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ABSTRACT. This paper is devoted to the study of an explicitly given sec-
ond order difference operator which appears in the “representation theory”
of the quantum SU(1,1) group of non-compact type. We set up a situation
in which the operator is shown to be self-adjoint, and the spectral analy-
sis of the operator is developed. The “eigenfunctions” are perfectly given
in terms of the basic hypergeometric functions. We then prove an explicit
spectral expansion theorem which corresponds to the Fok-Mehler formula in
the classical situation.
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0. INTRODUCTION AND RESULTS

The purpose of this paper is to give a detailed spectral analysis of a difference
operator of a very special type. The operator which we study in this paper comes
from the g-analogue with its background based on the “unitary representations”
of the quantum group SU,(1, 1) of non-compact type.

In order to study the structure of the quantum group SU,(1,1), of non-
compact type, we are obliged to pass to the infinite dimensional representations
as in the case of the classical Lie group SU(1,1). However, almost all of the
researches on the quantum groups are mainly concerned with the finite dimensional
representations based on the purely algebraic techniques.
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Following to the present approach to the quantum groups, one of our basic
tool is the coordinate ring of the quantum group. Due to the non-commutativity
of the coordinate ring, we are not allowed to think of the “underlying space” in a
usual sense. Then, in the case of the “compact real form” SU,(2), the elements
of the coordinate ring are realized as all bounded operators and we have no an-
alytical difficulties. (See [14]). However, the “non-compactness” of our quantum
group SU¢(1,1) causes enormous difficulties from the point of view of functional
analysis. As a result, rigorous and natural frameworks which deal with the unitary
representations of the quantum groups of “non-compact type” have not yet been
carefully established.

At the present situation, the technically possible direction for our research
is to work on the spectral analysis of the operator which comes from the Casimir
element. This is certainly supposed to be the first step to build up the theory of
the unitary representations of the quantum group SU,(1,1).

In the publications [8], we also discussed about some classifications of the
formal unitary representations in terms of the “complex spin”. Then, the amazing
thing is that, only in the quantized situation, there appears a new continuous
family of “infinite dimensional unitary representations”. We also have a formal
observation that this new family disappears if we take the “classical limit ¢ — 17.

lso at the same time, the parameter space corresponding to the usual “principal
series representations” becomes compact set whereas it is a non-compact half line
in the classical situation.

Then after, one of the author announced in [12] that if we take in account
of a suitable boundary condition for the operator, the parameter space of the new
family is not any more continuous byt discrete. This new discrete family was also
discovered by [13] and now called by the name “strange series”.

From the point of view of spectral theory, our problem looks as follows. The
classification of the unitary representations corresponds to the spectral decompo-
sition of the operator. In the classical situation, the operator corresponds to the
usual regular-singular differential operator of second order which is the radial part
of the Casimir operator on the classical Lie group SU(1,1). Then the spectral the-
ory was well known that the operator has only continuous spectrum over which the
spectral expansion theorem was established. But, when we turn to the quantized
situation, the spectrum does not look like that. The discovery of the strange series
yields the existence of the point spectrum for the operator which never happens
in the classical situation. These eigenfunctions are expressed in terms of the basic
hypergeometric functions which is known as the g-analogue of the hypergeometric
functions of Gauss.
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However, rigorous treatments of this operator from the point of view of spec-
tral analysis rather seem to be missing at the moment. Therefore, the main pur-
pose of this paper is to take a full advantage of the functional analysis for this
difference operator. The operator is shown to be unbounded self-adjoint opera-
tor having both continuous and discrete spectrum corresponding to the “principal
series” and the “strange series”, respectively. Here, it should be remarked that
the operator is semi-bounded and the continuous spectrum is a bounded set lying
in the low energy region. Then the unboundedness of the operator is due to the
point spectrum which lies in the high energy region. This type of phenomena are
quite rare in the case of classical differential operators.

In the present publication, we are not able to go into the detailed discussions
of the theory of “unitary representations of SU,(1,1)”. As we have already pointed
out, we still have some subtle problems even for the definition of the natural
coordinate ring defined over SU(1, 1). This matter was started to be discussed
in [9] with lots more delicate problems being untouched. This paper will be just
a beginning part and the further discussions will be given in our forthcoming
publications. In particular, this paper concerns only with the case of zonal part.
Then the non-zonal part is fully discussed in the publication [4].

One of our main emphasis in this paper is the rigorous appearence of the
point spectrum which suggests the existence of the new series of representations
which we call the strange series. This is certainly a subtle object and in the
“quantized situation”, we also have observed some strange behaviour of the heat
kernel associated with the quantum Laplacian even in the case of compact quantum
spaces. This is discussed in [5].

This paper is organized as follows. After this introductory section, we give
a brief survey on the calculus over the quantized half open interval in Section 1.
The reduction of our problem to the g-difference operator which we study in this
paper is also given in the same section. Then in Section 2, the self-adjointness of
the operator is discussed. In the proof, we present a function space on which the
operator is shown to be essentially self-adjoint.

In Section 3, the eigenfunctions and the generalized eigenfunctions are given
and shown to be expressed in terms of the basic hypergeometric functions. This
will be a brief survey of the results essentially obtained in [8] from the different
point of view. Then the expression given in Section 3 is used to give a construction
of the Green kernel. To prove that the given expression is actually a Green kernel
of the operator, the connection formula for the basic hypergeometric functions
obtained in [10] plays a quite important role.
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The full description of the spectrum of the operator is given in Section 4.
Then the explicit eigenfunction expansion as our main theorem (Theorem 5.6) is
given in Section 5. The Plancherel formula is explicitly given in Section 6.

Finally, in Section 7, we present some discussions concerning the classical
limit.

1. REDUCTION TO THE Q-DIFFERENCE OPERATOR

Throughout this paper, we assume that the quantization parameter ¢ satisfies
0<g<l.

Here we describe very roughly the way to get the operator which we deal
with in this paper. When we discuss about the quantum groups, the object is
usually meant to be the quantum universal enveloping algebra which is Ug(s((2))
in our situation. (For the quantum universal enveloping algebra, we refer [3] for
the details.) In the classical situation, there are three different real forms SU(2),
SU(1,1) and SL(2,R) for the classical U(sl(2)). Accordingly, we are also able
to discuss about the three different types of formal real forms on the quantum
universal enveloping algebra U,(sl(2)). The formal real form which we regard to
correspond to the virtual object SU,(1, 1) is described by the involutive structure
on the Hopf algebra U,(s{(2)) determined on the generators by e* = —f, f* = —e
and k* = k with the condition that the quantization parameter ¢ is a non-zero
real number. Then the “infinitesimal unitary representations” which we discussed
in [8] are given by some families of involutive homomorphisms of the forms

U,y(s1(2)) — Mat o, (C)
obtained by suitable modifications of the homomorphisms
7 2 Ug(sl(2)) — Mat (I,C)

parametrized by the so-called “complex spin £ € C”. Here, the set I is an infinite
set indexing the basis of the infinite matrix algebra Mat (I, C) and the homomor-
phisms 7, are determined on the generators in terms of the matrix units E;,
t,7 € I of Mat (I, C) as follows:

m(e) =D (- j+ 1 Ej_1;
jel

me(f) =Y [+ 5+ 1B
jel

Wg(k) = Z q_j Ej}j.

jel
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In these expressions, we also have to mention that the symbol [n], for n € Z is the
(homogeneous) g-integer of n defined by

" —-q"

e
Then, following the classical ideas of Bargmann ([1]), we are lead to look at

the action of the “Casimir element”:
=132 4 of=2
g k% 4+ k™% =2
Ci=ef + ———— € U,(sl(2
(q _ q_1)2 9( ( ))

which generates the center of the quantum universal enveloping algebra. In the
process of looking this object as an operator, there are some subtle problems to
see the Hilbert space on which the operator is acting. Once a natural coordinate
ring defined over SU,(1,1) is given, then we are able to define a suitable Hilbert

space on which the operator in question is regarded to be acting. In other words,

the operator which we deal with in this paper corresponds to the radial part of
the Casimir operator C' acting on SU,(1,1).

To reduce the argument to the spectral analysis of the g-difference operator
which we deal with in this paper, we start with the coordinate ring A(SU,.(1,1))
of the quantum group SU,(1,1).

Due to (8], the coordinate ring A(SU,(1, 1)) is generated by the four elements
z, u, v, and y satisfying the following relations.

TU = qUT, TV = QUI, UY = qyu, VY = qYV, uv = vU,

luv = yz2 ~ quo = 1.

zY=-q
Moreover, A(SU,(1,1)) has the structure of the involutive Hopf algebra. (For the
details, see [8].)

The element k of the quantum universal enveloping algebra U, (sl(2)) acts
on A(SU,(1,1)) from the left and from the right. Let Agq¢ be the subalgebra of
A(SU,(1,1)) of all elements which are bi-invariant under the action of k.

Then according to (8], the following proposition holds.

1

PROPOSITION 1.1. (i) Ao is a polynomial rinb C[¢] generated by ( =—q~ tuv.

(1) We denote by Coo the action of the Casimir element C on Ago. Then,
Coo is given by ‘

(1.1) Cooe(¢) = —¢7 ' Tj2' Dya¢(1 — ¢*¢) Dgap(€) + —e(0),

B
¢+2+4
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where Tya and Dy2 denote a g-shift operator and a g-difference operator defined by

[T (€) = (a¢), (Dee)(©) = ‘p(%f(—)ch

respectively.

To make our L2-theoretical approach “compatible” with the algebraic frame-
work discussed in [8], we introduce a g-interval (—00,0],2, a function space So =
So(—00,0]43, and a pairing (,-) : Ago X So — C in the following way.

Under the usual condition 0 < ¢ < 1, the definition of the ¢g-interval (—oo, 0] 42
is given by

(=00,0]53 := {—¢* :n € Z}.

Next, we define a function space Sg = So(=00,0]42 on the g-interval (—o0,0]42 as
follows.

(1) sup  [Dp*f({)| <00 for k=0,1,2,...,
803 f = ¢€(—00,0],2
(2) 3AN,n<N=f(—¢)=0.

To define the pairing, let us recall the definition of the Jackson integral. The
Jackson integral of a finite interval is defined by the formula:

G n=Nz—-1
[e©doc=" 3 pl=imana- )
G n=N,

for a function ¢ on (—c0,0],2 and §; = —¢*Ni € (—o0,0)42,j = 1,2. Similarly, the
Jackson integral over the whole g-interval (—o0, 0];2 is as follows:

0
/ P(Q)dgaC =D (=" (1 - ¢*).
-co nel
Due to the above notations, the pairing (-, ) : Ago X So — C is defined by
0
.0y = [ w1 dn¢,
-

for ¢ € Ago, and f € Sp. Here we remark that, in the definition above, we identify
an element ¢ € Ago with a polynomial function on R (and, as a result, with a
polynomial function on the g-interval (—oo,0]43).

The following lemma is essential in our reduction.
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Lemma 1.2. (i) The bilinear form (-, ) : Agg X So — C is non-degenerate.
(i1) We define a g-difference operator Cyq acting on Sy by

— e 1
(12)  Coof(¢) =~ [T DyrC(1 = €O D)) + =5 = F(0).

Then we have

(1.3) {Coot, F) = (¢, Coof),

for ¢ € Ago, and f € Sp.
(iii) Conversely, an operator Cyq satisfying (1.3) is uniquely determined and
given by (1.2). '

Proof. Since (ii) and (iii) follow imediately from (i) by direct calculations,
we only have to prove (i). Namely, it is sufficient to prove the following:

(a) ¢ € Ago satisfies {p, f) =0 for Vf € Sy = ¢ = 0.

(b) f € So satisfies (i, f) = 0 for Vp € Ago = f=0.

For any n € (—o0,0]42, we define a function 6, € Sy by 8,(y) = 1 and
84(¢) = 0 for ¢ # 7. Then, {p, é,) = 0 means p(n) = 0, which proves (a). Then
the proof of (b) goes as follows. Take f € 8o satisfying the assumption in (b).
We define a function F on R by F(z) = 0 for z > 0 and F(z) = f(~¢?") for
—¢?" < 2 < —q¥"*1), Then F is a bounded function with a compact support.
Thus, the Fourier transform F(t) of F is extended to give an entire function of
t € C. By the assumtion of f, we have

" o0 _qﬂ(n-H)
d\™ o ,
(la) 7(0) = / Py de = 3 f(=¢*) / 2™ da
-0 nel _q?'l

1~ 2(m+1) 9 .
= =g [ Ot =0, for m=0.1,2.....

o0

Therefore, we obtain F = 0, which shows f = 0 by the Fourier inversion formula.

The lemma above allows us to think of the action of the Casimir element C on
8g which essentially agree with the framework discussed in [8]. Then the lemma
above enables us to set up the problem of the spectral analysis of the Casimir
operator C on the zonal Hilbert space.

Now we go into the definition of L?(—o0,0],3. We define

L*(—00,0]42 := {p on (—00,0], : (i, ) < co}.
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where the inner product is defined by

0

(00 = [ o
—o0
and the corresponding L?-norm is denoted by || - || = || - lea(- 0,00,

As a technical tool, we also introduce the space of all compactly supported
functions by

Ce( = 00,0},
:= {p on (—00,0];2 : p(—¢**) = 0 except for finitely many n € Z}.

It is then easily observed that we have the natural inclusions
Ce(~00,0)ya C So(—00,0}y2 C L2 (—00,0],2.
Let P be the operator defined by
(1.4) P :=T5;' Dl — ¢*¢) Dga.

For simplicity, we deal with the above g-difference operator P instead of Coo in
the following discussions.

REMARK 1.3. In case of the classical Lie group SU(1,1), the g-difference
operator Cpo (or Co: o) corresponds to the hypergeometric differential operator

d .. d 1
—EEC(I _C)a—g'*' Z:

on the half interval (—oo,0], which is realized as a self-adjoint operator on the
zonal Hilbert space L*(—oo0,0] associated with the Casimir operator on SU(1,1).
Moreover, it is known that the spectrum of the differential operator above consists
only of the absolutely continuous spectrum, which means that only the principal
continuous series répresentation of SU(1,1) appears in the zonal Hilbert space.
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2. THE SELF-ADJOINTNESS OF THE OPERATOR

In this section, we go into the proof of the self-adjointness of the operator. Here
we have to remark that all these operators can be regarded to act on the spaces
of sequences over Z, and then these operators are well defined in this sense. It is
also seen by the definition that the space Ce(—00,0],2 is invariant by the action
of these operators. In either sense, the formal adjoint of the operator Dy is equal
to —;};Tg';qu: and hence the operator is symmetric. In particular, the operator
P acting on Sp(—00, 0]42 which we denote by (P, So{—00,0]43) is a densely defined
symmetric operator on L?(—00,0];2. The main theorem of this section is the
following.

THEOREM 2.1. (i) The operator (P, Sp(—00,0]42) is essentially self-adjoint.
(ii) The self-adjoint extension of (P, So(—00,0]42) is given by (P, D), where

D= {p € L*(~00,0)2 : Pp € L*(~0,0];» , lim /~([Dyae] () = 0}.

Here we remark that our notational convention of taking the limits as { — 0
and { — —oo are given by

. DEET _2n . N T _a2n )
lime(€) := lim o(=¢"),  lm o(():= lm ¢(~¢"")

The remaining part of this section is devoted to the proof of this theorem.
The proof is devided into several steps as follows.

LEMMA 2.2. For ¢ € L%(—00,0},3,

lim V=(p(¢) = Jim_v/~Cp(¢) = 0.
Proof. This follows from the definition of the Hilbert space L%(—o0,0]42. 8
LEMMA 2.3. Suppose p € L?(—o0,0]y2 satisfies

Py € L¥(~00,0),3,

1) | lim ([Dpel(¢) = 0.

Then we have clirré V—C[Dga9)(¢) = 0.
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Proof. We put Tya Py = f. Then, by (2.1),
0
(1= ¢°0IDl(0) = = [ 1) dgn
¢

Therefore we have

0
11 = 2D el(0)] € / |F(n)ldgan

<V~ /if(n)l dgn,

where we used the Schwarz inequality to obtain the second inequality. Then,

0

[V=E0a610| < =iy | [ 1FPdgn
¢

Due to the assumption that the element Tp2Pp = fisin Lz(-—O0,0]qz, the left

hand side of the above goes to zero when we take the limit ¢ — 0. This proves the

assertion. NI
LEMMA 2.4. The operator (P, D) is symmelric.

Proof. We see easily that the equality

¢a

JUPAOTE) - oA 4pC = Pl #)(G2) - Fle,9)G1)
1

holds for ¢, % € D, where F(p, ) is defined by

1= O{e(a2)9(¢) = p(O)¥(g~%¢)}
(1-¢) x {77 (V= [Dpel(©)) V= 9O
= V=0T (V= Da¥l(0) }

Flp, ¥)() =

(2.2)
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Therefore, Lemma 2.2 combined with ¢,% € D, we have F(p,%)(¢2) — 0 as
{3 — 0. Furthermore, by Lemma 2.2, we also have

F(p,¥)((1) = %% X {\/:C190(9"2C1)v —¢1 %(C1)
— V=G (V=G wla) }-

Then it is seen that the right hand side goes to zero when we take the limit
{1 — —oo. Therefore we have

[ PO - o O g = 0

which means (P, ¥) = (¢, P¥). This proves the assertion. &

Let (P*,D*) be the adjoint of (P, D). Then the above Lemma, in particular,
shows (P, D) C (P*,D*).

We recall that the operator P can also be regarded as a difference operator
acting on a space of sequences. This means that for any sequence ¢, the expression
Py makes sense as a sequence over the integers. It is also remarked that the inner
product (p, ) makes sense for any sequence % if ¢ is in C.(—00,0]s2. Then, in

view of the above proof, the following twc statements are easily seen.

COROLLARY 2.5. For any ¢ € C.(—o0,0]y2 and any sequence ¥, (Pyp,¥) =
(¢, PY) holds.

LEMMA 2.6. For ¢ € D*, the sequence Py is equal to P*p regarded as a
sequence.

Then we obtain the next statement.

PRrROPOSITION 2.7. The operator (P, D) is self-adjoint.

Proof. The point we have to show is the inclusion P* C P. Then, by
Lemma 2.6, we have Py = P*i € L%(—00,0]42. This means that if we see

(2.3) lim V/=((Dp)(¢) = 0,

we obtain the assertion.
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Let ¢ € D and ¢y € D*. Then

¢
@1 [ { (PP - oI} e = Fle, 910

-0
Now, we define ¢ € D by

_f1 for —1<(<0,
§°(0‘{0 for ¢ < 1.

IhED icr 1<C< U’ “ehaie
q (

and hence )
Fp,9)(e%¢) = ¢*(1 — () [Ppa9](C) -

Then, due to the fact that the left hand side of (2.4) goes to zero as ¢ — 0, we

have

! lim ([Dpv)(¢) = 0.
Therefore, Lemma 2.2 applies to 4 and we obtain (2.3). 8

LEMMA 2.8. For ¢ € D, the limit (0) := clm}] @(€) exists.

Proof. We put $(() = v/—{[Dy2¢]({). Since ¢ € D, we have c“mb () = 0.
Therefore, for —1 < ¢; < {3 < 0, we obtain

Ca {2
o6) = 0() = [ Do et = [ Eac
{1

G

and hence

{a
[o(62) = c)l € _max WO | —== it
G

Then the finiteness of max [#(¢)] and the fact that the Jackson integral

(1

goes to zero as (1,(2 — 0, we have the assertion.
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LEMMA 2.9. Let K be the operator on L:[~1,0),2 defined by

0 0
[Ke)(C) f=/£‘(’i"':_l‘q76‘)‘f<p(n) dgandgaé
¢ 4

Jor ¢ € L?[—1,0),2. Then the operator K is bounded.

Proof. For a,b € (—00,0],3 J{0}, we define the characteristic function x(q )

defined by ( )
1 (e<{<Kh),

Xla)(C) 1= {0 (othermse)

Then we have

(Kel(0) = / i 25) f X o1()e(n) dgan dgat

K(¢,m)p(n) dgan

A\O

where

K = / F= e dot

Therefore, due to the inequality
a’n . *n ]
K({,n)|= / ‘_._.___.... da€ € f —dgaf,

we gee that there exists a constant C independent of ¢, n satisfying

K¢, ml<C % ’

for =1 € { <7< 0. Then we have

1]
Kl < / K dgn [ lo©)P 4t
¢ ¢

0
< Cllgllt-saa VI 1l dgon
¢

< C'llellag-1,0),2 K|



172 Tomoyvuk! KakeHl, TETsuya Masupa aND KiMio UeNo

with a suitable change of the constant C by C’. Hence we obtain

[

1 ellit-s, = [ IKAOR do

-1
0
< Cllellza-so,s j €] dgag
-1

< C"lellzag-1,0),
with a suitable change of the constant C’ by C" and the assertion is proved. 8

PROPOSITION 2.10. The operaior (P, Sp) ts essentially self-adjoint and its
self-adjoint extension is givén by (P, D).

Proof. The statement which we have to prove is that for any ¢ € D, we have
a sequence {pn}3, in 8y satisfying

(2.5) ¢n — ¢ and Py, — Pp in L*(—00,0]4 .

We prove (2.3) by the following cases according to the condition of the support of

@. .
Case 1. First, we consider the case of ¢ satisfying

#(0) = limp(() =0 and supp(p) C [~¢°, 0,2 -
We put T2 Pp = 4. It follows supp (4) C [—¢?,0],2 and then define 4, € Sp by

Yn(() == X[-1,— g ()P(C),n =0,1,....

It is seen that the sequence {n}5%, converges to ¢ in L%(—00,0];2 as n — co.
We then define the sequence {pn}%, by

ea(€) == x1-1,0(O[K¥a)({) ,n=0,1,....

By the definition of the operator K, [K¢,)(¢) = 0 for —¢>® < ¢ < 0 and hence
pn €Sy forn=0,1,....
By the definition,

[Ty PAI(C) =[Dga((1 - 4¢) Dy pl(C) = ¥(C) ,
lim{¢Dyal(¢) = 0
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and hence

0
[€(1 = ) Dgaeel(¢) = —/¢(n)dgnn-
¢
On the other hand, ¢ satisfies 2in% ©(¢) = 0 by the assumption. Therefore we have
p(¢) = p(¢) — #(0)

g 0
1
—!m!¢(n)dqﬁndgnf

= [KYI(C) -
Due to the definition of the operator K, @n({) = ©(¢) = 0 for { < -1 and
n=0,1,.... Therefore Lemma 2.9 implies

[l = enllzac-co,01,2 = lle = enllLa-1,0,s
(2.6) = ||K (% — ¥a)llLag-1,0,2
< const.[|¥ — ¥allzac-1,05,2 -

This proves that the sequence {n}5%, converges to ¢ in L2(—o0, 0],a.
Now, the situation is then devided into the following three cases. In the case
that ¢ satisfies —g* < ¢ < 0, the equality

[Pel(€) = [Pen)(C) = [T719HC) — [T ¢n) ()

implies
(2.7) 1P — Ponlleac-gt0,2 = IT7'% = T~ allza(—g4,0,
for n = 0,1,.... In the case that ¢ is either —g~%,—1 — ¢2, the inequality (2.6)

implies that ¢, pointwisely converges to ¢ and hence, due to the fact that the
operator P is a difference operator, we have

(2.8) [Pen)(C) — [Pel(C) for (=-g7%, -1 =42

Finally, in the case that ( satisfies { < —¢*, the assumption on ¢ combined with
the definition of ¢, implies

(2.9) Po(¢) = Pea(¢) = 0.
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In the cases of (2.7), (2.8) and (2.9), we have Pp, — P in L%(~o0, 0]42 and this
proves the assertion for Case 1.

Case 2. Next, we consider the case of  satisfying supp (¢) C [—¢%,0];2. In
this case, we put $(¢) = @(¢)—w(0)x(—gs,0)(¢). Then we have @ € D which satisfies
the conditions of Case 1. Hence there exists a sequence {3,}3%, in Sy satisfying
@n — ¢ and Pg, — P in L?(—00,0],3. Therefore the sequence {pn}32, defined
by @n = ©n + ©(0)x[—4s,0] satisfies (2.4) and prov.es the assertion for Case 2.

Case 3. Finally, we consider the case for general ¢ € S;. We put

where,

6N = Xfcoo,—g19 ¢ = X[-ge0)0 -

Then ¢(?) satisfies the condition of Case 2. Therefore, we may assume ¢ = (1)
in the following.

We Put 9n = Xn®, Xn = X[—q-2n,0- We see supp (¢n) C [-¢72",—¢%]4s and
hence p, € D. It is also easily seen that the sequence {n}3%, converges to ¢ in
L%(~00,0],2.

By making use of the fact that |[D,ax.](¢)} = O(I¢|™Y), | [D 2xn) ()] =

O(172), W=Ce()l = o(1) and ICF/2|[Dga¢)(C)] = o(1) as { — —co, we see
quite easily that the order estimate |[[P, xn]#](¢)| = o(l(l‘“z) holds as { — —oo.
Moreover, we find that

supp ([P, xnlp) C [~¢~ "+, ~~2 2]
Hence we obtain [|[P, xn]¢l| = 0 as n — co. Therefore we obtain

[IPen — Pell < I[P, xalell + (1 = xn ) Péll

with its right hand side converges to zero as n — oo. This proves the assertion for

the Case 3 and then we arrive to the end of the proof. 8

This proves the statements of Theorem 2.1.
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3. THE EIGENFUNCTIONS AND THE GREEN OPERATOR

We start this section by reviewing some of the standard notions of the basic hy-
pergeometric functions which play important roles in this paper. Then we go into
the construction of the Green operator of the self-adjoint operator (P, D).

First, we review the notion of the g-shifted factorial. For a suitable complex
parameter o and n = 0,1,..., we use the notation

n=1

(3.1) (a:q)n = _H(l - ag’)

forn 2 1 and (& : ¢)n i= 1forn = 0. We call (3.1) the g¢-shifted factorial of
n. Then a g-analogue of the Gauss hypergeometric function which we use in this
paper is defined as follows.

DEFINITION 3.1. For suitable parameters «, # and ¥, the analytic function
241 of { defined by

a (@:9)n(B:q)n .n
1 ( L ) Z “ (7 n(g:9)n (g D
is called the basic hypergeomeiric function.

For the purpose of obtaining better descriptions of the eigenfunctions, we
define the mapping A : C\{0} — C by

2
(3.2) Ma) = _"—qz)z(l +q° = (a+a b)) .

(1
The mapping A satisfies A(a™!) = A a) for & € C\{0} and hence A maps the

set {0 < |a| < 1} onto the whole complex plane C. The next proposition is a
restatement of the results in [8].

PROPOSITION 3.2. For o € C\{0}, the function of { defined by
o a~?!
Pa(C) = 2001 (q 2 ! tq2;92C)
is an analylic function of { for |(| € ¢=2 and satisfies (P — A(a))pa =

As we have already explained in Section 0, the eigenfunctions of the operator
P are described in our previous publication [8]. The statement of Proposition 3.2 is
easily seen by the direct calculations. It will be mentioned in the later discussion
that the function ¢, of { is naturally extended to the whole quantum interval
(—00,0]43 as a sequence satisfying (P — A(a))pa = 0.
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REMARK 3.3. If we think of the second order ordinary differential operator
of order two, the dimension of the space of the solutions is two. In our situation,
also have an eigenfunction of the operator P which belongs to the same eigenvalue
and linearly independent from ®a. This function has an expression of the form:

log,a(—¢) + (an analytic function of {) .
However, this type of function is removed by the condition
lim V/=C(Dapl() = 0

which describes the domain of the self-adjoint operator (P, D). This is regarded as
a sort of Neumaann condition at the boundary ¢ = 0. The origin is the only point
where we are able to think of the locality in the quantized situation.

The eigenfunctions discussed above are for { satisfying —1 £ ¢ € 0. We now
_pass to the eigenfunctions for { < —1. For & € C\{0}, we define the function ),
on (—00, 0],z by

4= (2)" torc =g € (0,0l

aq
PROPOSITION 3.4. For a ¢ {£q™ : m € N}, the funclions of { defined by

+1 +1 1
Gat1(€) := Yot ({2 (th ¢at? R ¢ E)

are eigenfunclions of the operator P which belongs to the eigenvalue A(a) for
- << -1.

This is also a statement which is already implicit in [8] and a proof is obtained
by direct calculations.

We remark that the statement of Proposition 3.4 holds for any & even without
the assumption a € {+¢™ : m = 0,1,...}. For the expansion theorem for the
operator P, the important cases are rather for o = %¢™ for some m = 0,1,....
By the algebraic expression of P, we may think of the operator (P, D) to be non-
negative. Then, in view of (3.2), the possible values of « satisfying M(a) > 0 are
~l1€a<0,0<aglandea el |o|=1.

Now we go into the explicit construction of the Green operator of the self-
adjoint operator (P, D). This will be used to prove an expansion theorem in the
later section.
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We put
q’a(() = A(a)¢u(C)

3.3 |
( ) :A(a)'(pa(C)?‘Pl (qa q2a,2 * 1q2; %) '

where s 4 4 o
Aa) = L0 (0770: 0 )oo(~00 1 7)o
200" 149w eg(a7? i qY)e

Recall that, for A in the resolvent set p(P) of the operator P, the Green operator
Gy = (P~ M)~ of P is a bounded operator on L?(~oco, 0],2 with its range equal
to the domain D of P. (The operator R(A : P) := —G, is called the resolvent
of the operator P.) We also denote by o(P) := C\p(P) the spectrum set. Since
our operator P is self-adjoint, the spectrum A € ¢(P) is either in the set o,(P) of

point spectrum, or in the set o.(P) of continuous spectrum.

As we have already discussed in Propositions 3.2 and 3.4, the functions wa (¢ )
and ¢,+1(¢) (and hence ®,+1(C)) are eigenfunctions for the operator P belonging
to the same eigenvalue Ma) = A(a~?) for { € [~1,0]42 and ¢ € (~00,—¢™?] 2,
respectively. Since P is esssentially a diffrerence operator of order two, we are
allowed to think of the extensions of ¢4({) and ®,+:(¢) to the whole quantum
interval (—oo, 0],42 as sequences keeping them to be still eigenfunctions of P belong-
ing to the same cigenvalue A(a) = A(a~!). We use the same notations for these
extended functions. Then we have the following statement due to the connection
formula in Mimachi [10].

ProprosITION 3.5. For o € C\[{0}{J{¢" : n € Z}], the equality
900(‘:) = q)a(C) + <I>c«“‘(C) ’ C € ("00: 0]9’
holds.

We first consider the case that the complex parameter o € C satisfies 0 <
lo| <1 and o ¢ {¢™ : m =0,1,...}. We then consider the function G(¢,n; @)
of (¢, 1) € (—00,0]43 X (—00,0];2 defined by

#a(()®a(n) ¢ 21,
Pa(Qpaln) (<n.

LEMMA 3.6. For ¢ # 1, (P — M@))G)(¢,n;a) = 0.

G(¢,ma) :={

Proof. Due to the Propositions 3.2 and 3.4, the functions p4(¢) and ®,(¢)
are eigenfunctions of the operator P = P corresponding to the eigenvalue A(a).
Then the assertion follows from the definition of é(( yma). o
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LEMMA 3.7. The ezpression ((P; — Ma))G)(n, m; @) x n is independent of
where P ts considered to be an operator acling on the first variable {.

Proof. In terms of the g-shift operator, we have the expression:

rosr= g { (1) () (e )

Therefore we obtain

A=20 (p -~ XN, m50)
= (% - q’) Glg*n,m o) + ( (q:(a +a7l) - %) 5’) (.75 )
(3.4) + (% - 1) Glg~*n,m )

= (3= ) palen®a(n) + (s(a+ a7 - 2) patean)
+(2-1) eatan@ao).

On the other hand, we have

69 (3-¢) ot + (era -2 aum + (3-1) 0uta) =0
due to (P — A(a))®a(n) = 0. Therefore the combination (3.4) — (3.5)x@a(n) gives
us

gl-%12—)2((1’4 = Ma))G)(n,n;0) = (% - qz) {@ald®n)®a(n) — Palg®n)ea(n)} -
Therefore we have

((Pc = Ma))G)(n, m @) x 1
2
(3.6) = a-oyr = )2 (1 - ¢’n) {pala’n)@a(n) — Bald*n)pa(n)}

g’ 2
= u—_qz—)zF[%.@](q )

where F is the bilinear form defined by (2.2). Then, by the definition of F, we see

[T;:' Dys Fl®a, Zall(€) = [PLa)($)pa(() — Bal{)[Peal(C)
= M@)®a(O)palC) — Bal¢)M)pal() = 0.

This proves Dga {((P.: — Ma))G)(n, n; a) % n} =0 and obtain the assertion. §
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This lemma allows us to define a function of a given by

M(a) = - L ,
((Pe = M@)G)(mm; ) x n

We next give an expression for M (a).

LEMMA 3.8.
— _ (1 — q2)2 B 1
M) = X A A e

Proof. By Lemma 3.7, we are allowed to look for the value of ﬁ(a) by taking
a limit with respect to the variable 5. Therefore, by (3.3) we have

1 . = .
.._M(a) foned n_l}{-nm((Pc - )\(a))G)(UsW: ) X 7]
= (]__:.Lq_z-j{q-llgloo {@a(q2n)@a(ﬂ) - ‘I’a(qzn)‘f’a(ﬂ)}
(3.7) = - H—f—;—z,?ﬂgglw {pa(m)®alg™?n) — Baln)pals™?n)}

2
= _H:Q—Q_EFQEIPOG ﬂ{(q)a(fl) + (Da"‘ (n))@a(q_zn)

= 2o(M(Ralg™*n) + Pa-1(g™n))}
where we used (3.6) for the second equality and Proposition 3.5 for the final
equality. Then by making use of the fact:
+1 +1
, gor ga™" 5 1) _
')-Ez-noo 2#1 ( ?a®? -4 ’;}-) =1,

we see that the right hand side of (3.7) is equal to
2

- (T_?qz_pnﬂrpm n{(A(a)wa(n) + A(a™ W1 () A(@)¥a (g™ *n)

— A(@)ba(m(A()bals™n) + Ale™ ) u-1(a70) }
2

= —(l—_i;gj;A(a)A(a“) Aim n{da-1 (MPala™n) — Ya(m)Pa-1(a7n)}

2

— -1y o =2NN[ ~N N _N+1, N+1

= Ao gA@AE™) lim (—g7 ) {amNgMaN
- aNqNa-—(N+1)qN+1}

qs 1 1
= WA(Q)A(OI" Yo —a™?)

where we used the fact that for || < 1, ¥4(7n) goes to zero as n goes to —oo for
the first equality, and we also put = —¢~2" for the second equality. This proves
the assertion. B
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The combination of the statements of Lemmas 3.6, 3.7 and 3.8, we obtain:
— 1
(P = Ma))(M()GE, 5 2) = '_";f%(() '

where the delta function &, of ¢ is defined by
1 for¢=9,
6 =
() - {0 for ( # 9.
Therefore, we have the following theorem:

THEOREM 3.9. For a complez parameter a € C satisfying 0 < |a] < 1 and
SA(a) # 0, we put

o) i { M(@)9a(O)a(n)  for(2m,
G = { oty ot 2
where
1l = 14 1 _
M) = =@Ml = =5 Ayt @ —a)

Then the followings hold:

(i) For a fized n € (—00,0]43, G(¢,m; ) belongs to the domain D of the
operator P as a function of . Conversely, for a fized { € (—00,0}42, G({,n; @)
also belongs 1o the domain D as a function of 1.

(i1) For any ¢ € L?(—00,0]43, we have

(P=X@) [ GCma)emdpn=p0)-

Proof. (i) In the case that the parameter a satisfies 0 < |af < 1, the functions
@a and ®4 of { are locally square summable (in the sense of Jackson integral)
at the neighbourhoods of zero and —oo. Then it was also seen that these are
eigenfunctions of the operator P belonging to the eigenvalue A(e). Finally, It is
observed that the function ¢, satisfies the boundary condition (2.4). This proves
the assertion.

(ii) The operator P — A{a) is a difference operator acting on the space of
sequences and hence commutes with the operation of taking the Jackson integral.

Therefore, Lemma 3.6 enables us to have:
0

0
(P =X [ 66 maendgn= [ 1P~ Ma)GIC,meom) dpon

= [a-PL60pm den = (0.

This proves the equality. 1
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Let Gi(a) be the integral operator given by G(,%; ) as the integral kernel
l.e.

0
[Gam®P)() = / G(¢,ma)p(n)ydgan for ¢ € L?(~00,0].

Then we have the final conclusion of this section that the operator G(a) is the
Green operator of (P — A(a)) i.e. we have the following theorem.

THEOREM 3.10. (i) The operator G(q) is defined on the whole Hilbert space
L*(—00,0]42 and maps onio the domain D of the operator P. Furthermore, the
operator G(q) is continuous with respect o the norm topology in L?(~00,0];2 and
the graph norm topology in D.

(ii) The operator (P — X(e))G(q) is the identity operator on L?*(—00,0]p.

4. THE SPECTRUM OF THE OPERATOR

This is the section in which we give a detailed description of the self-adjoint op-
erator P using the Green function which we described in the previous section.
We start by listing up some elementary properties of the mapping C\{0} 5 o =
A(a) € C defined by (3.2). The following properties are quite easily seen.

LEMMA-4.1. The mapping X salisfies the following properites:
(i) The mapping X maps the punctured disk {a € C;0 < |a| < 1} onto the
whole complex plane C.
(it) The mapping X maps the set {a € C;|a| = 1,0 < arg(a) < 7} to the
boundéd open interval (Ti%)?’ (1{2'1_)’) homeomorphically.
(iii) The mapping X maps the punctured open disk {o € C;0 < |af < 1} to
the domain C\ [(Ti_q')?' (Ti:_)?] biholomorphically.

We next study the property of the Green kernel G({,n; @) as an analytic
function of @. The following lemma is easily seen by Theorem 3.9.

LEMMA 4.2. For fized ¢ and 1 in (—o00,0],; the Green kernel G((,n; a)
regarded as a function of « extends to give a meromorphic function defined on the
open punctured disk {o € C : 0'< |a| < 1}, in which the poles of G({,n; &) locate
at the points a = —¢?*™*!, m = 0,1,.... The degrees of these poles are all equal
to one.

REMARK 4.3. It is seen that for fixed { and 7 in (—ob, 0]42, the Green kernel
G(¢,n; @) regarded as a function of & extends to give a meromorphic function
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defined on C\{0} and the poles of G({, n; @) locate at the points a = —g*™*! and
o =q=(m+1) m = 0,1,.... The degrees of these poles are all equal to one.

LEMMA 4.4. The sel o.(P) of continuous spectrum includes the closed in-
e
terval [(1+q)= , (l-q)’]

Proof. Any non trivial solution ¢ of the difference equation (P — A(ei))yp =

0 (0 < 6 < ) does not converge to zero as { — —oo and hence does not belong

to the Hilbert space L%(—00,0]s2. As a result, there exists no point spectrum in
3

the interval [(1 +q),,(—l-“?—),] = {Me*®);0 < 8 < 7}. Then by setting Ao = A(el?),
we put

(0 = - otherwise .
After an easy computation, we have

(P = Xo)eRI/lledll =0 as N — o0,

which proves the assertion. @

{t/),_.u (¢) for (€ [-—q'm,—l]gn,

It was stated in Lemma 4.1 (iii) that the mapping a — A(a) maps the
set {o € C;0 < |e| < 1} to the set C\ [(14;)”(1-2)’] biholomorphically. Let
A+ a()) be the mapping inverse to the mapping a — Ma). The next statement

is important to determine the spectrum of the operator P.

LEMMA 4.5. The values A(1) = (1+1)’ i and M—1) = 7= do not belong to
the set o, (P) of the point spectrum of the operator P.

Proof. We prove the assertion for the case A(1). We put

og aq 1
(}SQ(C) = ¢a(()2¢1 ( a‘gqg : q2; Z)
for a complex parameter o € C\{0}.

For a € C\[{0} U{g™ : m = 0,1,...}], the functions ¢, and ¢,-1 are the
linear independent solutions of the equation (P —A{1))¢ = 0. Therefore, by taking
the limit & — 1, we see that the linearly independent solutions of the difference
equatlon (P = A(1))g = 0 are given by ¢1 and

é:= alzl-ml a- a'1 {ba = dar}-
By easy computations, we have

"l61(=¢*") =1/ =0(¢™"), and ¢"|¢(—¢™) +n|=O0(¢™"),
as n — —00. On the other hand, for a function ¢ € L%(—00,0],2, we have

q"¢(—¢**) — 0, as n — —oco. Therefore, any linear combination of ¢; and ¢
does not belong to L?(—o0, 0], which proves the assertion. @
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PROPOSITION 4.6. (i) The set o.(P) of the continuous spectrum of P coin-

2

sides with [(1+q)°’ (14?)",-
(i) The set o,(P) of the point spectrum of P coinsides with {A(—g*™+?) :
m=0,1,...}}.

Proof. By Theorem 3.9, we find that the Green kernel G({,n; a())) of P is
holomorphic with recpect to A except on the set [G{T);’ ETEF?'] U{ A(=g?m+1Y
= 0,1,...}}. Moreover, G({,n;a())) as a function of A has poles at A =
A(—g?™*+!) :m =0,1,2.... By the combination of these facts and Lemmas 4.4,
and 4.5, we have the assertion. §

We next show that the values A = A(—¢*"*1), m = 0,1,... are the eigen-
values of the operator P. This is equivalent to show that the function ¢, of ¢
for o = —¢®™*! for m = 0,1,... is in the Hilbert space L?(—00,0],2. For that
purpose, the connection formula (Proposition 3.5) combined with the process of
limit plays an important role.

PROPOSITION 4.7. ¢_gam+1(() = 28_gam+1(().

Proof. The connection formula ¢ () = @4(¢) + ®,-:1(¢) holds for & € C,
0<la| <1, a# +¢g™ for m=0,1,.... Therefore, by fixing m =0,1,..., we take
the limit @ — —¢?™*! inside the set that the connection formula makes sense.
Then due to the regularity of @, and ®, on the sets C\{0} and {¢ € C : 0 <
le] < -ql,-}, respectively, we have

lim , 9a(Q) = p_gmnr(Q) and _lim | @a(C) = ®_pmns(C)

a_,_q2m+l
Therefore it is sufficient to obtain the value of the limit  lim " ®,-1(¢). Now
R Auiid
we remember

1 g0 (29 : 9 oo(—071g: ¢H)oe
?(q 4%)eo a“a(a""e“)m ¥a(©

B0 (€) =
2)2

Z(a"q 2) (@ :q%n"

—n

and hence (-—a"lq : qz)oo — 0 and (—&— q L q )n S 0as a — _q2m+1 for
n 2 2m — 1. In the following discussions we put k& = 2m — 1. We have

(> ¢ (¢ 1Y),
all.mq ® -l(C) 2(q4 . qq)m _q-k-l-l(qZk . q“)oo *"9"‘(()

("q—k+1 : q2)3z r-n

2]
x lim (—a~tg:q¢®
3 e 2 (@7%? : ¢*)a(q® - *)n

oa——gk
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Then by making use of the equalities (g2 : .2) = (% ¢ ¢?)k(¢%**+%;¢®)n—r for
n 2 kand (¢ 8! %), = (—g ¥t : g2)2 (=g : g?)u_g, we have

lim (—-‘1_1{1 q2)oo — 1 . ‘(—0!_ q: q2)°°

a——gk (a—qu :q?)n (q2 :q2)n_k orms gk (aﬁzq2 . q2)k
1 @™ g% m-(e? 1 4%

(q2 . q2)n_k 2(q—2k+2 . 2)1:_1

Therefore we obtain

i 2
2 — A ‘9 )"‘k r=n
ak.z'x-qu Do-1(C) = AY_x(() E 2k+2 (a2 qD)nt”

k+1 k+1
- ' -9 1
= A’p—q" (C)C kz({’l ( 2k+2 ; <I23 —)
q ¢
where A is the constant given by
= (970w (=0** 1 @)oo (=g 1Pk (g7 gP)ma(e? : 4D
2" ¢%)eo (1 "‘“)(q (g% : %) g 1%y

Since k = 2m — 1 is an odd number, we have ¢_,-» = —%_ . Furthermore, after

a straightforward computation, we have A = —A(—g¢*). Therefore, we obtain
lim ®4-1(¢) = ®_g(¢) ,which proves the assertion. 8

a—+—q

COROLLARY 4.8. The functions p_gamsr, m = 0,1,... of { are the eigen-
functions of the operator P and the corresponding eigenvalues are given by
2
g -
Mg = a1+ A+ ) m=0,1,

Qa

Furthermore, these are potnt specira of mulliplicily free.

Proof. Since the function @, of { satisfies the equation Py, = A(a)pa
and hence, we see that the function @¢_gam+1 belongs to the local Hilbert space
L?[-1,0]s. Then due to the equality shown in Lemma 3.7, we have

@1 (€) = 2_gamts () = 2A(=g"" 1 W_ poma (C)

2m+2 2m+-2
—q —-q 1
an (T g T eY)

for ¢ € (—00, —¢~?);2 and hence p_am+1 again belongs to the local Hilbert space
L?(—00,—¢™?];2. We also remark here that the values A(—¢?*™+!) are non-zero
form =0,1,.... This proves that the function ¢_jam+1 of { belongs to the Hilbert
space L?(~00,0]5. 1
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6. THE EIGENFUNCTION EXPANSION

This section'is devoted to the discussion on the spectral expansion theorem corre-
sponding to the continuous and the point spectrum, respectively. Let {E(A)}rcr
be the decompaosition of the unity associated with the self-adjoint operator (P, D).
(For the detailed property of the decomposition of the unity, see [15]). By making
use of {E(A)}aer, we have the following two types of projections:

2

(5.1) B\, X(~1))) = E([(liq)z’ a f'.:)z]) '

(62)  E(M-¢"th)=E ({(1 e )(1+q“2")})

Here, the projections (5.1) and (5.2) correspond to the continuous and the point
spectrum, respectively. We first give explicit expressions for these spectral projec-
tions.

It is seen by Lemma 4.5 that the values A(1) and A(~1) are not in the point -
spectrum. We define E(*) by making use of the Green operator as:

X-=1)

E) = 5;; / {G#+i¢ - Gy—ie}dl‘:
AL

then, by the spectral decomposition theorem for a self adjoint operator, we havé

E(IM1), A-1)]) = E((M1), M(-1)))
A(~1)

1
= %16110 / {Gutie — Gu-ic} dp

A1)

=limE® .
€l0

Let E(*)(¢, n) be the integral kernel of the operator £(¢). Then Theorem 3.9 asserts
us that the following equality holds:

A(=1)
63) B =5m [ 6@ mM+iE) - GGmMu—ie)) du.
A1)
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We now apply the change of the variable u to 8 in the integral (5.3) by
ie il 2 i i6
= ufel?y = e fall g i )

Then this transformation maps 6 € [0,7] to g € [M1), A(=1)] and the formula
(5.3) reduces to

O = 2%1'1/ {6 ma0) - 6¢. m @) } 3—‘;

- 2L( . q%)? /{G(C 1, ae(8)) — G(¢, 75 2 (8) )} (e™® —ei®)ds

where we put a.(0) := a(u(8) +ie) for ¢ > 0 and @ € (0, 7). To see the behaviour
of ¢ | 0, we need the next straightforward lemma.

LEMMA 5.1. For a fized 8 € (0,7), we have liﬂ;n a.(8) = ¥,
[ 3

Now we fix the parameters {, n and § € (0, 7). We first assume that the
condition n < ( is satisfied. (The case ¢ < 7 is similar.) Then we have

G({,m; e (8)) (e — i)
_1-¢° 1 emib _ ¢if
P A @) A0 ) ety - ag(e) o PO

which converges to
1—gq2 1
q3 (eig)A(e_ig)Ve“ (C)q)e“ (’?)
as € | 0 due to Lemma 5.1. We also have the similar argument for the factor
G(¢ ,17,0:,(9)) to make sure that under the same condition of taking limit, we
obtain

G(¢, i an(8)) — ;sq v (em)}q e (e ()

where we used the fact that g, = @,-1 for @ = €. Therefore we see that the
integrand
{6 m () - Gl¢, m o))}
converges to
1- q2
e

A(eia)i(e—ia) Peie (C){Beie (1) + Do (m)}

- ;3‘1 7(e"’)il(e"'”) per(Opeslr)
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as € | 0, where we used the connection formula (Proposition 3.5) for the last
equality.

For the purpose of computing the strong limit of E¢) as ¢ | 0, we need to
have some properties of the integral kernel. Lemma 4.2 tells us that the Green
kernel G(¢,n; ) is a meromorphic function for &« € C\{0} with its poles given
by @ = —¢?™t' m = 1,2,... and @ = +¢~™,m = 1,2,.... In particular, on
a suitable compact subset like {a € C : ¢/2 < [a] € ¢~1/2} containing the set
{a € C : |a| = 1}, the function of « is uniformly bounded. This fact combined
with the Lebesgue’s convergence theorem lead us to the following Proposition.

ProrosiTiON 5.2. For any fized ¢ and 1, we have

e 11 1 _
LII‘BIE( )(Can) “oxi_ ¢ ([A(eig)A(e_ig)¢e"(C)‘Pe" (m)dé .

Now we put
_1 1 1

T 21— g2 A(ei®)A(e=19)

Then we have the following straightforward Lemma.

e(6):

LEMMa 5.3.

c(g) _ g q2 (q4 :q4)°° (ezio :q4)m(e—210 . 94)00
T 1= L2210 S (797 1 ¢*)oo(em W07 1 g)oo
The combination of the discussions which we gave, we get to the following
statement which is one of the main theorem in this section.

THEOREM 5.4. Let c(8) be the function discussed above. Then for any ele-
ment f € L?(—00,0],, we have

[E(A(1), A1) = / { / c(O)pete (()pess (1) £ () dqm} dé

0 — 00

Proof. Let f € C.(—00,0];2 be an arbitrary fixed element. Then due to the
Proposition 5.2, we have

L (o}
lim[ B £1(¢) = / { / e(8)pee ()i (M) f(m) dqm} df .

0 -0
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Since the strong limit of E¢) as ¢ | 0 goes to E((A(1), A(~1)), the left hand side
of the above formula coincides with [E((A(1), A(~1))f}(¢). This means that for
f € C.(=00,0]42, we have

x f 0
[E((A(1), M=1}f1(¢) = / { f c(0)peie (C)peie (1) f(m) danz} de .
0

-

Now, the operator E{{A(1), A(—1)) is bounded on the Hilbert space L?(~00,0],2
so that by the density of C,(—c0,0],2 in L2(—o0, 0],2, we see that the mapping

x f 0
fr f { / c(0)pein (C)soew(n)f(n)dqm} d8
0 -0

uniquely extends to give a bounded linear operator on the whole Hilbert space
L*(~00,0]42 and then this proves the assertion. &

Next we pass to the discussions involving the point spectrum of the operator
P. For the purpose of simplifying the notations, we put E, := E({A(—¢***1)})
for n = 1,2,.... Proposition 4.6 implies that the points A(—¢g?"+!}, n = 1,2,...
are isolate points of the spectrum set o(P) of the operator P. Therefore, due to

the spectral decomposition theorem, we have
1
En=—— 9 Gyd\,
27
Cn

where C, is a contour separating the point A(—¢?"*!) from the spectrum set o(P).

Then by the change of the variable, we have

1 dA
E,= Q_Ef Gx(a)a;dor )
Cﬂ-

where C,, is a contour separating the point —¢?"+! from the set a(o(P)). Therefore
by putting the integral kernel of the operator E, by E,({,#), we have

1 dA
Bn(G1) = 55 $ GG M) T dar
E'\



SPEGTRAL ANALYSIS OF A Q-DIFFERENCE OPERATOR 189

The function of & given by G({, n; @) = G({, n; Ma)) has simple poles at the points
a=aqa, =—q?"t! forn =0,1,.... Therefore the residue calculus gives us

3
E.(¢,n) = F‘"—q—)—ReSa —an {G(¢,m;0)(1 —a7?)}
3
- (q—z)z Jim {(a— on)G(¢ ma)(1-a)} .

In the following discussions, we assume 7 & {. Then Theorem 3.9 applies to obtain

o 1 . ‘ 1(a — Oln)SOc:(C)@a(n)
En(¢,n) = '—1 —q? al_l.rg,lu { A(Q)A((x"l) } .

Since A(a~!) has poles of order one at o, := —¢?"*! forn =0, 1,.... Hence we
obtain
1 of! —on
E (C '7) .A( (Pan(C)q)dn(n) llr‘l;l A(O!_l)

_ 4 {(q )oo} (12 1
1-¢2 (2 (0?2 :¢Dee(a72:¢7)n

a121:‘4oo a'—.Z: 4~°°
(ang : qg)m(;lgzq '(qz)oo(?‘zan 4% oo Par, (()Pon (M)

2 —-2n ( ‘g )n+1(q q4)n
== q ()%,
1_q2 ( )(q2 qz) ( q 2) (qzzqq)n‘)oa (C) (24 (’7)
g2t — g—(2n+1)
=2 q—gq-! Parn($) e ()
= 2[2n+ l]qwan(c)Qan(q) N
Now, Proposition 4.7 applies for the case o, = —g?"*! applies to obtain the

equality ¢_gant1 = 2®_g2-41 and hence we obtain

En(¢,n) = [2n 4 1gp_gant1(Q)p_gan+1(n) .

In the above discussions, we have assumed the condition 5 < ¢. But the discussion
is similar for the case n > { to obtain the same equality.
The above arguments give us the following Theorem.

THEOREM 5.5. We have E({A(—¢** ™)} f = [2n + 1]o(f, p— gan+1 Jp_gan41
t.e.

0
BN NAC) = (20 + 1, { [ 1t dqm}_so_.,am.(c)

for any element f € L?(—00,0],2

Combined with Proposition 4.6, the Theorems 5.4, and 5.5, we have the
following spectral decomposition theorem.
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THEOREM 5.6. Any element f in the Hilbert space L2(—oc0,0),2 is ezpressed
in terms of the system of the eigenfunctions {p_j2a41}52, and the generalized
eigenfunctions {pee : 0 < @ < 7} of the self-adjoint operator P as follows:

n

0 ]
16)= [ c@pen (@ { [ ropeno dqw} a6

0
+Z[2ﬂ+1]q_so_q=n+l(0{ _/ f(n)p_gant1(n) dq"’?}
n=0 —00

where [n], is the (homogeneous) g-integer of n € I and c(§) is the c-function
described in Lemma 5.9,

CoROLLARY 5.7. The closed interval [mq_;T, (qu?] included in the spec-
trum set a(P) consists of absolutely continuous spectrum of the operator P.

REMARK 5.8. As we emphasized in the introduction, the theorem above
claimes the appearance of the point spectrum. This fact strongly suggests the
existence of the strange series representations in the quantized case.

6. PLANCHEREL FORMULA

In this section, we discuss about the Plancherel type of formula associated with
the spectral decomposition of the self-adjoint operator P. We denote by H,. the
closed subspace of the whole Hilbert space H := L?(—o0, 042 corresponding to the
continuous spectrum of the operator P. Then we have H. = E((A(1), A(~1)))H.
We denote by F : H — L2(0, ) and F : L2(0,7) — H the continuous linear
mappings which we discussed in the previous section i.e.

0
@) = Jim [ fr)es DE)

_q—QN

for f € H and

x

(Fal(0) = [ s(@)pu (D@ d0
0
for g € L?(0,7), where D(8) is the density defined by

2 ¢ (¢%: 90 (€% : qH)eo
D(8) = /|c(8)| = \/;1 3 4 Egz : 54300 l(lizioqz :qql)oiI ‘
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In the previous section we proved that the equality FF = E((A(1), A(=1)))
holds. Then the aim of this section is to prove that the two mappings F : H, —
L%(0,7) and F : L?(0, ) — H, are isomorphic. This is the same as to say that
the Planchere] theorem holds.

Our first step is to prove that the equality FF = Id on the Hilbert space
L%(0, 7). Due to the density argument, it is sufficient to prove that the equality
FFg=gforgeC (0,7). Let g be any fixed element in C§°(0, 7). Then we have

0 w
[FFg(6) = Jim / @eis (M) D(8) { / 9{9)peie () D(F) dﬂ} dgan

—-g—aN 0
x 0

=Jim [$ [ eampatmapn | o)
0 ~g=3N

which we put
n

Iél_r'noo/Q((?,ﬂ;N)D(e)D(ﬂ)dt?.
0
This is to say that the function ®(8,9; N) is defined by

0
®(0,9;N) := / Peie () eie (1) dgan .

_q-QN

If we see that the function ®(8,9; N)D(6)D(¥) converges to (6 —J) as N —co in
the sense of distribution, we have FFg = g for f € C§°(0, 7). This fact, combined
with the continuity of the linear mappings F and F, the equality FF = Id on
L%(0, ) follows from the density of C5°(0, 7) in L?(0, 7). Now the proof reduces
to the properties of the function ®(#,?; N) which will be discussed in the next
proposition.

PROPOSITION 6.1. The funclion ®(8,9; N) is of the following form:
sin(N + 2)(6 — 9)

. sin 1(6 — 9)

+ (14 ¢*)B1(6, )M+ + (14 ¢*N) By (9, 9)e7VCHY
+(1+ ¢2N)B3(9, 9) {e—i(N+1)n9+iNd _e—iNa+i(N+1)o}
+¢(6,9; N)

$(0,9;N) = (1+ ¢2N)(1 - @) A(H) Ae™?)
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where B;(8,9), j = 1,2,3 are the functions satisfying that B;(8,9)D(0)D(9) are
of class C* and 2m-periodic with respect to the variables § and ¥. Then c(8,9; N)
is again a function of class C® and 2w-periodic with respect to the variables 6 and
Y with an cxira condition that the equality

lim sup [e(6,9; NYD(A)D(F)| = 0
N—voo 0L, €T

holds.

Proof. By making use of the equality Py, = A(e')@.e and the formulas of
the boundary form which we discussed in Section 2, we have

o6, 9; N){A(e") = M)}

0
= [ {Pealmpan) - pasmlPrasiin) dpn
_q—QN .
= F[‘Pe“ ) (Pe“](o) - F[‘Pe"’a (Pe“](_'q-ﬂv)
= —F[pes, peis](—g~2N} .

Then by making use of the connection formula, this is equal to

- F[@eia,q)eic](—q—ZN) — F[®e-ie, (I)ew}(—q_zN)
— F{®e, Qe—i‘](—q_ZN) — F®e-i, ‘I’e-u](—q_zN) .

Now, we see that the function &y of ¢ defined by $p(() = ({Peie — A(e®)theie (¢)} is
a two variable analytic function of ({,8) € {( € C: | < 1} x R and in particular,
the function obtained by the partial derivative of the function ((,8) — $s(()
with respect to the parameter 6 is bounded. It is also seen that the function
Bseie (—g~ V) obtained by the partial differentiation of the function (¢,8) —

2N

Yeio (() with respect to the parameter 8 with { replaced by —g~ 2" is of order

O(N) as N — o0. In view of these points, we have
®(0,9; N) = —A(") A(e'? ) F[Beis , Beio)(—g~ )
— A(e-ie)A(eM)F[Qe-ia , (I)eio](—q-zN)

(6.1) — A()A(e™ ) F[@ e} Bemie)(~g~?)
— A(e™ ) A(e™? ) F[®mio, Bemie)(—g~ )
+ <I)1(6! 0; N) )

where the remainder term ®,(6, ¥; N) is a C*-function of (4, ) satisfying

(6.2) Jim sup | @1(8, 9; N)D(8)D(9) 0.
N—=oo 0gg, € 6—19
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Then by the definition of ¥ and the boundary form F, we have
Flpatio, Yezio)(—g~2V) _{ Hi(N41)0HING :!:xNﬂ:h(N+1)0}1 (1+q2N)

for + and — signs, respectively. We apply these equalities to the second and the
third term of the right hand side of (6.1) and we have
A(eT) A )P @qmis, Buio](~4~2N) + A(®) A(e™ ) F[@ e, Bemio)(—g~2Y)
= —fﬂ——-(l + ¢?N) A(e?) A(e?) sin - -;19 sin { (N + ) (9 - 19)}

PN A()AT) — A=) AN}

y { e IN+1)04iNG _ e~iN9+i(N+1)0} _

Therefore we have
(0, 9; NY{A(e'?) - M)}

3 > .
= T+ ) AE) A ) sin

'9sin{(N+%) (6—19)}

2N)A(eiE)A(ei|9)(eiG —el? )eiN(ﬂ-h!)

2N)A(e—i0)A(e—iﬂ )(e—ié _ e—ia’)e—iN(e-{-ﬂ)

+7 2(1+«12N HA)A(™) ~ Ale™)A(e"))

% {e-‘l(wn)o-p.m _ e_we+i(1v+1)o}

+ 4)1(0,19,1\() B

Since '
442 in0+t98.n0—19
) e R

Mel) - Ae?) =

we define
en’

By (9) ‘9) —(1 = qz)A(em)A(em ) cos 19 cosf’

—i?
32(0,19) = ( 29 )A(e—rO)A( -ld)(?a;;,i‘_—io—sa—,
i - L LU A
c(8,9; N) = (1 —q?)? ®,(6,9;N)

2¢%  cosd —cosf

Then the functions By, By, Bz and c satisfy the condition of the statement. The
fact that the function ¢ satisfies the condition follows from (6.2). This proves the
assertion. B
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PROPOSITION 6.2. For any element f in C3°(0, 7), we have

(i)

Jim 0/ &(8,9; N)D(O)D(9) f(9) d¥ = f(6) .

The convergence of the limil is uniform for § € [0,7]

(ii)

lim
Newoo

/ / (8, 9; N)D(8)D(9)£(6)7(9) d6 d¥
o 0

= 1O 45 = 1o
]

(3) ®(8,9; N)D(6)D(Y) as a function of § and ¥ converges to the Dirac’s
delta function 6(6 — 9) as N — oo in the sense of distribution.

Proof. We prove (i). Then the statements (ii) and (iii) follow directly from
the statement (i). The proof of (i) goes as follows. The function

sin{N + 12 )8

pn(0) = —
sin 19

is the Dirichlet kernel. Therefore the Riemann-Lebesgue theorem combined with
Proposition 6.1 implies

Jim. / (0, 9; N)D(8) D(9) £(9) d9

= lim_ (1= )1+ M)A ACT)DODE) (Do (0 - 7) 9

= 27(1 - ¢*)A(e*)A(e™)|D(O)I* £(8) = £(8) -

The uniformity of the convergence for 8 € [0, n] follows from the properties of the
Dirichlet kernel and the Riemann-Lebesgue theorem. @

THEOREM 6.3. (i) The mappings F : H, — L2(0,7) and F : L*(0,7) —
H. are isomorphisms satisfying FF =1d on H, and FF =1d on L*(0, ).
(i) For ¢, ¥ € H,, the equality

(@, ¥)pa(=c0,01, = (Fo, F¥)L2(0,7)
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holds. This is 1o say that the mapping F is a unitary operator from the Hilbert
space H, onto the Hilbert space L*(0, ).

Proof. The equality FF=Idon H . follows from Theorem 5.6. Therefore, we
prove the equality FF=Idon L%*(0, 7). By Proposition 6.2, we have T-ﬁ"f = f for
any f € C3(0, ). Hence, the density of C5°(0, 7) in L2(0, ) proves the assertion
(i). This shows that for the proof of (ii), it is sufficient to see that the mapping
F is isometry i.e. the equality ||.$"-:f||L:(__<,<,,(,]‘22 = [|fll2o,x) for £ € C§°(0, 7).
However, this was already proved in the second statement of Proposition 6.2. 1

7. SOME REMARKS

If we think of taking the limit ¢ — 1 formally to the formula which we gave in
the statement of Proposition 4.6, the end point of the continuous spectrum (_1{27{)7
goes to the infinity and the point spectrum set ¢,(P) is necessarily put away to
the infinity. Then, only the continuous spectrum set o.(P) remains as the half
open interval [,},oo). This means that the spectrum of the radial part of the
Casimir operator C on the quantum group SU,(1,1) formally converges to that
of the corresponding object on the classical Lie group SU(1,1). Moreover, in the
process of taking the formal limit ¢ — 1 in the expression of the ¢-function ¢(8) (see
Lemma 5.3 and Theorem 5.6), we observe that the spectral representation of the
operator C on the zonal Hilbert space approzimates to that on the corresponding
classical object. These arguments lead us to think about the rigorous meaning of
classical limil.

The further discussions concerning these points as well as the detailed part
of the unitary representations of the quantum group SU,(1, 1) will be discussed in
our forthcoming publications.
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