BIG HANKEL OPERATOR AND $\overline{\partial}_b$ -EQUATION

E. AMAR

Communicated by William B. Arveson

ABSTRACT. We establish links between Hankel operators theory and $\overline{\partial}_b$ equation in one and several variables. This leads to proofs of the classical Nehari's theorem in the unit disc **D** and Corona's theorem in sBMO(\mathbf{T}^n) togather with the failure of Nehari's theorem for the Bergman class on **D** and for the Hardy class on the unit polydisc or the unit ball in \mathbf{C}^n , $n \geq 2$.

KEYWORDS: Nehari's Theorem, Hankel Operators, Corona Problem, BMO Spaces.

AMS Subject Classification: 47B35, 32A35.

1. INTRODUCTION

Let \mathbf{B}_n be the unit ball of \mathbb{C}^n and \mathbb{D}^n be the unit polydisc of \mathbb{C}^n and let Ω be either \mathbf{B}_n or \mathbb{D}^n and the Hardy spaces of Ω will be those of \mathbf{B}_n or \mathbb{D}^n , the same for the space $\mathrm{BMOA}(\Omega)$ of holomorphic functions in Ω whose boundary values are in $\mathrm{BMO}(\partial\Omega)$, where again $\partial\Omega$ is $\mathbb{S}=\partial \mathbf{B}_n$ or \mathbb{T}^n .

If $\varphi \in L^{\infty}(\partial\Omega)$ we define the Hankel operator of symbol φ as the operator:

$$\forall h \in H^2(\Omega), \gamma_{\varphi} h := P_{\overline{H}^2_0(\Omega)}(\varphi \cdot h) \in \overline{H}^2_0(\Omega)$$

where $\overline{H}_0^2(\Omega)$ is the space of complex conjugate of functions in $H^2(\Omega)$ which are zero at the origin of \mathbb{C}^n .

Clearly, γ_{φ} depends only on the class of φ modulo the functions orthogonal to the anti-holomorphic functions, hence one can choose as a representative the orthogonal projection of φ on $\overline{H}^2(\Omega)$.

We say that $H^1(\Omega)$ has the factorization property if: $\forall h \in H^1(\Omega), \exists v_i, w_i \in H^2(\Omega)$ s.t. $h = \sum_i v_i \cdot w_i$ and $\sum_i ||v_i||_2 \cdot ||w_i||_2 \leq ||h||_1$. Then we have the following:

224 E. Amar

PROPOSITION 1.1. If $\overline{\varphi} \in BMOA$ then γ_{φ} is bounded from $H^2(\Omega)$ to $\overline{H}^2(\Omega)$ and $||\gamma_{\varphi}|| \leq ||\overline{\varphi}||_{BMOA}$. $||\gamma_{\varphi}|| \simeq ||\overline{\varphi}||_{BMOA}$ iff $H^1(\Omega)$ has the factorization property.

This was already noticed in [6].

Proof. The first assumption is just the fact that $v, w \in H^2(\Omega) \implies v \cdot w \in H^1(\Omega)$ and BMOA = $(H^1)^*$. For the second one, let

$$\mathcal{E}:=\left\{h\in H^1 \text{ s.t. } \exists \, v_i, w_i\in H^2(\Omega) \text{ and } h=\sum_i v_i\cdot w_i\right\}$$

with the norm:

$$\|h\|_{\mathcal{E}} := \inf \big\{ \sum_i \|v_i\|_2 \cdot \|w_i\|_2, \text{ over all decompositions of } h \big\}.$$

Then we have:

$$||\varphi||_{\mathcal{E}^{\bullet}} = \sup_{h \in \mathcal{E} \atop \|h\|_{\mathcal{E}} = 1} \left| \int \varphi \cdot h \right| \geqslant \sup_{\substack{v, w \in H^2 \\ \|v\|^2 = \|w\|_2 = 1}} \left| \int \varphi \cdot vw \right| \geqslant ||\gamma_{\varphi}||$$

and

$$||\varphi||_{\mathcal{E}^*} = \sup_{\substack{h \in \mathcal{E} \\ \|h\|_{\mathcal{E}} = 1}} \left| \int \varphi \cdot h \right| \leqslant \sup_{\substack{h \in \mathcal{E} \\ \|h\|_{\mathcal{E}} = 1}} \left| \int \varphi \cdot \sum_{i} v_i w_i \right| < ||\gamma_{\varphi}||$$

hence we always have:

$$||\varphi||_{\mathcal{E}^*} \simeq ||\gamma_{\varphi}||.$$

If $||\gamma_{\varphi}|| \simeq ||\overline{\varphi}||_{\mathrm{BMOA}}$ then $H^1(\Omega) = \mathcal{E}$ because \mathcal{E} is dense in $H^1(\Omega)$ and the two norms are equivalent. If $H^1(\Omega)$ has the factorization property, $H^1(\Omega) = \mathcal{E}$ then $\mathcal{E}^* = \mathrm{BMOA}$ and $||\gamma_{\varphi}|| \simeq ||\overline{\varphi}||_{\mathrm{BMOA}}$.

In the case of the ball we have [6]: $\varphi \in BMOA(\mathbf{B}_n) \Rightarrow \varphi = \alpha + P_{H^2}\beta$ with $\alpha, \beta \in L^{\infty}(\partial \mathbf{B}_n)$, $\|\alpha\|_{\infty} \lesssim \|\varphi\|_{BMOA}$, $\|\beta\|_{\infty} \lesssim \|\varphi\|_{BMOA}$, hence $P_{\overline{H}^2}\varphi = P_{\overline{H}^2}\alpha$ hence $\gamma_{\varphi} = \gamma_{\alpha}$. In the case of the polydisc we still have [4]: $\varphi \in BMOA(\mathbf{D}^n) \Rightarrow \varphi = \alpha + \sum_{i=1}^n \beta_i$ where α is bounded on \mathbf{T}^n and β_i is a BMO function which is holomorphic in z_i ; hence again we get:

$$P_{\overline{H}^2}\varphi = P_{\overline{H}^2}\alpha.$$

Now for n = 1, the factorization property for $H^1(\mathbf{D})$ is well known hence we made a proof of the famous theorem of Nehari:

THEOREM 1.2. ([9]) The Hankel operator γ_{φ} is bounded from $H^2(\mathbf{D})$ to $\overline{H}_0^2(\mathbf{D})$ iff there is a bounded function α on the circle such that $\gamma_{\alpha} = \gamma_{\varphi}$. Moreover, if γ_{φ} is bounded, we have $||\alpha||_{\infty} \simeq ||\gamma_{\varphi}||$.

Hence, we have the characterization of the bounded Hankel operators in the case of the disc:

THEOREM 1.3. Let $\varphi \in \overline{H}^2(\mathbf{D})$, the following are equivalent:

- (i) γ_{φ} is a bounded map of $H^2(\mathbb{D})$ into $\overline{H}_0^2(\mathbb{D})$;
- (ii) $\varphi = P_{\overline{H}_0^2(\mathbb{D})} \alpha$ for some $\alpha \in L^{\infty}(\mathsf{T})$;
- (iii) φ is in BMO(T).

If any of these conditions hold the α can be chosen so that $||\alpha||_{\infty} \simeq ||\varphi||_{\text{BMO}}$ $\simeq ||\gamma_{\varphi}||_{\cdot}$

2. HANKEL OPERATORS IN SEVERAL VARIABLES

For this operator in the ball B_n we have the theorem of Coifman, Rochberg and Weiss ([6]), which provides a complete analogue of the case n = 1:

Theorem 2.1. For $\varphi \in H^2(\mathbf{B})$ the following are equivalent:

- (i) γ_{φ} is a bounded map from $H^{2}(\mathbf{B})$ into $\overline{H}^{2}(\mathbf{B})$;
- (ii) there is an $F \in L^{\infty}(\partial \mathbf{B})$ such that $\gamma_F = \gamma_{\varphi}$;
- (iii) $\overline{\varphi}$ is in BMOA.

If any of these conditions hold, F can be chosen so that $||F||_{\infty} \simeq ||\varphi||_{\text{BMO}} \simeq ||\Gamma_{\varphi}||$.

Proof. In fact they proved the factorization property for $H^1(\mathbf{B}_n)$ which, together with the duality between $H^1(\mathbf{B}_n)$ and $BMOA(\mathbf{B}_n)$ gives the theorem.

For the polydisc, the factorization property for $H^1(\mathbb{D}^n)$ is still an open question and we only have:

PROPOSITION 2.2. The following are equivalent for $\overline{\varphi} \in H^2(\mathbb{D}^n)$:

- (i) γ_{φ} is bounded;
- (ii) $||\varphi||_{\mathcal{E}^*} < +\infty$.

Proof. If the factorization property for $H^1(\mathbb{D}^n)$ is true, then it will exist a function α in $L^{\infty}(\mathbb{T}^n)$ such that $\gamma_{\alpha} = \gamma_{\varphi}$ and $||\gamma_{\varphi}|| \simeq ||\overline{\varphi}||_{\text{BMOA}} \simeq ||\alpha||_{\infty}$.

2.1. BIG HANKEL OPERATOR IN **B**. The big Hankel operator of symbol φ is $\Gamma_{\varphi}: H^2(\mathbf{B}) \longrightarrow H^2(\mathbf{B})^{\perp}$ defined by:

$$\forall h \in H^2(\mathbf{B}) \quad \Gamma_{\varphi} h = P_{H^{2\perp}} \varphi h.$$

This operator is the other possible generalization of the Hankel operator of the disc in C.

In fact, still in [6], the authors prove that the commutator of φ and the orthogonal projection on $H^2(\mathbf{B})$ is bounded on $L^2(\partial \mathbf{B})$ if $\varphi \in \mathrm{BMO}(\partial \mathbf{B})$; but here we have:

$$\Gamma_{\varphi}h = P_{H^2(\mathbf{B})^{\perp}}(\varphi h) = \varphi h - P_{H^2(\mathbf{B})} = \left[\varphi, P_{H^2(\mathbf{B})}\right] \cdot h$$

because h is already in $H^2(\mathbf{B})$; hence they proved:

THEOREM 2.3. The big Hankel operator Γ_{ω} is bounded if

$$P_{H^2(\mathbf{B})^{\perp}}\varphi \in \mathrm{BMO}(\partial \mathbf{B}).$$

2.2. LINK WITH THE $\overline{\partial}_b$ -EQUATION IN THE BALL. We now establish links between the norm of Γ_{φ} and a norm of φ in term of the $\overline{\partial}$ of a Stokes extension of φ in **B**.

PROPOSITION 2.4. Let $\tilde{\varphi}$ be any Stokes extension of φ in B, then:

$$\forall h \in H^2(\mathbf{B}), \quad \overline{\partial}_b(\Gamma_{\varphi}h) = h \cdot \overline{\partial}\tilde{\varphi}.$$

The proof of this proposition will be an easy consequence of the following lemma:

LEMMA 2.5. The space $H^2(\mathbf{B})^{\perp}$ can be identified with the space of (n, n-1) forms, $\overline{\partial}_b$ -closed and in $L^2(\partial \mathbf{B})$ in such a way that:

$$\forall f \in H^2(\mathbf{B})^{\perp} \longrightarrow \Omega(\overline{f}) \in L^2_{(n,n-1)}(\mathbf{B}), \quad \overline{\partial}_b \Omega(\overline{f}) = 0$$

and

$$\forall h \in L^2(\partial \mathbf{B}), \quad \int\limits_{\partial \mathbf{B}} h \cdot \overline{f} \, \mathrm{d}\sigma = \int\limits_{\partial \mathbf{B}} h \cdot \Omega(\overline{f}).$$

Proof. Let us prove it in \mathbb{C}^2 for simplicity; the space $H^2(\mathbf{B})^{\perp}$ can be decomposed in the direct sum of 3 terms:

$$H_{0} := \{ f \mid \overline{f} \in H^{2}(\mathbf{B}), \ f(0) = 0 \Leftrightarrow \overline{f} = z_{1}g_{1} + z_{2}g_{2}, \ g_{i} \in H^{2}(\mathbf{B}), \ i = 1, 2 \}$$

$$H_{1} := \{ f \mid \exists g \in H^{2}(\mathbf{B}) \text{ s.t. } \overline{f}(z_{1}, z_{2}) = z_{1}g(z_{1}, \overline{z}_{2}) \}$$

$$H_{2} := \{ f \mid \exists g \in H^{2}(\mathbf{B}) \text{ s.t. } \overline{f}(z_{1}, z_{2}) = z_{2}g(\overline{z}_{1}, z_{2}) \}$$

because Leibenson's decomposition is true for $H^2(\mathbf{B})$.

Now if:

 $f \in H_0$ we put $\Omega(\overline{f}) := g_2 d\overline{z}_1 - g_1 d\overline{z}_2$

 $f \in H_1$ we put $\Omega(\overline{f}) := -g(z_1, \overline{z}_2) d\overline{z}_2$

 $f \in H_2$ we put $\Omega(\overline{f}) := g(\overline{z}_1, z_2) d\overline{z}_1$

and we check easily that in any case we have $\overline{\partial}\Omega(f)=0$.

Conversely if φ is a $\overline{\partial}$ -closed (2,1) form in $\mathbf B$ then we say that $\varphi \in L^2_{(2,1)}(\mathbf B)$ if $\forall f \in L^2(\partial \mathbf B)$

$$\left| \int\limits_{\partial \mathbf{R}} f \varphi \right| = \left| \int\limits_{\partial \mathbf{R}} f \varphi^{\#} \, \mathrm{d} \sigma \right| \leqslant C ||f||_{2};$$

then using Stokes' theorem we get that $\varphi^{\#} \perp H^2(\mathbf{B})$ and the lemma.

Proof of the Proposition 2.4. Let $\varphi \in L^{\infty}(\partial \mathbf{B})$, $h \in H^2(\mathbf{B})$ and $v := \Gamma_{\varphi} h$, then:

$$\forall\, k\in H^2(\mathbf{B})^\perp,\quad \int\limits_{\partial\mathbf{B}}v\cdot\overline{k}\,\mathrm{d}\sigma=\int\limits_{\partial\mathbf{B}}v\cdot\Omega(\overline{k})=\int\limits_{\partial\mathbf{B}}\varphi h\cdot\Omega(\overline{k})=\int\limits_{\mathbf{B}}h\overline{\partial}\widetilde{\varphi}\wedge\Omega(\overline{k})$$

hence $\overline{\partial}_h v = h \cdot \overline{\partial} \tilde{\varphi}$ and the proposition.

I introduced a class of $\overline{\partial}$ -closed (0,1) form in \mathbf{B} , ([2]), named class A, such that $\omega \in A$ iff $\forall h \in H^2(\mathbf{B})$, $\exists u \in L^2(\partial \mathbf{B})$ $\overline{\partial}_b u = h \cdot \omega$; now the preceding proposition implies that $\|\Gamma_{\varphi}\| < +\infty \Leftrightarrow \overline{\partial} \tilde{\varphi} \in A$ for any Stokes' extension of φ in \mathbf{B} . Before going on we need to recall definitions about Carleson forms in \mathbf{B} .

DEFINITION 2.6. Let $z \in \partial \mathbf{B}$, r > 0 then the pseudo-ball of center z and radius r is:

$$Q(z,r) := \{ \zeta \in \mathbb{B} \mid |1 - \overline{\zeta} \cdot z| < r \}.$$

DEFINITION 2.7. Let μ a measure on $\mathbf{B} \subset \mathbb{C}^n$; μ is a Carleson measure if:

$$\exists C > 0, \ \forall z \in \partial \mathbf{B}, \ \forall r > 0, \ |\mu|(Q(z,r)) \leqslant Cr^n.$$

We note $V^1(\mathbf{B})$ the space of Carleson measures in \mathbf{B} .

The Carleson norm of μ is the smallest C in the preceding definition.

228 E. Amar

DEFINITION 2.8. Let ω a (0,1) form on **B**, ω is a Carleson (0,1) form if:

- (i) the coefficients of ω are Carleson measures;
- (ii) the coefficients of $\frac{\omega \wedge \overline{\partial} \rho}{\sqrt{-\rho}}$ are Carleson measures.

We note $V_{(0,1)}^1(\mathbf{B})$ the space of Carleson (0,1) forms in \mathbf{B} .

DEFINITION 2.9. Let γ a (1,1) form on **B**, γ is a Carleson (1,1) form if:

- (i) the coefficients of $\gamma \wedge \partial \rho \wedge \overline{\partial} \rho$ are Carleson measures in **B**;
- (ii) the coefficients of $\sqrt{-\rho}\gamma \wedge \overline{\partial}\rho$ are Carleson measures in **B**;
- (iii) the coefficients of $\sqrt{-\rho} \gamma \wedge \partial \rho$ are Carleson measures in B;
- (iv) the coefficients of $-\rho \cdot \gamma$ are Carleson measures in **B**.

We note $V_{(1,1)}^1(\mathbf{B})$ the space of Carleson (1,1) forms in \mathbf{B} .

Now we can state:

THEOREM 2.10. Let φ be a function on $\partial \mathbf{B}$; if φ admits a Stokes' extension in \mathbf{B} , $\tilde{\varphi}$, such that the form $\omega := \overline{\partial} \tilde{\varphi}$ satisfies one of the following conditions, then Γ_{φ} is a bounded operator:

- (i) $\omega \in V^1_{(0,1)}(\mathbf{B});$
- (ii) $|\omega|^2 \in V^1(\mathbf{B})$;
- (iii) $(1-|z|^2) \cdot |\omega|^2 \in V^1(\mathbf{B}) \text{ and } \partial \omega \in V^1_{(1,1)}(\mathbf{B}).$

Now if we compare Theorem 1.3 and Theorem 2.3, we see that the assertion concerning the bounded function is missing and in fact we have:

PROPOSITION 2.11. There is a function $\varphi \in BMO(\partial B)$ (hence Γ_{φ} is bounded) such that there is no function α in $L^{\infty}(\partial B)$ with $\Gamma_{\alpha} = \Gamma_{\varphi}$.

Proof. To prove this let $\varphi := \log(1 - |z_1|^2)$, then it is easy to check that $\varphi \in \text{BMO}(\mathbf{B})$ and if there is an $\alpha \in L^{\infty}(\partial \mathbf{B})$ such that $\Gamma_{\alpha} = \Gamma_{\varphi}$ then there is a holomorphic function h in \mathbf{B} such that $\varphi = \alpha + h$ and this is not possible by the "minimum principle" ([1]).

Of course the same example proves that Nehari's theorem also fails for big Hankel operators in the Bergman space of the unit disc.

3. CASE OF THE POLYDISC

The big Hankel operators were studied by C. Sadosky and M. Cotlar ([7]) and they introduced the

DEFINITION 3.1. The space $sBMO(\mathbb{T}^n)$ is

$$sBMO(T^n) := \{ f \in BMO(T^n) \mid f = \Phi_1 + H_{z_1} \Psi_1 = \dots = \Phi_n + H_{z_n} \Psi_n \}$$

with the norm:

$$||f||_{sBMO} := \inf\{\max_{i}(||\Phi_{i}||_{\infty}), \text{ on all decompositions of } f\}.$$

This space is substantially smaller than $BMO(\mathbb{T}^n)$. They proved:

THEOREM 3.2. Γ_{φ} is bounded from $H^2(\mathbb{D}^n)$ to $H^2(\mathbb{D}^n)^{\perp}$ iff $P_{H^{2\perp}}\varphi \in \mathrm{sBMO}(\mathsf{T}^n)$.

We shall give other conditions linked to the $\bar{\partial}$ -equation.

3.1. LINK WITH THE $\overline{\partial}_b$ -EQUATION IN THE POLYDISC. We state and prove the theorems in the case of the bidisc only in order to have simpler notations; everythings go the same way in \mathbb{C}^n .

The scheme is the same as for the unit ball; first we decompose the orthogonal of $H^2(\mathbb{T}^2)$:

LEMMA 3.3. Let f in $H^2(\mathsf{T}^2)^{\perp}$, then we have: $f = \overline{z}_1 f_1 + \overline{z}_2 f_2$ with $||f||_2^2 = ||f_1||_2^2 + ||f_2||_2^2$ and f_i anti-holomorphic in z_i .

Proof. The proof is just a Fourier series decomposition.

Let $\omega = \omega_1 d\overline{z}_1 + \omega_2 d\overline{z}_2$ a (0,1)-form in D^2 , we shall say that ω is uniformly Carleson with constant C if:

- (i) $\forall z_2 \in \mathbf{T} \|\omega_1(\cdot, z_2)\|_C \leqslant C$;
- (ii) $\forall z_1 \in \mathbf{T} ||\omega_1(z_1,\cdot)||_C \leqslant C$;

where $||\mu||_C$ is the Carleson norm of the measure μ in the unit disc of \mathbb{C} .

230 E. Amar

THEOREM 3.4. Let φ a function in $L^{\infty}(\mathsf{T}^2)$. If $\overline{\partial}_b \varphi$ is uniformly Carleson in D^2 with constant C, then Γ_{φ} is bounded with a norm controlled by C.

Proof. Let $h \in H^2(\mathbb{T}^2)$, we have to show that $|\langle \varphi \cdot h, f \rangle| \leq C||h||_2||f||_2$ for any $f \in H^2(\mathbb{T}^2)^{\perp}$; because of the lemma it suffices to prove that with $f_i, i = 1, 2$. Hence let f be anti-holomorphic in z_1 , then we have:

$$i\int_{\mathbf{T}^2} \varphi h z_1 \overline{f} \, \mathrm{d}\theta_1 \, \mathrm{d}\theta_2 = \int_{\mathbf{T}} \left\{ \int_{\mathbf{T}} \varphi h \overline{f} \, \mathrm{d}z_1 \right\} \mathrm{d}\theta_2 = \int_{\mathbf{T}} \left\{ \int_{\mathbf{D}} \frac{\partial \tilde{\varphi}}{\partial \overline{z}_1} h \overline{f} \mathrm{d}\overline{z} \wedge \mathrm{d}\overline{z}_1 \right\} \mathrm{d}\theta_2$$

where $\tilde{\varphi}$ is any Stokes' extension of φ .

But by hypothesis $\overline{\partial}_b \varphi$ is uniformly Carleson; then the last integral is bounded by:

$$\int_{\mathbb{T}} \left\{ \left\| \overline{\partial}_{1} \widetilde{\varphi}(\cdot, z_{2}) \right\|_{C} \left\| h(\cdot, z_{2}) \right\|_{2} \left\| \overline{f}(\cdot, z_{2}) \right\|_{2} \right\} d|z_{2}| \leqslant \left\| \overline{\partial}_{b} \varphi \right\|_{C} \left\| h \right\|_{2} \left\| f \right\|_{2}.$$

Of course the same is true if we assume that f is anti-holomorphic in z_2 , hence the theorem.

In the same vein we shall say that the (0,1) form $\omega = \omega_1 d\overline{z}_1 + \omega_2 d\overline{z}_2$ verifies uniformly the Wolff's conditions with constant C if:

(i)
$$\forall z_2 \in \mathsf{T}, \ \|(1-|z_1|^2)|\omega_1|^2\|_C \leqslant C \ \text{and} \ \left\|(1-|z_1|^2)\left|\frac{\partial \omega_1}{\partial z_1}\right|\right\|_C \leqslant C;$$

(ii)
$$\forall z_1 \in \mathbf{T}$$
, $||(1-|z_2|^2)|\omega_2|^2||_C \leqslant C$ and $||(1-|z_2|^2)|\frac{\partial \omega_2}{\partial z_2}||_C \leqslant C$.

Then we have:

Theorem 3.5. Let φ a function in $L^{\infty}(\mathbb{T}^2)$. If $\overline{\partial}_b \varphi$ verifies uniformly the Wolff's conditions with constant C, then Γ_{φ} is bounded with a norm controlled by C.

Proof. Let $h \in H^2(\mathbf{D}^2)$ and $\overline{z}_1 f \in H^2(\mathbf{T}^2)^{\perp}$, f anti-holomorphic in z_1 ; by the lemma, we again have to show that $|\langle \varphi \cdot h, \overline{z}_1 f \rangle| \leq C ||h||_2 ||f||_2$. As was done by Wolff, we apply Green's formula in z_1 :

$$\int_{\mathbf{T}} \varphi h z_1 \overline{f} d\theta_1 = -\int_{\mathbf{D}} \log |z_1|^2 \triangle (z_1 \varphi h \overline{f}) dv$$

where we still note φ an extension of φ in \mathbf{D}^2 such that $\overline{\partial} \varphi$ verifies uniformly the Wolff's conditions with constant C.

Then $\Delta z_1 \varphi h \overline{f} = 4 \partial (z_1 h \overline{f} \overline{\partial} \varphi)$ because \overline{f} is holomorphic in z_1 ; hence:

$$\frac{1}{4}\cdot \triangle z_1 \varphi h \overline{f} = \overline{f} \partial h' \overline{\partial} \varphi + h' \partial \overline{f} \overline{\partial} \varphi + \overline{f} h' \partial \overline{\partial} \varphi$$

where we put $h' := z_1 h$, and then we have to integrate 3 terms; let see the first:

$$\left|\int\limits_{\mathbf{D}} \overline{f} \partial h' \overline{\partial} \varphi \log |z_1|^2 \, \mathrm{d}v \right| \leqslant \left(\int\limits_{\mathbf{D}} \log |z_1|^2 |w_1| \, \mathrm{d}v \right)^{\frac{1}{2}} \left(\int\limits_{\mathbf{D}} \log |z_1|^2 |\overline{f}|^2 |w_1|^2 \, \mathrm{d}v \right)^{\frac{1}{2}}$$

by Schwarz's lemma, where we note $\overline{\partial}\varphi = \partial\varphi/\partial\overline{z}_1 = \omega_1$.

We have $||h'||_2 = ||h||_2$ and

$$-\int_{\mathbf{D}} |\partial_1 h'|^2 \log |z_1|^2 dv \leqslant C \int_{\mathbf{T}} |h'|^2 d\theta_1$$

and the second factor is bounded by $\int_{\mathbf{D}} |\overline{f}|^2 d\theta_1$ because the Carleson condition on $(1-|z_1|^2)|\omega_1|^2$. The same is valid for the second term and for the last one we use the fact that $\overline{f}h' \in H^1$, $||\overline{f}h'||_1 \leq ||f||_2 ||h'||_2$ and the Carleson condition on $(1-|z_1|^2)\partial_1\omega_1$.

Hence we have:

$$\left| \int_{\mathbf{T}} \varphi h z_1 \overline{f} \, \mathrm{d}\theta_1 \right| \preceq \left(\int_{\mathbf{T}} |h|^2 \, \mathrm{d}\theta_1 \right)^{\frac{1}{2}} \left(\int_{\mathbf{T}} |\overline{f}|^2 \, \mathrm{d}\theta_1 \right)^{\frac{1}{2}} .$$

and

$$|\langle \varphi \cdot h, \overline{z}_1 f \rangle| = \left| \int\limits_{\mathbb{T}} \left\{ \int\limits_{\mathbb{T}} \varphi h' \overline{f} \, \mathrm{d}\theta_1 \right\} \, \mathrm{d}\theta_2 \right| \preceq ||\overline{f}||_2 ||h||_2$$

again by Schwarz's lemma.

We do the same with the part anti-holomorphic in z_2 and then we prove that Γ_{φ} is bounded. \blacksquare

COROLLARY 3.6. Let f_1, f_2 in $H^{\infty}(\mathbb{D}^n)$ be such that $z \in \mathbb{D}^n, |f_1(z)| + |f_2(z)| \ge \delta > 0$, then there are g_1, g_2 in sBMOA verifying $f_1g_1 + f_2g_2 = 1$.

Proof. As done by Wolff, we easily see that the "Corona form" ω verifies the Wolff's conditions uniformly and then we have a solution φ of $\overline{\partial}_b \varphi = \omega$ such that Γ_{φ} is bounded; hence, by the result of M. Cotlar and C. Sadosky, we get that φ is in sBMO. \blacksquare

This result was proved directly by U. Cegrell for the bidisc ([5]) and improves preceding results of N. Varopoulos ([10]) and S.Y.A. Chang ([3]).

4. THE BERGMAN SPACE

Instead of the Hardy space $H^2(\mathbf{D})$ we may consider the Bergman space $A^2(\mathbf{D})$ and study the boundedness of the Big Hankel operator from $A^2(\mathbf{D})$ into $A^2(\mathbf{D})^{\perp}$. The space $A^2(\mathbf{D})$ may be considered as the Hardy space of **B** restricted on $z_2 = 0$, or as the Hardy space of \mathbf{D}^2 restricted on $z_1 = z_2$.

Now if we compare Theorem 1.3 and Theorem 2.3, we see that the assertion concerning the bounded function is missing and in fact we have:

PROPOSITION 4.1. There is a function $\varphi \in BMO(\mathbb{D})$ (hence Γ_{φ} is bounded) such that there is no function F in $L^{\infty}(\mathbb{D})$ with $\Gamma_F = \Gamma_{\varphi}$.

Proof. To prove this let $\varphi := \log(1 - |z_1|^2)$; then it is easy to check that $\varphi \in \text{BMO}(\mathbf{D})$ and if there is an $F \in L^{\infty}(\mathbf{D})$ such that $\Gamma_F = \Gamma_{\varphi}$ then there is a holomorphic function h in \mathbf{D} such that $\varphi = F + h$ and this is not possible by the "minimum principle" ([1]).

Hence Nehari's theorem fails for Big Hankel operators in the Bergman space of the unit disc and also for Big Hankel operators in B and in D^n .

REFERENCES

- 1. E. AMAR, Généralisation d'un théorème de Wolff en plusieurs variables, Analyse Harmonique Orsay 80T42, 1980.
- E. AMAR, \$\overline{\theta}_b\$ equation and nonfactorization, Proceedings of the Special Year in Several Complex Variables, Mittag-Leffler 1987.
- S.-Y.A. CHANG, Two remarks on H¹ and BMO on the bidisc, Conference on Harmonic Analysis in Honour of Antoni Zygmund, vol II, Chicago 1981.
- S.-Y.A. CHANG, R. FEFFERMAN, Some recent developments in Fourier analysis and H^p-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12(1985), 1-43.
- U. CEGRELL, On ideals generated by bounded analytic functions in the bidisc, Bull. Soc. Math. France 121(1993), 109-116.
- R.R. COIFMAN, R. ROCHBERG, G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103(1976), 611-635.
- M. COTLAR, C. SADOSKY, Conference in Journées Complexes du Sud, Toulouse 1992.
- C. FEFFERMAN, E. STEIN, H^p-Spaces of Several Variables, Acta Math. 129(1972), 137-193.

Z. NEHARI, On bounded bilinear forms, Ann. of Math. (2) 65(1957), 153-162.
 N. VAROPOULOS, BMO functions and the Θ-equation, Pacific J. Math. 71(1977), 221-273.

ERIC AMAR
Laboratoire de Mathématiques Pures
Université de Bordeaux I
351, Cours de la Libération
33405 Talence
FRANCE

Received October 29, 1993.