
of J and x-rational functions Qy,,...,Qx, defined on Wy with values in A such
that

Q5,(0) = Qx;(b) for beW,NSa—(J), J=1,...,n

Proof. First step:
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For b € Wy, the rational expressions P;(b) := Pj m;(b) are defined as above.
Using the holomorphic functional calculus of L(H) and arguing as in the proof
of Lemma 4.3 yield that P;(b) € P(A) and R(Pj(b)) = N((rje — b)™/) for all
j and all b € Wy[S4-1(J), W; € Wy a possibly smaller A-neighborhood of J.
Furthermore we have R(P;(})) = R(Q;\j(bu'for all b € Wy Sa-1(J), since bis a
Jordan operator of L(H) in this situation. ™

Second step: Local s-rational construction of the orthogonal projection on
sums of spectral subspaces:

Take 1,7 € {1,...,n}. Consider P;(b) and P;(b) for b € Wy Sa-1(J).
Then R(P(8))(\R(P;()) = {0} and R(IB(GILFRPB)L) = RIPG)L) +
R([P;(5)]L) by Proposition 2.17. Therefore a;;(b) := [Pi(b)]1 + [P;(D)]L € R(A)
and a;;(b) depends continuously on b with respect to r(.A). Moreover the images of
a;;(b) vary continuously with respect to 7(L(H)), because continuously depending
projections of L{H) on these images can be constructed using the holomorphic
functional calculus of b € L(H) with the locally holomorphic scalar function a;(z)
{1 on DJNE) on the compact set o(b)=o(J) (note that R(a;;{})) =
L0 on (BN (i) A} - A
R(Qx;(b) + Qx,(b))). This implies that the assignment

WiNS4-1(J) 3 b agj(b) € (R(A), r(A)NT(R(L(H)))|r(4)) = (R(A), T(R(A))),
is continuous and therefore that
Ua, i(1)0i50)~ (@5 (D)) € R(A)ai;0) for b€ Wi Sa-1(J),

ai;(J)~ € R{A)s,;(s) fixed and W; a possible smaller A-neighborhood of J (this
can be seen similar to considerations of the proof of ([13], 4.7 - 4.9). Thus

Qi (5) = [aij(b) - tay;(s).ais05y~(ai; (D)) , € A

is the orthogonal projection on R{a;;(b)) = R(Qx.(b) + Qx;(b)) for b € Wi
Sa-1(J). Qi;(b) is defined in a possibly smaller A-neighborhood of J and is a
+-rational function.
Third step: Let j € {1,...,n} fixed.
Iterating the process of the second step we construct the orthogonal pro-
jection on 4,z; R(P, (b)) = R(z va(b)), using at each step Lemma 2.17, the
v

holomorphic functional calculus of L{H)} and the function u(:) to obtain locaily
pseudo-inverses. At the end we can find a possibly smaller A-neighborhood W;
of J and a #-rational function T; : W; — A such that T;(b) is the orthogonal
projection on +,2; R(P, (b)) for b € Wi [ Sa-1(J).
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Fourth step: We apply Lemma 2.16 to the situation H = R(P;(b))-+R(T; (b))
and get the projection Q) ;(b) € A such that R(Qx;(b))=R(P;(b)) and N(Qx,(b))
= R(T;(b)) as a rational expression of P;(b) and T;(b) and hence as a *-rational
function. of b. This #-rational expression Qx j(b) is defined in a possibly smaller
A-neighborhood W of J and we have by construction

(*) 0, (5) = Qu,(5) for be Wy Sun1(J).

Fifth step: Choosing Wy one again smaller, we can get (*) for every j €
{1,...,n}. 1 '

DEFINITION 4.6, Let J, W; as above. We define
Pia(b) := Pa(d) - Qa;(0) (G=1,...,n {=1,...,my),

as well as P; o(b) := 0 for b € Wy. The P;,; are *-rational functions of b € W;.
Put W} := Wy (W), C S4-1(J) (see Lemma 4.3). Then we have for all b € W:
(i) Pj, € ker (Aje — b)' Vj,1
(i) Py 12 (0) Pja 12 (B) = 85y Py min(ay 12)(0)(G: € {1, ..., n} L €0,...,m;},
i=1,2),
which are consequences of Lemmas 4.3, 4.4 and 4.5. For further details see ([25],
3.6) and ([26], 3.1.16).

REMARK 4.7. If A has holomorphic functional calculus in one variable then
we can choose W; small enough such that the :

1 .
A (0) =5~ ]f (Ge—b"tdred (g > 0 fixed)
[A=Aj|=¢;

form a resolution of the identity for all b € W;. In this case we can define
P;1(b) := Pji(b) - @x,;(b) and P} y(b):=0.

The P}, are holomorphic functions of b € W;. For b € W := WyW; C
Wi () Sa-1(J) we have P (b) := P;(b). Thus the conclusions of Definition 4.6
hold also in this case (see [25], 3.6).

LEMMA 4.8. (see also [4], p. 358-361). Let for beW;

n mj

a(b) =3 Y (Pii(d) = Piica (b)) - (Pis(J) = Pjima(]))-

j=14=1
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We further put for S € A:

n kj n(ﬂ—l

USH =33 3 he-5) - D [(,\e-J)]

j=li=1 I=0

Then we can take Wy smaller such that for allb € Wy
w: V() — AL, w(b) = alb) - U(a(b) ' ba(b))

is defined. By consiruclion w is a *-retional function of b € Wy and is therefore
continvous. The resiriction of w to W) C WiS4-:1(J) is a local cross section of
7. If A is with holomorphic functional calculus we can take

n my

o' (b) == ZZ( 10 =P (0)) - (Pha(T) = P y(T)),

j=1ld=1
as well as W'(b) == o’(b) - U(' (b) " ba'(}))

for b € Wy, W; small enough. &' is a holomorphic function of b € W; and the
restriction of w' to W) C Wy [ S4-1(J) gives the same as w restricted to W) and
is therefore also a local similarity cross section.

Proof. We easily compute a(J) = e = U(J), so w(J) = e. Now the existence
of W; is a consequence of the property that ,A~! is open and inversion is continuous
within A. The fact that the restriction of w to W is a similarity cross section has
to be calculated as in ([25], 3.8, 3.11, 3.13) or ([26], 3.1.8, 3.1.18, 3.1.20). &

Now Lemma 4.8 gives directly the implication 75 is finer than r; on S4-1(J)
and the proof of Theorem 4.2 is complete.

k; n(’)—l
COROLLARY 4.9. LetJ = Z [ AP+ Z Z b :“] be a Jordan operator

j= i=1
in L(H). For §,T € Spmy-1(J) deﬁne

7 m_.,-—l

dS,T):=(IS =T+ D IPerrje-sy ~ Prertse-1yll

i=t I=1

where Px denotes the orthogonal projection on X (X C H closed subspace). Let
T denote the topology induced by the metric d.
Then 7 is equivalent o the homogeneous topology on Spay-1(J)-

Proof. This follows from Theorem 4.2. See also ([25], 3.3).
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DEFINITION 4.10. Let J be a Jordan operator in A. We define 73 to be the
topology on S4-:1{J) given by 7(A) together with the metric d of Corollary 4.9.

THEOREM 4.11. We have 1y = 73 on S4-1(J).
Proof. By Theorem 4.2 it remains to show the continuity of
(9) '(S_A-a(J), 73) 3 T = ker (\je — T)' € (T(A), 7(T'{A)))
for fixed 1 € j € n,1 €1 < my —1. To do so we consider
M = Sa-((Aje = J)) = {g(hje = T)'g™" 1 g € A1} CR(A) € R(L(H)),
together with the final topology 7, such that
(Sa-1(J),73) 3T — B(T) := (Ne — T) € (M, 7)

becomes continuous. Now the inclusion (M, r) «— R(L(H)) is assumed to be con-
tinuous as well as (M, 7) — A. From Proposition 1.9 we see (M, 7) is continuously
embedded in R(A) and this gives the continuity of (9). @

THEOREM 4.12. Let A C L(H) be a ¥*-algebra. Suppose J € A has the
property that the similarity orbit Spyy-1(J) C L(H) admits norm-continuous local
similarily cross sections into the group L(H)™'. Then the A-orbit Sy-1(J) € A
has A-continuwous local similarily cross sections into A~1, which can be chosen
to be restrictions of *-rational functions defined in a A-neighborhood of J to the
sitmilarily orbit.

Proof. From the theorem of D. A. Herrero ([2], 16.1) we know that J is a
nice Jordan operator in L(H). By Theorem 3.2 J is also a Jordan operator in A.
Since J is nice, the homogeneous topology on Si(z)-1(J) is the same as the norm
topology and by Theorem 4.11 the homogeneous topology on S4-1(J) coincides
with 7(A). Therefore the function w of Lemma 4.8 is a similarity cross section on
a A-neighborhood of J in S4-1(J) and has the desired properties. @

THEOREM 4.13. Let J be a nice Jordan operator in the ¥*-algebra A with
o(J) = {Xo} (for ezample J nilpotent). Then a7 : A=1 — 5 4-:(J) has rational
local cross seclions.

Proof. In this situation, Pxg,m,, (b) = € for b in an open neighborhood of J
intersected with the similarity orbit. The function w of Lemma 4.8 is a rational
local similarity cross section in this case. @
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REMARK 4.14.

(i) For each Jordan operator J € A the similarity orbit §4-:(J) carries a
local structure that makes it a locally-A-rational manifold (see [23], 1.7 and [24],
1.7). In the chart @; : Uy — ¢3(Us) C Ty (see [24], 2.7) the map ¢;(Us) 2
z— e+ 2z € A" !is a local cross section to 77, Since changes of coordinates
are A-rational ([24], 2.8), this map defines a local cross section which is a rational
morphism from the A-rational local structure of $4-1{J) into the group A~!.

(i1) We can also consider two sided continuously embedded topological ideals
T within A (Z for example locally pseudo convex). In this case we let the group
G := connected component of e in {e +y € A~ : y € T} with respect to 7(Z)
operate on Jordan operators in A via similarity and look at the orbits Sg(J) :=
{gJg~!: 9 € G} C J +Z. Then the results of Theorems 4.2 and 4.11 remain true
(where the homogeneous topology is now determined by 7(Z) via G) if we only
additionally assume for 7 and 73 the continuity of

(Se(J),7)3T—Te(J+I,7(T)), i=23.
The function w of Lemma 4.8 takes values in G in that case (see [26], Chapter 3).

ExAMPLE 4.15. (Continuation of 2.20). Theorems 3.2, 3.8, 4.2, 4.11, 4.12
have obvious applications to the matrix algebras .4 of 2.20. We note that in these
situations the homogeneous topology on the similarity orbit of a Jordan element
is always equivalent to 7(.A), which is a consequence of pointwise finite dimension
arguments (see [26], 6.0.3).
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Note added in proof. 4.16 Meanwhile the author proved the following sharpening of the
Theorems 0.4, 0.5, 4,12, 4.13:

THEOREM. Let A C L(H) be a U”-algebra, J € A a Jordan operator of L(H). Then there
exist

1. an open neighborhood W, of J in (A, r(A)),

2. a rational function w : W; — A,

3. a neighborhood W) of J in S 4,-1(J), open with respect to the hologeneous topology of
the orbit, W3 C S4-1 {(INW,

such that wlw_:, : WY — A=Y is a local cross section of 7, w(J) =e.



