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ABSTRACT. A six-term exact sequence of K-groups for certain reduced free
products of C*-algebras is derived. This sequence is used to show that
K.(C*(G) +¢* M,) is isomorphic to K.(Cl4(G)) for any countable discrete
group satisfying property A of Lance. This result is then used to compute the
K-groups of the reduced noncommutative unitary C*-algebra U;%.4 and the

reduced noncommutative Grassmanian C”-algebra Gj% 4. It is shown that

if G is a nontrivial countable discrete group with property A such that the
range of the homomorphism from Ko(C/4(G)) into R induced by the usual
trace on Cjq(G) is contained in %l, then the relative commutant of M, in
C*(G) €% M, is a simple projectionless C*-algebra.
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1. INTRODUCTION

The notion of free products of C*-algebras has been used frequently in recent
literature (1], [2], [4], [5], [6], [10], [11], [12], [16]. The free product A *¢ B of two
unital C*-algebras A and B (over the complex numbers C) can be thought of as a
generalization of the group C*-algebra of the free product of two discrete groups
G1 and G5 over the trivial group {e} as follows:

(11) C'*(Gl *{e} Gg) = C‘(Gl) *L C‘(Gg)
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It was shown by J. Cuntz in [4] that if unital *-homomorphisms from A and
B into C exist, then there is a six term exact sequence of K-groups of the following

form: .
O -x2) ertel
Ko(C) —— Ko(A)®Ko(B) —— Ko(A#*c B)
(1.2)

ertel i, —x3)
Kl(A *C B) — K (A) ® KI(B)

K1 (C).

The maps x*:C — A, x2:C — B, e}: A — A*¢c B, and ¢2: B — A *c B are the
inclusion maps. In fact, it was shown that the free product can be replaced by an
amalgamated product A ¢ B over a common subalgebra C of A and B provided
retractions from A and B onto C exist. In particular, there is an exact sequence
as in (1.2) if A = C"(G;) and B = C*(G2) for discrete groups G and G.

The isomorphism in (1.1) led to Avitzour’s notion of reduced free products
of unital C*-algebras. If A and B are unital C*-algebras with states ¢ and ¢
respectively, a cyclic representation (Tpuy, Howy, Epay) can be defined so that the
state @ * Y(2) = (Tpry(Z)Epey, Epey) extends both ¢ and 4. The reduced free
product of A and B relative to ¢ and 9 is defined to be m,uy(A *¢ B). We will
denote this by A *E¢ B and keep in mind that the definition of the reduced free
product depends on the states ¢ and 1. The reduced free product generalizes the
notion of the reduced group C*-algebra of the free product of two discrete groups
as follows:

(13)  Clg(Gi*ge) G2) = C(G1) #&° C(G2) = Croa(Gr) #&° CrealG)-

The reduced free products on the right are relative to the faithful traces ¢ on
C*(G) and ¢, on C},4(G) defined by

(1.4) e(9) = - (Xg)) = (Mg)é(e), 6(¢)) = bge, g EC

where X is the left regular representation on G, e is the identity of G, and é(e) is
the characteristic function of {e}.

A natural question to is whether or not the exact sequence in (1.2) holds
in the case of reduced free products. In the case where A = C4(Gy) and B =
Cr.4(G2) for discrete groups G, and G, the answer is yes. This was shown to
be the case by E. Lance in [10] under the assumption that one of the two groups
satisfies property A. A discrete group G is said to have property A if the left
regular representation of G on ?(() is K-homotopic to a representation of C*(()
having a fixed point. It follows from the more recent work of Pimsner that the
property A assumption can be dropped ([14]).
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We show that the reduced version of the exact sequence in (1.2) holds in a
more general context than in the case considered by Lance. Let B be a separable,
unital C*-algebra with trace 1. Suppose B has a unitary element of trace zero.
Let A = C*(G) for a countable discrete group G with property A and let ¢ be the
trace on C*(G) as defined in (1.4). Under these assumptions we show that the
reduced version of (1.2) holds.

As corollaries to. the above results we obtain the K-groups of the reduced
noncommutative unitary group Uy .4 and the reduced noncommutative Grassma-
nian G4 discussed in [11]. URS.q is defined to be the relative commutant Mg
of the n by n matrices M, in the reduced free product C*(Z) *¥¢ M, using the
usual traces on My and C*(Z). G4 is defined similiarly except with C*(Z3)
in place of C*(Z). The computation of these K-groups gives another proof of the

L ne
projectionlessness of U}

Ced than the one given in [11] as well as the projectionless-

ness of G7%.4 1n the case where n is even. More generally, we show the following:
if G is a nontrivial discrete group, ¢ is the usual trace on CJ,4(G), and p, is the
induced map from Ko(C},4(G)) into R, then ¢.(Ko(Cry(G))) C %Z implies that

MS C C*(G) *%¢ M,, is a simple, projectionless C*-algebra for n > 1.
c g

2. FREE PRODUCTS AND REDUCED FREE PRODUCTS

Let A and B be unital C*-algebras. Let A *:‘:tg B denote the algebraic free product
of A and B, over the complex numbers. That is, A *ﬁ‘:'g B is the #-algebra of formal
finite sums of monomials a1byashs - --a,b, with 14 and 1g identified. Define a
seminorm on A %28 B as follows:

||lwl| = sup{||m(w)|}: 7 is a unital *-representation of A +2¢ B}.

The fact that || - || is actually a norm will be demonstrated shortly. A +¢ B is
defined to be the completion of A *?:lg B. Axg¢ B is called the C*-algebraic free
product of A and B and can be described by the following universal property. If
ma and 7wp are unital *-homomorphisms from A and B respectively into a unital
C*-algebra E| then there is a unique unital -homomorphism

TaxTR. A¥¢ B— E

extending both 74 and 7p.
In order to define the reduced free product of A and B, we must fix states ¢
on A and ¢ on B. Let (7, H,,£,) and (my, Hy,Ey) be the GNS representations
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associated with (4, ) and (B, ¢). Let H) = £, and HJ = &;. Define the Hilbert
space Hy,y as follows:

Hypuyp =Clyuy ®HY O H) & (HJ @ HY) & (Hy @ HY) B (HI@ Hi® HY) & - -

where all possible finite alternating tensor products are considered and Eyuy is
a unit vector. We will frequently identify H, and Cé .y & Hf, as well as Hy
and C(£ @ Hfz by identifying £,.¢ with £, and £y. Define a representation mpyy
of Axc B on Hyuy as follows. Let a € A, bl € HY, h, € HJ. Now since
H, = H} ® C&,, we have

Tp(@)hy, = (my(a)hy)o + Ay
To(a)lp = (mp(a)ly)o + péy,

where (7,(a)h})o, (7,(a)é,)o € HY and A, pu € C. Then define .y (a) as follows:

'”w*tll(a)‘fqo*tﬁ = (mp(a)ly)o + 1pry
ng*.p(a)(hfp ® h:p ® ) = (mp(a)hy)o ® ht’,, ® -+ /\h,l/, ®- -
Torp(a)(hy ® AL @ ) = (mp(a)é)o @Yy ® AL @ -+ phy @G @ --- .

Similiarly define m,.y(b) for b € B. Then let m,.y be the representation on
A xc B determined by (Tyuyp|A, Tpay|B). Notice that (Typuy|B, Clpry & HY, Epay)
is unitarily equivalent to (7, H,,&,) and similiarly for (my, Hy,&y). The vector
£oxy Wwas shown to be cyclic in [1]. It was also shown that if ¢ and ¥ are faithful,
then ,.y is separating for the algebraic free product A *?:]g B. Hence 7yuy is
faithful on A *?:'g B when ¢ and v are faithful. It follows from this that if A
and B have faithful states (in particular, if A and B are separable) then |} - ||
is a norm on the algebraic free product A *;':'g B. By restricting one’s attention
to an algebraic free product of separable subalgebras of A and B which contains
weE A *:‘:'5 B it is easy to see that || - || is a norm on A *:‘:]g B whether or not A
and B are separable.

A x4 B is defined to be myuy(A4 *¢ B). Define a state @ * 1 on B(Hpuy)
by (¢ * O)(T) = (T€puy,Epry). Then @ x 1 is faithful on A +2% B since £puy
is separating for A *;‘:lg B. If a € A, then a routine computation shows that
(¢ * Y)(mouy(a)) = ¢(a). So by identifying a and m,.y(a) it follows that ¢ * 1
extends ¢ and similiarly 9. The cyclic representation (7yey, fpwy,{puy) is the
GNS representation of (A ¢ B, (¢ * ¥) 0 Tpay). In the case that ¢ and 3 are
traces, Avitzour showed that ¢ # 1 is a trace ([1], Proposition 1.4). We say that
a vector £ is a trace vector for a x-algebra £ C B(H) if the state we(z) = (z€,§)
is a trace on E. A trace vector £ which is eyclic for a »-subalgebra £ C B{(H) is
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separating for B (see [11], Section 3 for a proof). Hence £,.y is a separating vector
for Tpuy(A +¢ B)" and consequently for A+ B. So ¢ * 9 is a faithful trace on
A9 B when ¢ and v are faithful traces. We will also need the following result
of Avitzour ({1}, Proposition 3.1. and Corollary).

ProposiTioN 2.1. Lel A and B be C*-algebras with faithful traces ¢ and
¥ respectively. Suppose there are unitaries ¢ € A, b,c € B such that p(a) = 0
and P(b) = P(c) = p(b*c) = 0. Then the reduced free product A+g® B relative to
(p, %) is simple with p * 9 as its unique trace.

3. STATEMENT OF THE MAIN RESULT

Let G be a discrete group and let A denote its left regular representation. Let e
be the identity of G and let §(e) denote the characteristic function of {e}. If H
is a Hilbert space we let X(H) denote the ideal of compact operators on H. The
following definition was introduced by E. Lance in [10].

DEFINITION 3.1. G has property A if there is a one-parameter family (A;)
of unital #-representations of C*(G) on I>(G) such that:
() do = \;
(i) Ay(g)b(e) = é(e) for all g € G;
(iii) (M) is a K-homotopy, that is, for each g € G, the map t — [|A(g)|| is
continuous and A (g) — Mg) € K(I%(G)) for all g € G, t € [0,1].

It was shown by Lance that G has property A if G is a discrete countable
amenable group. Lance also showed that the class of groups with property A
is closed under free products and that noncompact groups with property T of
Kazhdan ([9]) do not have property A.

Qur main result is the following.

THEOREM 3.2. Let (B,%) a unital C*-algebra and state and suppose there
is a unilary b € B such that ¥(b) = 0 and ¢(b*zb) = ¥(z) for allz € B. Lel
A = C*(G) for a discrete group G with property A and let ¢ be the canonical trace
on A. Let A% B = m,uy(A x¢ B) (ihe reduced free product of A and B relative
to (,%)) and Breq = Tpuy(B). Then there is a cyclic siz-term ezact sequence of

K-groups
(xd, —x3) elqel
Ko(C) 3 Ko(Croa(G)BKo(Brea) ——— Ko(Cla(GEB)
31
@1) elte? (xl,-xH)

Ky (€, (G)+g?B) > Ki(Cra(G))OK1(Brea) — K, (€)

red
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where x:C — Cry(G), x2:C — Brea, €:C54(G) — C-y(G) *2¢ B, and
€2: Breq — Crq4(G) *“ed B are the natural inclusions. Moreover, the above ezact
sequence splils inlo the following lwo ezacl sequences:

1 2

(C24(G)) @ Ko(Brea) —s Ko(Croa(G) %58 B) — 0

CHE)

l 2

elye?
0 — Ki(Crea(G) *md B) —— Ki(Cred(G)) & Ki(Brea) — 0

We remark that the last statement of the theorem follows immediately from
the fact that K;(C) = 0 and the fact that the existence of the homomorphism from
Ko(C}.4(G)) into R induced by the trace on C*,(G) implies that x! is injective
and hence the leftmost vertical map is zero.

In what follows we prove Theorem 3.4 and deduce several corollaries con-
cerning C*-algebras of the form C*(G) *%¢ M,,. Much of what follows in Sections
4 through 8 is a straightforward generalization of the work of [10] and of Natsume
[12] and consequently the presentation will be sketchy at times. The key idea is
that the group structure of the group which is not assumed to have property A
is not really used in Lance’s proof in the case where A and B are both group
C*-algebras.

4. TOEPLITZ EXTENSION

Let (B,4) be a separable unital C*-algebra and state. Let (my, Hy, &) be the
GNS representation associated with (B, ). Let S be a countable subset of B with
dense linear span chosen so that the corresponding elements of B/Ny, are linearly
independent, where Ny, = {z € B:y(z*z) = 0}. By using the Gram-Schmidt
process relative to the inner product (z,y}y = ¥(y"z) on B/Ny, we can assume
that {my(s)€y:s € S} is an orthonormal basis for Hy. Assume 1z € S. Suppose
also that B has a unitary element ¢ with ¥(t) = 0 for which $%(t*«t) = v(z) for all
z € B. Let A = C*(G) for anontrivial countable discrete group ' and let ¢ be the
trace on C*(G) as defined in (1.4). Let Areq and Breg denote muuy(A) = Chy(G)
and 7.y (B) respectively. Let T C A +¢ B denote the following set:

I'={g151...9n5n:0: €G,s; € S,¢; # 1g for i £ 1, s;i#lafor j#n, n2l}.

By identifying £,.y with &, and &, we will identify H, with- Cf,.y @ HY and
Hy with Céyuy & Hf,’, By identifying Cé .y ® Hf}, ® - -+ with H,f,’, ® --- as well as
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-+ @ HY ® CEpuy with ---® HJ we obtain the isomorphism below:

H,@H)® @ HY® Hy 2 HY@ Hy ® - ® H) ® H]
OH)® - ®H,®H,
OHI®H,® - ®H
S H)® - ® Hy.

The map which sends Tpuy(w)puy € H,@ HY®- @ H)® Hy to 6(w) € I*(T') for
w € T induces an isomorphism H.y = 12(T). Let 1 denote the identity element
of Ax¢c B. Let G* = G\{1} and S* = S\{1}. Let I'f denote the set of all words
in T ending in G* and I'} denote the set of all words in T’ ending in S*. Let
I'y =3 U {1} and Ty = T} U {1}. Under the isomorphism H.y = 1*(T') we have
the corresponding isomorphisms H} = {%(T7) where

Hi = HS & (Hy ®@ H))® (Ho® Hy® H)) @ -
Hy=H)®(H)@ H)) ®(Hy @ HO® H}) ® -

Let H; = Clyuy ® H] so that H; = IZ(I‘,'). Define T'! as the set of words in
T beginning in G* and I'? as the set of words beginning in S*. Let I‘f: =I:n
. Define H' and H! in the obvious manner. For a € A and b € B we have
Toay(@)H1 C Hi and muuy(b)HY C HY. For a € A let p(a) denote the restriction
of Tyuy(a) on Hy. For b € B, let v(b) denote the operator my.y(b)P(H]) where
P(Hy) denotes the orthogonal projection onto Hy for any closed subspace Ho of H;.
The representations p and v can be factored through .y and can be considered as
representations of Areq and Breq respectively. For w = (a1)b1 - an(b,) € A*c B
let o(w) = (p(a1))v(by) - - - u(an)(v(bs)). The parentheses around a term indicate
that the term may or may not be present. Let 7 be the C*-algebra generated
by p(A) and v(B). Notice that ¢ «f (1) — v(1) € T and ¢ = P(Cyuy). Let J
denote the closed ideal in 7 generated by g. Since ¢ has rank one it follows that
J C K(Hy). We assert that J = IC(H,). This will be shown by producing a system
of matrix units for K(H;) in J. For wy,ws € Iy define e(w;, wy) as follows:

e(wy,wq) = o(w)go(we)”, wi,wa €.

The relation

e(w1, wa)e(ws, wa) = b, w,e(wi, wa)

will follow if we verify the relation

qo(w2)* o(w3)g = bu, w39
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It is enough to show that these two operators agree on £,ay. For any 1 € Houy

we have g = (1), £puy)pry. Hence

go(ws)" ‘7(’”3)‘15(#*-1‘ = (o{w2)" o (w3) ey, £¢*¢)‘f¢=¢
(0’(‘w3) (P"Pao'(wZ) V’*'/»’)Etp#\b
= Ty (wWa)ory, Torp(w2)E0ry ey

- wz,wsq€¢*¢'

It is clear that e(w;, w;)* = e(w;,w;) and that the net of finite sums Y e{w, w)
converges strongly to the identity on H; = I2(I'1). Thus {e(w;i, w;)} is a system of
matrix units for K(H1) in J and hence K(H,) C J. We have the following analog
of [10], Lemma 3.1.

LEMMA 4.1. There ezisis a surjective homomorphism m: T — A *2* B such
that
m(u(a)) = Tpuy(a), a €A
a(v(b)) = mouy(b), bE B

and kerm = J.

Proof. Fix h € G* and a unitary element t of B with ¢(¢f) = 0. Forn > 1

let B, = {w(ht)*:w € T1} C Axc B. Let H, denote the closed subspace
o0

[Torp(En)epry] of Hyuwy. It is easily verified that H, C Hnyy and Ho = | Hy
n=1

is a dense subspace of Hyuy.

Let vp: Hy = I*(T'y) — Hyuy denote the linear map

UnTou (W)Epny = Tomy(w(ht)*)epuy, w € T1.

It follows from the fact that h,¢ are unitaries for which the state determined by
&pry 1s conjugation invariant that v, is an isometry. It is easily verified for 5 € H,,,
a€ A, be B, that

Um (@) V7,1 = ey (a)n

mv (D) = Teuy (b)n
holds for all m > n. Hence vnp(a)vin converges to mpuy(a)y and v,r(b)v) con-

verges to Tuy(b)n for all € Hy. Since |jvap(a)vy] < lal| and |[var (b}l < |1b]]
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holds for all n and Hy is dense in Hyyy, it follows that

vpp(a)vy — Ty (a) strongly (a € A)
vpv(b)v), — Ty (b) strongly (b € B).

Hence the strong-limit 7(z) = lim v,zv? exists forallz € 7 and m: T — A4 B
is a surjective homomorphismnv:iioh the desired values on pu(A) and v(B). Since
g1 = p(1) — v(1) and 7(p(1)) = Tpup(l) = m(¥(1)) it follows that m(q,) = 0 and
so J C ker 7.

It remains to be shown that kerw C J. Let p(z) = P(H:)zP(H,) for z €
A 24 B. Then the linear map p satisfies p(mpuy(g)) = plg) for ¢ € G and
P(Tpry(s)) = v(s) for s € S*. Then by induction on the length of w € T one can
show pr,wy(w) — o(w) € J. Since 7o = Tyuy we have pro(w) — a(w) € J. Thus
pr(y) —y€Jforye7. Henceif y Ckermtheny e J. 1

We now have a short exact sequence
(4.1) 0—J -7 5 A4 B 0.

Let k:J = K(H,) — K(i*(T'1)) be the isomorphism induced by the isomorphism
of Hy and I%(T;) described previously. We will show that 7 is KK-equivalent to
Ared ® Brea. That is, we will show that there are elements £ € KK(Areq D Bred, 7)
and n € KK(7', Areca®Breq) 50 that £ = 14, e 5,., and 7€ = 17. Let . K, (7) —
K.(Ared ® Breq) be the isomorphism induced by 7. We-will also show that the

diagram below commutes:

s K(J) — K.(T) . KA B) —

(4.2) J‘ Ke l . J Id.
Ol =x3 e tel

»*

— K. (€) —— Ki(Ared) ®Ki(Bred) —— Ki.(Ax2d B) — .

The top row is the periodic six term exact sequence of K-groups induced by (4.1).
The bottom row is then exact since all of the vertical maps are isomorphisms and

Theorem 3.4 follows.
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5. CONSTRUCTION OF VARIOUS HOMOMORPHISMS

We now construct some homomorphisms which will be used in defining the el-
ements { and 7 described in the previous section. Much of what is done here
consists of translating Lance’s terminology in [10], Section 4, into the setting of
reduced free products. We assume from now on that G has property A with (A;) as
the homotopy of representations of G on I2(G). The map from Houy into Hy0 H,
induced by
Epeyp = Epryp @ Epny
hg — &p,‘/, ® hg
- @hy @RS — (- ®hY)® A
C®@hy = (- QhY)®Lpww (R € HY, B € HY)
1s an isomorphism. The restriction of the above map to H} is an isomorphism
H} = Hy ® H). Define a map
wHeoy @ Ho = Hy @ H,® H) — Hi @ H, 2 H, ® HY® H,,
as follows:
(5-1) uw(ha®(g) ®6(h)) = Z (A (gh)6(R™1Y, 6(k))(he ® 8(k) ® 6(k~1gh)),
keG*
(where g € G, h € G*, hy € Hj). We have used the identifications H, ={?(G) and
HY = I2(G*) given by Tyuy(9)Epey
« 6(g). The following lemma is identical to a lemma in [10] after a minor change
in notation.

LEMMA 5.1. ([10], Lemma 4.1} The mapping u is an isomeiry from
HW(,,@HS onto Hi @ H, with inverse given by the following formula for hy € Ho,
heG*, geG:

(5:2)  w(h®8(h)®6(g)) = > (5(h), M(hg)6(k))(ha ® 6(hgk) ® 6(k™1)).
keG*

Forz € 7, n(z)®1 € B(Hyuy) ® B(H,). Regard u as a map into H, ® H,,.
Then u*: Hi @ Hy — Hyuy ® HJ is given by (5.2) on H} ® H, and is zero on
Céyuy ® Hy. It follows that uu* = P(H})® 1. Let

@:7T — B(H1®@ H,)
be defined by
w(z) = u(r(z) @ 1)u*
Gz)=z®1 (zeT).
For a C*-algebra A, we let M(A) denote its multiplier algebra. The following
lemma can be proved exactly as in [10] with a few minor changes in notation.

(5.3)
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LEMMA 5.2. ([10], Lemma 4.2, [12], Lemma A5) Forz € 7T,
(1) w(z)!“—)(m) € M(’C(HI) @ Ared);
(i) w(z) — &fz) € K(H)) @ Ared-

There is a unitary isomorphism v: Hyuwy — Hy ® Hy defined in the same
manner as the isomorphism Hy.y = H; @ H, in the beginning of this section.
Define

9, 8:7T — B(H, ® Hy)
as follows:
8(z) = vrr(z)v*
fz)=z®1 (z € T).

One can show by direct computation that

0(u(a)) = G(u(a)) (a € 4)
B (8)) — B((b)) = 4@ Tpmy(b) (b € B).

This gives the following lemma.

LEMMA 5.3. Forz e T
(i) 6(2),8(z) € M(K(H1) ® Brea);
(ll) 9(1’) - 6-(1:) S IC(Hl) ® Bred-

6. KK-EQUIVALENCE OF Areq ® C4(G) AND 7.
We will use the quasihomomorphism picture of KK(A, B) introduced by J. Cuntz
([3]). A quasihomomorphism from A to B is a pair of homomorphisms (i1, ¢2) |
satisfying
pitA—- MK®B)
pi(a) —p2(a)e X ® B

where K denotes the ideal of compact operators on a separable infinite dimensional
Hilbert space. Notice that (¢, 0) is a quasihomomorphism from A to B for any
homomorphism from A into £ ® B. The elements of the abelian group KK(A, B)
are the homotopy classes of quasihomomorphisms from A to B. The homotopy
class of («,f) will be denoted [&,3]. We will use the following lemma about
addition in KK(A, B).
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LEMMA 6.1. ([12], Lemma A4) Let (o, &), (8, 8) be quasihomomorphisms
from A to B. Assume o(z)B(y) = a(z)B(y) = 0 for allz,y € A. Then

() (e + B, &+ B) is a quasihomomorphism from A to B;

(ii) [a + B, & + B] = [, &] + (8, B).

By identifying Areq @0 with Areq and 0@ Breq With Breg we can regard p and
v as homomorphisms from Areq @ Breg into 7 and 8,8, w,& as homomorphisms
into Ared © Bred. Let j: T — K(H;1) ® T be defined by j(z) = ¢ ® . Then (ju,0)
and (jv,0) are quasihomomorphisms from Areq @ Bred into 7. By Lemmas 5.2
and 5.3, (4, 5) and (w,w) are quasihomomorphisms from 7 into Areq @ Breg. Let

5 = [.7/110] + [jl/, O] € KK(Ared @ BredaT)
n= [0: é] - [w,a‘;} € I<K‘(T1 Ared & Bred)-

We will show that 7€ = 14, ,¢85,., and £7 = 1. The proofs follow closely those
in [12] so we will only give a brief outline of each proof.

PropPosITION 6.2. ([12], Proposition A6) né = 14, ,0B,..-

Proof. 14, ,0B.. is represented by [¢3, 0]+ [i2, 0] where ¢;: Areq — K® Areq is
defined by #1(2) = ¢®z for 2 € Ared and i3: Breq — K @ Bred is defined similiarly.
Hence

€~ Laa@Biea = ([0,0] = [w,&]) (i, 0]+ [7,0]) = 14,008,
= [0, 8(, 0] - [, ®]3#, 0] = 14,005 s
= [0v,8v] — [wp, &) = i1, 0] — [i2, O]
= —([fv, 0] + [i2, 0]) — (fwps, @p] + [, 0])
= ~[0v + iy, 00] — [wp + 1, @]

The second equality is a consequence of 8 = fu and wr = Gr. The last equality
follows from Lemma 6.1 and the fact that (wu)(z)i;(y) = 0 for z,y € Area and
(0v)(z)iz(y) = 0 for 2,y € Brea. It then suffices to show

[Bv+12,00] =0 in KK(Bred, Bred)
[wp+41,0p] =0 in KK(Ared, Area)-

Direct computation shows that v + iy = fv and so [fv + iz, 0v) = 0. I we show
that wu + 1y is K @ Areq-homotopic to @ then [wy + i1, @4] = 0 will follow. The
proof of this is the same as the proof of [12], Lemma A7, with the appropriate
change of notation to the setting of reduced free products of C*-algebras. #
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ProposiTioN 6.3. ([12], Proposition A8) én = 1.

Proof. 17 is represented by [7,0]. Let ji (resp. #) denote the homomorphism
of M(K®Areq) (resp. M(K®Breq)) into M(KQT) which extends 1Qu: KQ Areq —
K®T (resp. L®v:K® Brea =+ K Q7). Let k:7 — B(H;) ® B(H;) be defined
by k(z) = £ ® ¢. Then

&n— 11 = ([ip, 0] + (v, 0])((6, 6] — w,@]) - 11
= ~{fw, po] — [pw, ¥@) + [0, if] + [96, #8) — 11
= —fjw, po] + (78, 78] + [k, k] — [4, 0]
= —[pw + 7, @) + [98 + k, 70 + k]
= —[aw + 4, i3] + [96 + k, ).

The second and third terms of the second line are zero because bw = v® and
20 = 8. The fourth equality is a consequence of Lemma 6.1 and the fifth follows
from jio = 78 + k. The conclusion will follow if we show that jiw + j is K @ T-
homotopic to #8 + k. For this we refer the reader to [12], Lemma A9. 1§

7. CONCLUSION OF THE PROOF

All that remains is to prove commutativity of the diagram (4.2). The unlabeled
horizontal maps in the bottom row of (4.2) are by definition the maps required
in order to make the squares that they are contained in commute. Thus we need
only to show that 7. = (¢! + €2)n. and nuie = (1, —x%)«.. Now since 7. = &1,
this is equivalent to showing:

(1) mubu = €} +€2;

(2) mianst =.(x2, —x2)-
Since ¢ = [ju, 0] + [jv,0], (1) follows from 7,u, = €! and mw, = £2. Since
n=1[6,0] — [w,], (2) will follow if we show

() [w, @][i, 0)[a, 0] = [i1, 0][x*, 0] in KK(C, Area);-

(ii) [8, 8][4, 0][ex, 0] = [42, 01[x?, 0] in KK(C, Brea);
where o: C — K(H;) is defined by a(z} = z¢g. This follows from the equalities
wio = i1x', @ia = 0, fiae = i3x?, and fia = 0 which can be verified by direct

computation.
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8. CONSEQUENCES OF THE MAIN RESULT

In the following section we assume that G is a countable discrete group. We let
and ¢ denote the usual traces on M, and C*(G) and C*(G) xg% M, denote the
reduced free product of C*(G) and M, relative to (i, %). x!, x?, €', and €? will
be as in the statement of Theorem 3.2 with B = Breq = M,. We will also let
¢! denote the inclusion maps into the nonreduced product C*(G) *¢ M, and x?
will denote the inclusion map into the full group C*-algebra C*(G) as well. Since
(x!, —x?2) is injective in this case, the exact sequence in (3.1} splits into two short
exact sequences. This is summarized in the following proposition.

ProprosiTiON 8.1. Let G be a countable discreie group with property A.
Then the following sequence is ezacl for j = 0,1:

(x: »"Xf) 51""53
(8.1) 0 — Ki(C) —— K;(Cl4(G))BK;(Mn) > KH(CH(G M) — 0.

In particular, for j = 1, €l is an isomorphism of the groups K (Clq(G)) and
Ki(C*(GY+E9 M,,).

Proposition 8.1 also holds in the setting of full frec products. That is, (8.1)
holds if C*(G) *i¥ M,, is replaced by C*(G) ¢ M, and C}y(G) is replaced by
C*(G). To show this we will need a result of N.C. Phillips. Given a C"-algebra
A and an integer n > 1, let W,(A) be the universal C*-algebra generated by the
symbols z,(a,,7) for a € A, 1 <4, < n, subject to the relations which we will
now describe. Let z,(a) denote the n x n matrix [zn(a, i, )] and let z},(a) denote
the n x n matrix [z,(a, ,1)*]. For any polynomial f in 2k noncommuting variables

with no constant term and every a1,...,a; € A such that

f(alla,{:-‘-aak’a;) =0

we require the n? relations on the entries of z,(a;) and z}(a;) which make the
following equality hold:

f(za(ar),zn(ar); - -, ealar), zn(ax)) = 0.

Let B be a C*-algebra and ¢: A — M,(B) be a homomorphism. Define a ho-
momorphsim v: W,(4) — B by setting ¥(2n(a,1,5)) = ¥(a)i;. The correspon-
dence 9 — 1 is a bijection of Hom(A, M, (B)) and Hom(W,(A), B) ([13], Propo-
sition 1.5). Let ¢: A — M,(A) be the map defined by p(a) = a ® 0,,_;. Let
m: A — Mn(W,(A)) be the homomorphism defined by m(a) = z,(a). The follow-
ing proposition is due to Phillips.
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PROPOSITION 8.2. Let A be a C*-algebra. The element p € KK(W,(A), A)
is a KK-equivalence with m € KK(A, W,(A)) as ils inverse.

Let MS denote the relative commutant of M, in the free product A xc M,.
Let e;; be a system of matrix units for M. The map 2@y — zy is an isomorphism
of M, ® M = M,(M?) and A +¢ M, with the inverse map given by z — [2({, j)]
where z(4,j) = i epizejy € MS. I a: M — E is a unital homomorphism, then

[d®@ao: M, @ MS —]-> M, ®@Fisa homomorphlsm inducing a unital homomorphism
ag: Axe My, — M, (E) which restricts to a unital homomorphism &: A — M, (E}.
Conversely, any unital homomorphism 3: A — M, (E) determines a unital horno-
morphism Id * 8: A +¢ M, — My (F). Since (Id * 8)(M,) = M, ® 1g, it follows
that (Id * B)(M;) C In ® E = E. Thus the restriction §' of Id * 8 to M, deter-
mines a homomorphism §': M¢ — E. The correspondences o — & and § +— ' are
inverses giving a bijection from Hom; (M}, E) to Hom(A, M,(E)) for any unital
C*-algebra E, where Hom, (A, B) denotes the set of unital homomorphisms from
A to B. Using these observations one sees that MS is the universal C*-algebra

given by generators a(i, j) subject to the condition that
flay,al,...,0k,a;)=0, a1,...,ap € A

implies
f([al(i)j)]) [al(j) i)*]’ ey [ak(i;j)]) [ak(j’ z)*}) =0

for any polynomial f in 2k noncommuting variables. Suppose A is a unital
C*-algebra and w: A — C is a unital homomorphism. It follows from the above

observations that the maps

o M — W, (kerw)t
e(a(i, 5)) = n(a - w(a)la, 1, 7) + w(a)bi;1
and
¥ Wy (kerw)t — MS
P(zn(a,i,7) + A1) = a(f, §) + Al
are homomorphisms which are mutual inverses. These observations are summa-

rized in the following lemma which is a generalization of [13}, Lemma 4.1, where
the case A = C(S') is considered.
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LEMMA 8.3. Let A be a untial C*-algebra and w: A — C a unital homomor-
phism. Let M denote the relative commutant of M,, in A x¢ M,,. Then

M= W, (kerw)?.

The following theorem is an improvement of [11], Theorem 2.3, where it was
shown that the K-groups of A and A*¢ M,, are isomorphic assuming the existence
of a retraction from A to C.

THEOREM 8.4. If A is a unital C*-algebra and a unital homomorphism from
A to C exists, then A and Axc M, are KK-equivalent.

Proof. Let w: A — C be a unital homomorphism. Let =~ denote KK-equiva-
. lence. Then ker w = W, (kerw) by Proposition 8.2. Hence by Lemma 8.3

A= (kerw)t = Wykerw)t X M M, @ ME= Axc M. 1

EXAMPLE 8.5. Theorem 8.4 need not hold if no retraction from A to C exists.
To see this take A = Oz O,, denotes the Cuntz algebra generated by isometries

S1,--., Sy, satisfying Z SeSy = 1 ([8]). Let Sy, S, denote the generators of O,
and Ty, Ty, T3 denote the generators of O3. Let

o 02 - M2(03)

be the homomorphism defined by

a(Sy) = [é ;fl]

a(Ss) = [292 Toa]

This defines a homomorphism since «(S;) is an isometry and a(S;)a(S))* +
G(SQ)G(Sz)* =1 ([8], 1.12)‘ Let

B =1d * a: My x¢ O3 — M>(03).

Since B is unital and Ko¢(O3) = Z, is generated by [1]o ([6], Theorem 3.7), it
follows that
B Ko(M3 x¢ O2) — Ko(O3) = 1,

is onto. Hence Ko(M3 +¢c O3) # 0. However Ko(O3) = 0 ([6], Theorem 3.7).
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We will now show that Proposition 8.1 holds in the nonreduced setting. That
is, (8.1) holds if C*(G) ¢ M,, is replaced by C*(G)*¢ My, and C}4(G) is replaced
by C*(G).

PROPOSITION 8.6. Let B be a unital C*-algebra which has a unital x-homo-
morphism w: B — C. Then the following sequence is ezact for j = 0,1:

(X.; Xc) 1 82

+
(82) 0 — K;(€) =N Ki(B) @ K (Ma) —— K; (B #c My) — 0.
In particular, for j = 1, €} is an isomorphism of K1(B) and K;(B ¢ M,).

Proof. The isomorphisms
B = (kerw)*
B x¢ My = M, ® W, (ker w)t
induce isomorphisms
K;(M,)® K;(B) = K;(M,) ® K;(kerw) & K;(C)
K;(B x¢ M,) = K;(W, (kerw))@K (C).

The map
(xa» —x2):Kj(€) = K;(Mp) © K; (kerw) & K;(C)
is given by
(83) (xo, —xDW) =ny@® 0@ —y. -
The map

er + €2 K; (M) @ K; (kerw) ® K; (C) — K; (W, (kerw)) @ K;(C)
is given by
(8.4) (er +e)(z @y ® 2) = mu(y)  (z + n2)

where m is the homomorphism m(b) = x,,(b) from kerw to M, (W, (kerw)). Since
m, is an isomorphism by Proposition 8.2 it follows from (8.4) that el + €2 is onto.
1t follows from (8.3) that (x}, —x?) is one-to-one. This establishes exactness at
every term of (8.2) except the middle term. (! + £2)(xL, —x?) = 0 is trivial.
Suppose £ @ y P z is in the kernel of €] + 2. Then by (8.4) m.(y) =0 =z + nz.
Since m, is an isomorphismy =0. Soz®y @z = —-nz®@ 0@z = (xi, —x2)(-2)
by (8.3). n
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In [4], J. Cuntz defined the notion of a K-amenable discrete group. A discrete
group G is K-amenable if the left regular representation A (considered as a homo-
morphism from C*(G) to C/4(G)) is an invertible element of KK(C*(G), C%4(G)).
If G has property A and A, is a representation of G on {2(G) which is K-homotopic
to the left regular representation and has &, as a fixed point, then the quasihomo-
morphism (A3, A1]6)) gives an element t,eq € KK(C?4(G), C) for which treqh = ¢
in KK(C*(G),C), where ¢:C*(G) — C is induced by trivial representation. Ac-
cording to (4], Theorem 2.1(a), this implies that G is K-amenable. We also remark
that if G is K-amenable, then A,:K;(C*(G)) — K;{Cy(G)) is an isomorphism.

COROLLARY 8.7. Suppose G is a countable discrete group with properiy A.
Then the representation

Towy: C*(G) *¢ My, — C*(G) ¥4 M,
tnduces K-group isomorphisms
(Tory)e: Ki(C*(G) x¢ M) — K;(C*(G)+& My)
forj=0,1.

Proof. The result follows immediately from the fact that the diagram below
commutes, has exact rows by Propositions 8.1 and 8.6, and has isomorphisms for
the leftmost two vertical maps:

0 —K;(C) — K;j(C'(G)®K;(M,) — K;(C*G)*c M,) —0
Id. A.®ld, (Toaw)s
0 —K;(C) — Ki(Cra(G)@K;(Ma) — K;(C(G)+ZIM,)—0. 1

CoROLLARY 8.8. If G is a couniable discrete group with property A, then
K;(C*(G) & My) = K;(C"(G) x¢ Ma) = K;(C*(G)) = K;(Cra(G)).

Proof. The first isomorphism follows from Corollary 8.7, the second follows
from Theorem 8.4, and the third follows from K-amenability. 1

As a consequence of the above corollaries one can compute the K-groups of
the C"-algebras Uj< 4 and GR%eq studied in [11]. US4 and GrSreq are defined to
be the reduced versions of the noncommutative unitary C*-algebras U and the
noncommutative Grassmanian C*-algebra G,¢ introduced by L. Brown ([2]). Un¢

is defined to be the universal C*-algebra generated by elements u;;, 1 < 4,5 < n,
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satisfying the relations which make the matrix [u;;] a unitary matrix. URC is
isomorphic to the relative commutant M of M,, in the free product M, x¢c C*(Z).
UpSeq 18 defined to be the relative commutant of Tyuy(Mn) = My in My +24C*(Z).
It follows that My, ® UGy = My € C*(Z). Gi° is defined to be the universal
C*-algebra generated by elements p;;, 1 < 7,7 € n, and a multiplicative identity
satisfying the relations which make the matrix [p;;] a projection. G%° is isomorphic
to the relative commutant M of M, in the free product M, x¢c C*(Z3). G2 “red
is deﬁned to be the relative commutant M? of M, in the reduced free product

red C*(Zy). 1t follows that M, ® G1° red = M, *red C*(Z,). Since Z and Z, are
amenable, they are K-amenable and satisfy property A. Hence by Corollary 8.8
we have the following proposition.

ProPOSITION 8.9.
K;(Uniea) = K (UR) 2 K;(C*(Z)) = Z, 7 =0,1
Ko(Gntea) = Ko(Gy°) = Ko(C*(Zr)) = Z°
K1(Grired) = Ki(G5F) = Ka(C*(Z2)) = 0.

The K-groups of U3¢ were previously computed in [13], Lemmas 4.1 and 4.3,
and the K-groups of G%.4 were computed in [11], Corollary 2.5. Let 7% and %2
denote ¢ x ¢ in the cases C*(Z) ¢ M,, and C*(Z3) 9 M,, respectively. Let

G Ko(C*(G) 29 M,,) — R

denote the group homomorphism induced by 7¢. The generator of the group
Ko(C*(Z) ¥4 M,) can be taken to be [e5;)o and the generators of the group
Ko(C*(Z2) *red M,) can be taken to be [e11]o and [2$2]q where a and b are the
elements of Z,. Since 7Z(e11) = 722(e11) = % and t72(2$%) = 1 it follows that

1
I (Ko(C(Z) %9 M,)) = -~z
1
2 * red
Ta 1 (Ko(C*(Z2) x&" My)) = _[n,2]z
where [z, y] denotes the least common muitiple of r and y. If P is a projection in
M: C C*(G)*E4 M,,, then Pry.y(err) is a projection in C*(G) *5¢ M,, satisfying
w*Y(P) = ng « Y(Pryaylerr)). Thus

(PI‘O_]( n red)) cz

Z 7

Q(PIOJ( n red)) - [n, E]Z)
where Proj(A) denotes the set of projections of a C*-algebra A. These observations
lead to the following propostion.
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PROPOSITION 8.10. UZSq is @ stmple projectionless C*-algebra for n 2 2.

GPE€ .4 15 a simple projectionless C*-algebra if n s even.

Proof. The simplicity of C*(G) ¢ M,, follows from Proposition 2.1ifn > 1
and |G [ > 1. The simplicity of US4 and G}S4 follows from the isomorphisms
Mn ® UpSeq = C*(Z) +24 M, and M, ® GiF,q = C*(Z; ) *+%9 M,. The discus-
sion preceding the statement of the proposition shows that 7Z(Proj(l URGeq)) and
T22(Proj(GS,qq)} are contained in Z under the hypotheses on n. The projection-

lessness of US4 and G4<,4 then follows from the faithfulness of 7% and 7%2. ®

Proposition 8.10 can be generalized as follows.

THEOREM 8.11. Let G be a countable discreie group with property A. Lel
:C?,4(G) — C denote the usual faithful trace. Suppose p.(Ko(Cleg(G)) C 11,
whcre @« is the homomorphism from Ko(C2y(G)) into R induced by p. Then
the relative commutant MS of M, in C*(G) &% M, is a simple projectionless
C*-algebra if n > 1 and |G| > 1.

Proof. The simplicity of C*(G) *'&Ed M,, follows from Proposition 2.1. The
isomorphism M, @ M¢ = C*(G) +i¢¢ M,, implies that M is simple. Let 7 = @ * %
where ¢ is the trace on M,,. Let

7:Ko(Cra(G)) — R

denote the induced group homomorphism. It follows {from the exact sequence (3.1)
that

7 (Ko(C*(G) ¥&* My)) C u(e1(Ko(Crea(G)))) + 7 (€2 (Ko(Ma)))

= e (Ko(Mn)) + 94 (Ko(Crea(G)))
1

1
Cc -2+ lZ = -1
n n n
The argument precedirig Proposition 8.10 shows that

T(Proj(M?)) C 7(Proj(C*(G) +&° M,)) C L.

The faithfulness of the traces ¢ and v imply that 7 is faithful and hence M is
projectionless. 1
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