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BIG HANKEL OPERATOR AND 3§;-EQUATION
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ABSTRACT. We establish links between Hankel operators theory and @ equa-
tion in one and several variables. This leads to proofs of the classical Nehari’s
theorem in the unit disc D and Corona’s theorem in sBMO(T") togather with
the failure of Nehari’s theorem for the Bergman class on I and for the Hardy
class on the unit polydisc or the unit ball in C", n > 2.
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1. INTRODUCTION

Let B, be the unit ball of C" and D™ be the unit polydisc of C* and let Q be
either B, or D" and the Hardy spaces of Q will be those of B,, or D", the same for
the space BMOA(Q) of holomorphic functions in 2 whose boundary values are in
BMO(3Q), where again 9 is $ = 6B, or T".

If p € L=(8) we define the Hankel operator of symbol ¢ as the operator:

=2
Yhe HA(Q), yph = PH—QD(Q)(Lp - h) € Hy(2)

where Fg(ﬂ) is the space of complex conjugate of functions in H2(Q) which are
zero at the origin of C”.

Clearly, v, depends only on the class of ¢ modulo the functions orthogonal
to the anti-holomeorphic functions, hence one can choose as a representative the
orthogonal projection of ¢ on H ().

We say that H'(Q) has the factorization property if: Vh € H(Q), Jv;, w; €
H*(Q)st. h =Y v;-w; and 3 ||vill2 - [Jws]l2 < ||[l1. Then we have the following:

i i
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PROPOSITION 1.1. If € BMOA then v, is bounded from H(S) to H (Q)
and |7, || < ([llemoa- |11ell = [|PllBMoa iff H(R) has the factorization property.

This was already noticed in [6].

Proof. The first assumption is just the fact that v,w € H}Q) = v-w €
HY()) and BMOA = (H!)* . For the second one, let

£:={heH st 3v;,w; € H*(N) and h:Ev.- cw;i }

with the norm:

l1Rlle == inf{z [lvill2 - ||lwil|2, over all decompositions of h}.

Then we have:

lolle- = sup [ [o-8]> s |[-ou] >l
hEE ';“EH:
Iirlle =1 o2 =pwliz=2
and
lelle- = sup | o4 < sup | [ 3 wws| < el
hEE hEs .
allg =1 linlg =2 *

hence we always have:
Neellze 2 livell-
If ||7o]l = ||@llBMoa then HY(Q) = £ because £ is dense in H'(2) and the two

norms are equivalent. If H!(Q) has the factorization property, H1(R2) = £ then
&£* = BMOA and ”’)QPH o~ |I¢”BMQA. |

In the case of the ball we have {6]: ¢ € BMOA(B,) = ¢ = a+ Pgf3
with , § € L(3By), [|lloe £ ll¢llamon, 1Blleo S ll¢llBmoa , hence Pgag = Prar
hence 7, = 74. In the case of the polydisc we still have [4]: ¢ € BMOA(D") =

n
¢ = a+ Y fBi where « is bounded on T" and £ is a BMO function which 1s

i=1
holomorphic in z;; hence again we get:

Peap = Praa.

Now for n = 1, the factorization property for H(D) is well known hence we
made a proof of the famous theorem of Nehari:



B1G HANKEL OPERATOR AND 8,-EQUATION 225

THEOREM 1.2. ([9]) The Hankel operator v, is bounded from H?*(D) to
ﬁg(ﬂ) iff there is a bounded function o on the circle such that vy, = Y. Moreover,
if v, 1s bounded, we have ||e||lcc = ||7l|-

Hence, we have the characterization of the bounded Hankel operators in the
case of the disc:

THEOREM 1.3. Let p € H (D), the following are equivalent:
(i) 7o ts a bounded map of H?(D) into Fﬁ([b),-
(i) p = P?I?,(n)a for some o € L*(T);
(iii) ¢ is in BMO(T).
If any of these conditions hold the o can be chosen so that ||| = |||lBMO

= |yl

2. HANKEL OPERATORS IN SEVERAL VARIABLES

For this operator in the ball B, we have the theorem of Coifman, Rochberg
and Weiss ([6]), which provides a complete analogue of the case n = 1:

THEOREM 2.1. For ¢ € H%(B) the following are equivalent:
(i) ¥, is a bounded map from H?(B) inio H (B);
(ii) there is an F € L™°(3B) such that yr = v,;
(iii) @ is in BMOA.
If any of these conditions hold, F can be chosen so that ||F||c = ||¢]lemMo = ||ITol)-

Proof. In fact they proved the factorization property for H1(B,) which, to-
gether with the duality between H'(B,) and BMOA(B,,) gives the theorem. &

For the polydisc, the factorization property for H!(D") is still an open ques-

tion and we only have:

PROPOSITION 2.2. The following are equivalent for p € H(D"):
(1) ve is bounded;
(i) [lelles < +oo.

Proof. If the factorization property for H*(D") is true, then it will exist a
function « in L*°(T") such that v4 = 7, and {|y,|| ~ ||®]lBMoa = [|a|lec- B
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2.1. B1G HANKEL OPERATOR IN B. The big Hankel operator of symbol ¢ is
Ty : H?(B) — H?(B)' defined by:

Vhe HYB) Tuh= Pyaph.

This operator is the other possible generalization of the Hankel operator of
the disc in C.

In fact, still in [6], the duthors prove that the commutator of ¢ and the
orthogonal projection on H?(B) is bounded on L2(3B) if ¢ € BMO(8B); but here
we have:

Pwh = PH?(B).L((ph) = (ph - P;p(n) = [(p, PH?(B)] -h
because h is already in H?(B); hence they proved:
THEOREM 2.3. The big Hankel operator 'y, ts bounded if

PH’(B)-‘-‘P € BMO(ﬁB)

2.2. LINK WITH THE 8 -EQUATION IN THE BALL. We now establish links between
the norm of T'y, and a norm of ¢ in term of the 3 of a Stokes extension of ¢ in B.

PROPOSITION 2.4. Let $ be any Stokes extension of ¢ in B, then:
Vhe H(B), 0u(T,h)=h-9.

The proof of this proposition will be an easy consequence of the following
lemma:

LEMMA 2.5. The space H2(B)L can be identified with the space of (n,n—1)
forms, 8y-closed and in L%(8B) in such a way that:

VieH*B)t — Q(f) € L, n_1y(B), 3:F) =0

and

Vh e L%(5B), h-fdo= | h-Q(f).
17

aB

Proof. Let us prove it in C? for simplicity; the space H%(B)L can be decom-
posed in the direct sum of 3 terms:

Ho:={f|fe H*B), f(0)=0 & f=z101+ 2292, i € H*(B), i =1,2}

Hy:={f|3g € HYB) s.t. f(z1,22) = z19(21,%2)}

Hy:={f|3g € H*B) s.t. f(z1,2) = 229(Z1, 22)}
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because Leibenson’s decomposition is true for H%(B).
Now if:
f € Hy we put 9(7) = godz; — g1 dZ»
f € Hy we put Q(f) := —g(21,%2) dz;
f € Hy we put Q(f) := ¢(z1, ) d7y
and we check easily that in any case we have 9Q(f) = 0.

Conversely if ¢ is a O-closed (2,1) form in B then we say that ¢ € L?z 1)(B)
ifV f € L*(9B)

| [ se]=| [ so* ao| < clins
a8 a8
then using Stokes’ theorem we get that ¢# L H?(B) and the lemma. &

Proof of the Proposition 2.4. Let ¢ € L=(8B), h € H*(B) and v := 'k,
then:

Vk e H3(B), fu-idazfu-g(ic‘):/wh-a(z)th'a'a/\sz@)
' 2B a8 oB B

hence 9yv = h - 5 and the proposition.

Iintroduced a class of 8-closed (0,1) formin B, ([2]), named class A, such that
w€ Aif Vh € H2(B), 3u € L*(8B) Jyu = h - w; now the preceding proposition
implies that [|Ty|| < 400 < 0% € A for any Stokes’ extension of ¢ in B. Before
going on we need to recall definitions about Carleson forms in B.

DEFINITION 2.6. Let z € 0B, » > 0 then the pseudo-ball of center z and

radius r is:

Qz,r):={¢eB|1-C 2| <r}.
DEFINITION 2.7. Let 4 a measure on B C C"; u is ¢ Carleson measure if:
3C>0,VzedB, Vr >0, [ul(Q(z,r)) € Cr".
We note V1(B) the space of Carleson measures in B.

The Carleson norm of u is the smallest C in the preceding definition.
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DEFINITION 2.8. Let w a (0,1) form on B, w is a Carleson (0,1) form if:
(i) the coeflicients of w are Carleson measures;

(11) the coefficients of “A_gp are Carleson measures,

We note Vg 11(B) the space of Carleson (0,1) forms in B.

DEFINITION 2.9. Let v a (1,1) form on B, 7 is a Carleson (1,1) form if:
(i) the coefficients of 4 A Op A 3p are Carleson measures in B;

(ii) the coefficients of \/—py A 3p are Carleson measures in B;

(i11) the coefficients of \/=p v A dp are Carleson measures in B;

(iv) the coefficients of —p - y are Carleson measures in B.

We note V] ,)(B) the space of Carleson (1,1) forms in B.

Now we can state:

THEOREM 2.10. Let ¢ be a funciion on OB; if ¢ edmils a Slokes’ extension
in B, ¢, such that the form w := 0 satisfies one of the following conditions, then
Ty is ¢ bounded operaior: .

(i) w € Vi (®);
(ii) I € V'(B);
(ii) (1 — |z|?) - |w|?> € VI(B) and 8w € V(11,1)(B)'

Now if we compare Theorem 1.3 and Theorem 2.3, we see that the assertion

concerning the bounded function is missing and in fact we have:

PROPOSITION 2.11. There is a function o € BMO(8B) (hence T, is bounded)
such that there is no function o in L°(6B) with [y =T,.

Proof. To prove this let ¢ := log(1l — |z1|?), then it is easy to check that
» € BMO(B) and if there is an o € L*°(9B) such that [ = T, then there is a
holomorphic function k in B such that ¢ = & + h and this is not possible by the
“minimum principle” ([1]).

Of course the same example proves that Nehari’s theorem also fails for big

Hankel operators in the Bergman space of the unit disc. &
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3. CASE OF THE POLYDISC

The big Hankel operators were studied by C. Sadosky and M. Cotlar ([7])
and they introduced the

DEFINITION 3.1. The space sBMO(T™) is
sBMO(T") := {f € BMO(T") | f = &, + H.,¥1 = - = O + H,, ¥, }
with the norm:
[ fllseMo := inf{mfa,x(i|<bi||°°), on all decompositions of f}.

This space is substantially smaller than BMO(T"). They proved:

THEOREM 3.2. Ty, is bounded from H2(D") to HXD")L iff Pyerp €
sBMO(T").

We shall give other conditions linked to the d-equation.

3.1. LINK WITH THE Op-EQUATION IN THE POLYDISC. We state and prove
the theorems in the case of the bidisc only in order to have simpler notations;
everythings go the same way in C".

The scheme is the same as for the unit ball; first we decompose the orthogonal
of H3(T?):

LEMMA 3.3. Let f in H2(T?)%, then we have: f = Z1 fi + Zafo with ||f|)3 =
[1£1l12 + || f2ll2 and f; anti-holomorphic in z.

Proof. The proof is just a Fourier series decomposition. 1

Let w = w; dZ1 + w2 dZ3 a (0,1)-form in DB?, we shall say that w is uniformly
Carleson with constant C' if:

() Vzz €T lws(; 22)lle < C;

(i) V21 € T [lon(es, e < Cs

where ||u||¢ is the Carleson norm of the measure g in the unit disc of C.
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THEOREM 3.4. Let ¢ a function in L®(T?). If 8y is uniformly Carleson
in D? with constant C, then Ty, is bounded with a norm controlled by C.

Proof. Let h € H2(T?), we have to show that | < ¢-h, f > | < C||h|2||f||2 for
any f € H%(T?)%; because of the lemma it suffices to prove that with f;,i=1,2.
Hence let f be anti-holomorphic in 2y, then we have:

i/¢hz17d01 d6, =Tf{!¢h7dz1}dez ]{/ hfdz/\dzl}dﬂz

T2

where ¢ is any Stokes’ extension of ¢.
But by hypothesis 3¢ is uniformly Carleson; then the last integral is bounded
by:

{186 Dl )76 =2l } sl < Bl ol 151
T

Of course the same is true if we assume that f is anti-holomorphic in z3,
hence the theorem. &

In the same vein we shall say that the (0,1) form w = w; dz; + w3 dZ> verifies
uniformly the Wolff’s conditions with constant C if:

o
B Vz €T, (1 = |a?)rfllc < C and ](1—|z1|2) By

<G

3w2 < C

C

(i) V2 € T, (1 = |22]®)|w2|¥lc < C and

Then we have:

(- 1) | 52

THEOREM 3.5. Lel ¢ a function in L®(T?). If yp verifies uniformly the
Wolff’s conditions with constant C, then T, is bounded with a norm controlled by

C.

Proof. Let h € H?(D?) and z,f € H*(T?)1, f anti-holomorphic in z;; by
the lemma, we again have to show that | < ¢ - A, Z1f > | < C||A||2||fll2- As was
done by Wolff, we apply Green’s formula in 2;:

/ phz, fdf = — / log|z1|* O (z10hf) dv
T D

where we still note ¢ an extension of ¢ in D? such that 3¢ verifies uniformly the
Wolft’s conditions with constant C.
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Then Aziphf = 48(21hf9p) because f is holomorphic in z;; hence:
1 - o _
i Aziphf = fOh'dp + ' 8f8p + Fh' 08y

where we put A’ := 21h, and then we have to integrate 3 terms; let see the first:

_;_
< (/loglzllzlwlldv) (/10g|21I2|7|21w1|2dv)
D D

by Schwarz’s lemma, where we note d¢p = 8p/0Z1 = wy.
We have ||h'||2 = |}A[|2 and

i
2

/ Fon'dplog |z |* dv
D

— [ 1o Proglaalav < © [ a0
D T

and the second factor is bounded by f [f]? d6; because the Carleson condition

on (1 — |21{?)|w1|?. The same is valid for the second term and for the last one we

use the fact that fa' € H?, [|FA’|ly < ||f|iz]|¢’l|l2 and the Carleson condition on

(1 - |z1|2)01w1. v
Hence we have:

1

T/(phz17d01 < (T/ |h|2d61) _ (T/ |7|2d01) )
T/{T/goh./?dﬂl} dé,

We do the same with the part anti-holomorphic in z; and then we prove that
Iy is bounded. u

L]

and

e -h,zf)| = < 172Nl

again by Schwarz’s lemma.

COROLLARY 3.6. Let f1, fo in H®(D") be such that z € D™, | fi(2)|+]f2(2)| =
8 >0, then there are g1, g2 in SBMOA verifying fig: + fags = 1.

Proof. As done by Wolff, we easily see that the “Corona form” w verifies the
Wolff’s conditions uniformly and then we have a solution ¢ of 83¢ = w such that
'y is bounded; hence, by the result of M. Cotlar and C. Sadosky, we get that ¢ is
in sSBMO. 1

This result was proved directly by U. Cegrell for the bidisc {[5]) and improves
preceding results of N. Varopoulos ([10]) and S.Y.A. Chang ([3]).
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4. THE BERGMAN SPACE

Instead of the Hardy space H?(D) we may consider the Bergman space A%(D) and
study the boundedness of the Big Hankel operator from A%(D) into A%(D)*. The
space. A%2(D) may be considered as the Hardy space of B restricted on z; = 0, or
as the Hardy space of D? restricted on z; = 2.

Now if we compare Theorem 1.3 and Theorem 2.3, we see that the assertion

concerning the bounded function is missing and in fact we have:

PROPOSITION 4.1. There is a function ¢ € BMO(D) (hence Iy, is 6ounded)
such that there ts no function F in L°(D) with Tr =T,

Proof. To prove this let @ = log(l — |2|?); then it is easy to check that
¢ € BMO(D) and if there is an F € L™ (D) such that T'p = I, then there is a
holomorphic function h in D such that ¢ = F + h and this is not possible by the
“minimum principle” ([1]). »

Hence Nehari’s theorem fails for Big Hankel operators in the Bergman space

of the unit disc and also for Big Hankel operators in B and in D".
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