CANONICAL *-ENDOMORPHISMS AND SIMPLE C^* -ALGEBRAS

MARIE CHODA

Communicated by William B. Arveson

ABSTRACT. Canonical property for a unit preserving *-endomorphism γ of a unital C^* -algebra A and the extension algebra $\langle A, \gamma \rangle$ of A via γ are introduced through the method of the crossed products by *-endomorphisms. The relation between Cuntz's canonical *-endomorphisms and Ocneanu's canonical shifts are obtained.

KEYWORDS: *-endomorphisms, simple, crossed product.

AMS SUBJECT CLASSIFICATION: Primary 46L35; Secondary 46L37.

1. INTRODUCTION

Let A be a unital C^* -algebra and γ a unit preserving *-endomorphism of A. When γ satisfies a certain condition which naturally comes from the Jones index theory ([13]), we say that γ has the canonical property. For such a *-endomorphism γ of A, we define a *-endomorphism ρ of A which is a *-isomorphism from A onto eAe for some non zero projection $e \in A$. The crossed product $M = A \triangleleft \langle \rho \rangle$ is defined as the C^* -algebra which is generated by A and an isometry w with the following relations:

(I)
$$waw^* = \rho(a), (a \in A), w^*Aw \subset A$$

and has a faithful conditional expectation E onto A with $E(w^k) = 0$ for all $k \ge 1$. If the *-endomorphism ρ is induced (in the method described below) by γ with the canonical property, then there exist a representation π of A and an isometry W

236 MARIE CHODA

with the relation (I), that is, $W\pi(a)W^* = \pi(\rho(a))$, $(a \in A)$ and $W^*\pi(A)W \subset \pi(A)$ so that the C^* -algebra $C^*(A, W)$ generated by $\pi(A)$ and W is isomorphic to $A \triangleleft \langle \rho \rangle$.

The C^* -algebra $\langle A, \gamma \rangle$ generated by $\pi(A)$ and W is called the extension algebra of A via the *-endomorphism γ with the canonical property. A *-endomorphism γ of A with the canonical property is always extended to a *-endomorphism $\hat{\gamma}$ of $\langle A, \gamma \rangle$ which has also the canonical property.

In the category of *-algebras, the terminology "canonical" is used by Ocneanu ([17]) for *-endomorphisms on some important *-algebras in the classification theory of subfactors of the hyperfinite II₁ factor and his canonical *-endomorphisms are generalization of Φ^2 of the *-endomorphism Φ in [11], Section 4.4, which has an important role to give the irreducible subfactor of the hyperfinite II₁ factor. Same terminology "canonical" is used by Cuntz ([8]) for a *-endomorphism on the Cuntz algebra ([7]) induced naturally from the definition of the Cuntz algebra. These "canonical" *-endomorphisms are also canonical in our sense. We show that the extension algebra $\langle A, \gamma \rangle$ is simple for Ocneanu's canonical shift γ on an approximately finite dimensional C^* -algebra A and that Cuntz's "canonical" inner *-endomorphism Φ is the extension $\hat{\gamma}$ of a special Ocneanu's canonical shift γ .

Our extension algebra $\langle A, \gamma \rangle$ is generated (under some identification) by A and an isometry W with the relation (I). Paschke ([19]) proved that if A is strongly amenable and simple, then the C^* -algebra $C^*(A, W)$ generated by A and W with relations (I) is always simple. The extension algebra $\langle O_n, \Phi \rangle$ is generated by O_n and an isometry W with the relation (I) but $\langle O_n, \Phi \rangle$ is not simple.

In the index theory of infinite factors, Longo's "canonical" *-endomorphism (for example see [16], [12]) plays an important role. We investigate in [6] a similar subject for factors as in this paper and some parts in this paper are essentially the same as the results for factors in [6] but we denote them for the sake of completeness.

2. CROSSED PRODUCTS BY *-ENDOMORPHISMS

In this section, we define the crossed product of a C^* -algebra A by a *-endomorphism ρ and investigate some properties of the crossed products which we need in the next section. Our method is somewhat similar to the method for von Neumann algebras in [1] and [22]. Related topics on the crossed products of C^* -algebras by *-endomorphisms are investigated in [9], [19], [20], [21].

Let A be a unital C^* -algebra acting on a Hilbert space H_0 and ρ a *-endomorphism of A (that is, a *-homomorphism from A into A) with an isometry w on H_0 such that

(I)
$$\rho(a) = waw^* \ (a \in A), \quad w^*Aw \subset A.$$

In the next section, we show that the *-endomorphism ρ induced by a *-endomorphism γ with the canonical property satisfies automatically these conditions.

Put

$$p_n = \rho^n(1)$$
 and $p = p_1$.

Then $\rho(A) = pAp$ because $\rho(A) = wAw^* = pwAw^*p \subset pAp \subset ww^*Aww^* \subset wAw^* = \rho(A)$.

Put

$$H_k = \begin{cases} H_0, & (k \leq 0) \\ p_k H_0, & (k \geq 1) \end{cases}$$
 and $H = \sum_{k \in \mathbb{Z}} \oplus H_k$.

Let π be the representation of A on H defined by

$$(\pi(x)\eta)_k = \left\{ egin{array}{ll} x\eta_k & (k\leqslant 0) \
ho^k(x)\eta_k & (k\geqslant 1), \end{array}
ight.$$

and W be the isometry defined by

$$(W(\eta))_k = \begin{cases} w\eta_{k-1} & (k \leq 0) \\ w^2\eta_{k-1} & (k \geq 1), \end{cases}$$

where $\eta = (\eta_k)_{k \in \mathbb{Z}}$ and $\eta_k \in H_k$. Then W and π preserve the relations:

$$W\pi(a)W^* = \pi(\rho(a))$$
 and $W^*\pi(a)W = \pi(w^*aw)$ $(a \in A)$.

Under the assumption (I), let $A \triangleleft \langle \rho \rangle$ be the C^* -algebra generated by $\pi(A)$ and the isometry W. We call $A \triangleleft \langle \rho \rangle$ the crossed product of A by ρ . As we show later, $A \triangleleft \langle \rho \rangle$ does not depend essentially on w nor $\{\pi, W\}$.

LEMMA 2.1. (i) There exists a faithful conditional expectation E of $A \triangleleft \langle \rho \rangle$ onto $\pi(A)$ such that

$$E(W^k) = 0$$
 for all $k \ge 1$.

(ii) Let ψ be a faithful state on A and B the *-algebra generated by $\pi(A)$ and W. Put $\varphi = \psi \cdot E$. Each x in the *-algebra B is written for some integer k in the form:

$$x = \sum_{i=1}^{k} W^{*i} x_{-i} + x_0 + \sum_{i=1}^{k} x_i W^i \quad (x_i \in \pi(A))$$

and

$$||x||_{\varphi}^{2} = \sum_{k \geqslant 1} ||p_{k}x_{k}||_{\psi}^{2} + \sum_{k \geqslant 0} ||w^{*k}x_{k}^{*}x_{k}w^{k}||_{\psi}^{2}.$$

(iii) For the form of $x, y \in B$ in (ii), we have x = y if and only if $x_0 = y_0, x_i \pi(p_i) = y_i \pi(p_i)$ and $\pi(p_i) x_{-i} = \pi(p_i) y_{-i}$ for all $i \ge 1$.

- Proof. (i) For each integer k, let q_k be the projection of H onto H_k (identified as a subspace of H). For each $y \in B(H)$, we put $E(y) = \sum_{k \in \mathbb{Z}} q_k y q_k$ (the sum taken in the strong operator topology). Then E is a faithful normal conditional expectation of B(H) onto $\{q_k; k \in \mathbb{Z}\}'$. Since $\pi(A)$ is contained in $\{q_k; k \in \mathbb{Z}\}'$, $q_k W^n q_k = 0$ for all $k \in \mathbb{Z}$, $n \neq 0$ and E has norm one, we have that the restriction of E to $A \triangleleft \langle \rho \rangle$ (which we denote by the same notation E) has the desired property (cf. [2]).
- (ii) For an $x \in B$, put $x_{-i} = E(W^i x)$, $x_0 = E(x)$ and $x_i = E(xW^{*i})$. Since $W^i \pi(a) W^{*j} = \pi(\rho^i(a)) W^{i-j}$ and $W^{*i} \pi(a) W^j = W^{*(i-j)} (W^{*j} \pi(a) W^j)$ for all i, j and $a \in A$, it implies that $x \in B$ can be written in the form. The relation about $\|\cdot\|_{\varphi}$ comes from the property of the conditional expectation E.
- (iii) Since $x_{-i} = E(W^i x) = E(\pi(p_i)W^i x) = \pi(p_i)x_{-i}$ and $x_i = x_i\pi(p_i)$, we have x = y if and only if the coefficients for x and y satisfy the properties.

The crossed product $A \triangleleft \langle \rho \rangle$ is defined by the above representations π of A and W of w. However, the algebra does not depend on the representations as follows.

PROPOSITION 2.2. Let M_1 be the C^* -algebra generated by a C^* -subalgebra A and an isometry w such that $wAw^* \subset A$ and $w^*Aw \subset A$. Assume that there exists a conditional expectation E_1 of M_1 onto A with $E_1(w^k) = 0$ for all $k \ge 1$. Put $\rho(a) = waw^*$, $(a \in A)$. Let $W \in M_2 = A \triangleleft \langle \rho \rangle$ be the isometry corresponding to w. Then there exists a *-isomorphism Ψ from M_1 onto M_2 with

$$\Psi(a) = \pi(a), (a \in A) \quad and \quad \Psi(w^k) = W^k, (k \geqslant 1).$$

Proof. Let ψ be a fixed faithful state on A and E_2 the conditional expectation of M_2 onto $\pi(A)$ with $E_2(W^k)=0$ for all $k\geqslant 1$. Let φ_j be the faithful state on M_j defined by $\varphi_j=\psi\cdot E_j$. For each x in the *-algebra generated by A and w, the relations (ii) and (iii) in Lemma 2.1 hold by the same proof as Lemma 2.1. Hence we have an isometry T from $L^2(M_1,\varphi_1)$ onto $L^2(M_2,\varphi_2)$ defined by $T(w^{*k}x\xi_1)=W^{*k}\pi(x)\xi_2$ and $T(xw^k\xi_1)=xW^k\xi_2$ for all $k\geqslant 0$ and $x\in A$, where ξ_j is a cyclic and separating vector for M_j , (j=1,2). Put $\Psi(x)=TxT^*$ $(x\in M_1)$. Then Ψ is the desired isomorphism.

Let us consider the following condition (*) for a *-endomorphism ρ of A, which is introduced by Kishimoto ([15]) to investigate the simplicity for the crossed product of a C^* -algebra by an outer automorphism group.

CONDITION (*). For an $a \in A$, $\{a_i; i = 1, 2, ..., n\} \subset A$, $\{k_1, k_2, ..., k_n\}$ and $\varepsilon > 0$, there exists a positive $x \in A$ with ||x|| = 1 such that

$$||xax|| \ge ||a|| - \varepsilon$$
, $||xa_i\rho^{k_i}(x)|| \le \varepsilon$ $(i = 1, 2, \dots, n)$.

THEOREM 2.3. If ρ satisfies the condition (*), then $A = A \triangleleft \langle \rho \rangle$ is simple when the only proper ideal J of A for which $\rho(J) \subset J$ is the zero ideal.

Proof. By a similar method as [10], [15], we prove the statement. Let $W \in \mathcal{A}$ be the isometry which corresponds w and E the conditional expectation of \mathcal{A} onto $\pi(A)$ obtained in Lemma 2.1. Let J be a proper closed two sided ideal of \mathcal{A} . Since E is faithful, it is enough to show that $E(J) = \{0\}$. Since $J \cap \pi(A)$ is a closed ideal in $\pi(A)$ such that $W(J \cap \pi(A))W^* \subset J \cap \pi(A)$, $J \cap \pi(A) = 0$. Hence to prove that E(J) = 0 it is sufficient to prove that $E(J) \subset J$. For an $x \in \mathcal{A}$, put $|||x||| = \inf\{||x+j||; j \in J\}$. Since $J \cap \pi(A) = 0$, we see that the restriction to $\pi(A)$ of the canonical homomorphism from A onto A/J is injective, so that |||x||| = ||x|| for all $x \in \pi(A)$. We show that $||E(x)|| \leq |||x|||$ for all $x \in A$. Since |||y||| = 0, for all $y \in J$, this implies that E(J) = 0.

By a density argument, we may assume that $x \in \mathcal{A}$ is of form $x = a + \sum_{i=1}^{n} W^{*i} x_{-i} + \sum_{i=1}^{n} x_{i} W^{i}$, for some integer n, where $a, x_{i} \in \pi(A)$ for all $i (1 \leq |i| \leq k)$. Let $\varepsilon > 0$. Then there exists a positive $y \in \pi(A)$ which satisfies the condition (*) for $a, \{x_{i}; 1 \leq i \leq k\}, \{k_{i} = |i|; 1 \leq i \leq n\}$ and ε . Hence

$$\left\| \left\| y \left(\sum_{i=1}^{n} W^{*i} x_{-i} + \sum_{i=1}^{n} x_{i} W^{i} \right) y \right\| \right\| \leq \sum_{i=1}^{n} \left\| W^{*i} \rho^{i}(y) x_{-i} y \right\| + \sum_{i=1}^{n} \left\| y x_{i} \rho^{i}(y) W^{i} \right\|$$

$$\leq \sum_{i=1}^{n} \left\| \rho^{i}(y) x_{-i} y \right\| + \sum_{i=1}^{n} \left\| y x_{i} \rho^{i}(y) \right\| \leq 2n\varepsilon.$$

By the fact |||a||| = ||a|| for all $a \in \pi(A)$,

$$||E(x)|| = ||a|| \leqslant ||yay|| + \varepsilon \leqslant |||yxy||| + (2n+1)\varepsilon \leqslant |||x||| + (2n+1)\varepsilon.$$

Since this holds for all $\varepsilon > 0$, we have the desired inequality.

REMARK 2.4. If the C^* -algebra A is strongly amenable, then we do not need the condition (*) for simplicity of $A = A \triangleleft \langle \rho \rangle$ by [19]. However, if A is not strongly amenable, A is not always simple. We show in Section 3 an example of a pair of an amenable C^* -algebra A and a canonical *-endomorphism γ which implies non simple A.

3. EXTENSION VIA CANONICAL *-ENDOMORPHISMS

In this section, we consider a canonical property for a unit preserving *-endomorphism γ of a unital C^* -algebra A which induces a *-endomorphism ρ of A to give the crosed product $A \triangleleft \langle \rho \rangle$. Applying the method of crossed products in Section 2 to the *-endomorphism ρ induced from such a *-endomorphism γ with the canonical property, we investigate relations between the crossed products by such *-endomorphisms ρ and *-endomorphisms γ with the canonical property.

DEFINITION 3.1. Let A be a unital C^* -algebra. A unit preserving *-endomorphism γ of A is said to have the canonical property, if there exists a γ invariant faithful state φ of A, an isometry w on the Hilbert space H_{φ} (the GNS representation space by φ) and a projection $f \in \gamma^2(A)' \cap A$ with the following relations (i) and (ii):

(i)
$$\gamma(a)w = wa \text{ for all } a \in A \text{ and } ww^* = e \in A,$$

(ii)
$$eAe = \gamma(A)e, \quad \left\{ \begin{array}{ll} efe = \lambda e \\ fef = \lambda f \end{array} \right\} \quad \left\{ \begin{array}{ll} f\gamma(e)f &= \lambda f \\ \gamma(e)f\gamma(e) &= \lambda\gamma(e) \end{array} \right\},$$

for some λ (0 < λ < 1).

The projection $e = ww^*$ is called a *basic* projection for γ . The *-endomorphism ρ_{γ} on A is defined by

(†)
$$\rho_{\gamma}(a) = e\gamma(a), \quad \text{for all } a \in A.$$

We remark that the relation (i) implies $e \in \gamma(A)' \cap A$.

PROPOSITION 3.2. Let γ be a unit preserving *-endomorphism of A. If there exist projections $e \in \gamma(A)' \cap A$, $f \in \gamma^2(A)' \cap A$ with the relation (ii) and a faithful state φ of A with

(iii)
$$\varphi \cdot \gamma = \varphi$$
 and $\varphi(\gamma(a)e) = \lambda \varphi(a)$, for all $a \in A$,

then γ has the canonical property.

Furthermore, if A has a unique faithful tracial state φ and projections $e \in \gamma(A)' \cap A$, $f \in \gamma^2(A)' \cap A$ with the relation (ii), then φ satisfies the condition (iii), so that γ has the canonical property.

Proof. Let us consider A as the C^* -algebra of left multiplication operators on $L^2(A,\varphi)$ for the state φ satisfying (iii). Let w be the isometry on $L^2(A,\varphi)$

defined by

$$w(a\xi_0) = \frac{1}{\sqrt{\lambda}} e\gamma(a)\xi_0$$
 for all $a \in A$,

where ξ_0 is the cyclic separating vector $1 \in A \subset L^2(A, \varphi)$. Then $\gamma(a)w = wa$ for all $a \in A$ and $ww^* = e \in \gamma(A)' \cap A$. Hence all conditions are satisfied.

Assume that φ is the unique faithful tracial state of A, then the restriction of φ to $\gamma(A)$ is the unique tracial state because $\gamma(A)$ is *-isomorphic to A. Hence $\varphi \cdot \gamma = \varphi$. Put $\psi(\gamma(a)e) = \varphi(a)$ for all $a \in A$. Then ψ is a unique faithful tracial state of $\gamma(A)e$. Since $\gamma(A)e$ is isomorphic to A, $\gamma(A)e$ has a unique tracial state φ' defined by $\varphi'(\gamma(a)e) = \lambda^{-1}\varphi(\gamma(a)e)$. Hence $\varphi(\gamma(a)e) = \lambda\varphi'(\gamma(a)e) = \lambda\varphi(\gamma(a)e) = \lambda\varphi(a)$.

LEMMA 3.3. If γ has the canonical property, then the isometry w in Definition 3.1 satisfies (I):

$$w^*Aw = A$$
 and $\rho_{\gamma}(a) = waw^*$ $(a \in A)$.

Proof. Since $ww^*Aww^* = \gamma(A)ww^*$, we have $w^*Aw = w^*\gamma(A)w = w^*wA = A$ and $\rho_{\gamma}(a) = ww^*\gamma(a) = waw^*$ for all $a \in A$ by (i).

DEFINITION 3.4. Let γ be a unit preserving *-endomorphism of a unital C^* -algebra A. Assume γ has the canonical property. The extension algebra $\langle A, \gamma \rangle$ of A via γ with the canonical property is defined as the crossed product $A \triangleleft \langle \rho_{\gamma} \rangle$ of A by ρ_{γ} .

THEOREM 3.5. If a unit preserving *-endomorphism γ of a unital C^* -algebra A has the canonical property, then γ is extended to a *-endomorphism $\hat{\gamma}$ of $\langle A, \gamma \rangle$ which has the canonical property and

$$\hat{\gamma}(\pi(x)) = \pi(\gamma(x))$$
 for all $x \in A$, $\hat{\gamma}(W) = \pi(v)W$,

where $v = (\lambda)^{-1} \gamma(e) fe$ for projections e and f in Definition 3.1.

Proof. Let φ and w be as in Definition 3.1. Put $\rho = \rho_{\gamma}$ in (\dagger) . Let ψ be the *-endomorphism of $\gamma(A)$ defined by $\psi(x) = v\rho(x)v^*$ for all $x \in \gamma(A)$. Then,

$$\psi(\gamma(a)) = ve\gamma^2(a)v^* = \dot{\gamma}(\rho(a)), \ (a \in A)$$

and $\psi(x) = vwx(vw)^*$, $(x \in \gamma(A))$ for the isometry vw with $(vw)^*\gamma(A)vw = \gamma(A)$. Let u be the isometry on $L^2(A, \varphi)$ defined by $u(a\xi_0) = \gamma(A)\xi_0$ for all $a \in A$ where $\xi_0 = 1 \in A \subset H_0$. Then $vw\gamma(a)(vw)^* = \psi(\gamma(a)) = \gamma(\rho(a)) = uwu^*\gamma(a)(uwu)^*$ for all $a \in A$. Let U be the isometry defined by $(U\eta)_k = u\eta_k$, where $\eta = (\eta_k)_{k \in \mathbb{Z}} \in H$ for $\eta_k \in H_k$ in Section 2 for A and ρ . Let s be the isometry defined by $s\gamma(a)\xi_0 = (\lambda)^{-1}\psi(\gamma(a))\xi_0$. Then $\psi(x) = sxs^*$ for all $x \in \gamma(A)$ and $s^*\gamma(A)s = \gamma(A)$. Put $r_0 = uu^*$. Then

$$(U\pi(a)U^*(\eta))_k = \begin{cases} \pi(\gamma(a))r_0\eta_k & (k \leq 0) \\ \pi(\psi^n \cdot \gamma(a))r_0\eta_k & (k \geq 1), \end{cases}$$

and

$$(UWU^*(\eta))_k = \begin{cases} sr_0\eta_k & (k \leq 0) \\ s^2r_0\eta_k & (k \geq 1) \end{cases}.$$

Put $v_0 = 1$, $v_n = v\rho(v)\cdots\rho^{n-1}(v)$ and $r_n = v_n^*uu^*v_n$. The projection r_n commutes with $\rho^n(\gamma(A))$. Let V be the isometry defined by

$$(V(\eta))_k = \begin{cases} \eta_k & (k \leq 0) \\ v\rho(v)\cdots\rho^{k-1}(v)\eta_k & (k \geq 1), \end{cases}$$

respectively, where $\eta = (\eta_k)_k \in H$, $(\eta_k \in H_k)$. Then V^*U is an isometry on H. Put $\Psi(x) = V^*UxU^*V$ for all $x \in \langle A, \gamma \rangle$. Then Ψ is a *-isomorphism from $\langle A, \gamma \rangle$ onto $\gamma(A) \triangleleft \langle \psi \rangle$ such that $\Psi(\pi(a)) = \pi(\gamma(a))$ and $\Psi(W)$ is the isometry in $\gamma(A) \triangleleft \langle \psi \rangle$ corresponding to ψ . By Proposition 2.2, we have the *-endomorphism $\hat{\gamma}$ of $\langle A, \gamma \rangle$ with $\hat{\gamma}(\pi(a)) = \pi(\gamma(a))$ and $\hat{\gamma}(W) = \pi(v)W$.

Next, we show that $\hat{\gamma}$ has the canonical property and $\pi(e)$ is basic for $\hat{\gamma}$. By the relation $\hat{\gamma}(W)\pi(e) = \pi(\gamma(e)e)W = \pi(e)\hat{\gamma}(W)$, we have $\pi(e) \in \hat{\gamma}(\langle A, \gamma \rangle)' \cap \langle A, \gamma \rangle$. The relation $\gamma(e)e = ev$ implies that

$$\pi(e)W^k\pi(e)=\pi(e)\hat{\gamma}(W^k).$$

Hence the basic projection e for γ satisfies $\pi(e)\langle A, \gamma \rangle \pi(e) = \hat{\gamma}(\langle A, \gamma \rangle)\pi(e)$. Let E be the conditional expectation of $\langle A, \gamma \rangle$ onto $\pi(A)$ with $E(W^k) = 0$ for all $k \neq 0$, then $E \cdot \hat{\gamma} = \gamma \cdot E$. Let $\hat{\varphi} = \varphi \cdot E$. Then $\hat{\varphi}$ is a faithful state of $\langle A, \gamma \rangle$ which satisfies $\hat{\varphi} \cdot \hat{\gamma} = \hat{\varphi}$ and $\hat{\varphi}(\hat{\gamma}(x)\pi(e)) = \varphi(\gamma(E(x))e) = \lambda\varphi(E(x)) = \lambda\hat{\varphi}(x)$. It is obvious that the pair $\{\pi(e), \pi(f)\}$ satisfies the relation (ii). Therefore $\hat{\gamma}$ has the canonical property by Proposition 3.2.

4. CUNTZ'S ENDOMORPHISM AND OCNEANU'S ENDOMORPHISM

In this section we shall restrict ourselves to the case of concrete *-endomorphisms of C^* -algebras and show relations between *-endomorphisms with the canonical property.

PROPOSITION 4.1. Let A_0 be the set of all $n \times n$ matrices and A be the infinite C^* -tensor product $\bigotimes_{i=1}^{\infty} A_i$, where $A_i = A_0$ for all i. Then the 1-shift translation γ to the right on A has the canonical property.

Proof. Let τ be the unique tracial state of A. Then τ is γ invariant. For a matrix unit $e_{i,j}$ of A_0 , we identify $e_{i,j}$ and $e_{i,j} \otimes 1 \otimes \cdots$. Put $e = e_{1,1}$. Then it is clear that $eAe = \gamma(A)e$ and $\tau(\gamma(a)e) = (1/n)\tau(a)$.

$$u = \sum_{i=1}^{n} e_{i,i-1}, \quad f = \frac{1}{n} \sum_{i,j} u^{j-i} \otimes e_{i,j}.$$

Then γ, τ, e and f satisfies the conditions in Proposition 3.2 for $\lambda = 1/n$.

Cuntz ([7]) defined the simple C^* -algebra O_n generated by isometries $\{S_j; 1 \le j \le n\}$ with $S_iS_j = \delta_{i,j}1$ and $\sum_i S_iS_i^* = 1$. He obtained in [8] interesting results based on his "canonical" inner *-endomorphism Φ on O_n defined by

$$\Phi(x) = \sum_{j=1}^{n} S_j x S_j^* \quad \text{for all} \quad x \in O_n.$$

PROPOSITION 4.2. Let A and γ be the same as in Proposition 4.1. Then the extension algebra $\langle A, \gamma \rangle$ is the Cuntz algebra O_n and the extension $\hat{\gamma}$ of γ to $\langle A, \gamma \rangle$ is Cuntz's canonical inner *-endomorphism Φ .

Proof. Put

$$T_j = \pi(e_{j,1})W$$
, for all $1 \leqslant j \leqslant n$.

Since $e=e_{1,1}$ is basic for γ , T_j is isometry for all j, with $T_j^*T_i=\delta_{1,j}1$ and $\sum_j T_j T_j^* = \sum_j \pi(e_{j,j}) = 1$. The C^* -subalgebra B of $\langle A, \gamma \rangle$ generated by $\{T_j: j=1,2,\ldots,n\}$ contains $W=T_1$ and $\pi(e_{j,1})=T_jWW^*$ for all j. Hence B contains $\pi(A)$ and W which generate $\langle A, \gamma \rangle$ so that $\langle A, \gamma \rangle$ is the Cuntz algebra O_n .

By the definition of $\hat{\gamma}$,

$$\sum_{j=1}^{n} T_{j} \pi(a) T_{j}^{*} = \sum_{j} \pi(e_{j,1}) W \pi(a) W^{*} \pi(e_{1,j}) = \pi \left(\sum_{j} e_{j,1} \gamma(a) e_{1,j} \right)$$
$$= \pi \left(\sum_{j} e_{j,j} \gamma(a) \right) = \pi(\gamma(a))$$
$$= \hat{\gamma}(\pi(a)),$$

for all $a \in A$. On the other hand,

$$v = n\gamma(e)fe = \sum_{j=1}^{n} e_{j,1} \otimes e_{1,j} = \sum_{j} e_{j,1}\gamma(e_{1,j}).$$

Hence

$$\sum_{j=1}^{n} T_{j}WT_{j}^{*} = \sum_{j} \pi(e_{j,1})WWW^{*}\pi(e_{1,j}) = \sum_{j} \pi(e_{j,1})\pi(\gamma(e_{1,j}))W = \hat{\gamma}(W).$$

Since these Φ and $\hat{\gamma}$ is norm continuous *-homomorphism, we have $\Phi = \hat{\gamma}$.

COROLLARY 4.3. Let Φ be Cuntz's canonical inner *-endomorphism on O_n . Then Φ has the canonical property.

Proof. By Proposition 4.2, Φ is the extension $\hat{\gamma}$ of γ on A in Proposition 4.1. Since γ has the canonical property, Φ has the canonical property by Theorem 3.5.

PROPOSITION 4.4. Let Φ be Cuntz's *-endomorphism of O_n . Then (O_n, Φ) is isomorphic to the tensor product $O_n \otimes C^*(u)$ of O_n and the C^* -algebra $C^*(u)$ generated by some unitary $u \in (O_n, \Phi)$ with $E(u^k) = 0$ for all $k \ge 1$, where E is the conditional expectation from (O_n, Φ) onto $\pi(O_n)$.

Proof. Let ρ be the *-endomorphism of O_n defined by (\dagger) for Φ . Let π be the representation of O_n and W be the isometry defined by Φ in Section 2. Put $u = \pi(S_1^*)W$. Then u is a unitary in (O_n, Φ) because e is basic for γ and $\pi(e)$ is basic for γ . The unitary u satisfies $u^k = \pi(S_1)^{*k}W^k$ and $E(u^k) = 0$ for all $k \ge 1$. Since

$$\pi(S_1)^*W\pi(x) = \pi(S_1^*\Phi(x))W = \pi(x)\pi(S_1)^*W$$
, for all $x \in O_n$,

we have $u \in O'_n \cap \langle O_n, \Phi \rangle$. The algebra $\langle O_n, \Phi \rangle$ is generated by $\pi(O_n), W$ and $W = \pi(S_1)u$. Hence $\langle O_n, \Phi \rangle$ is the C^* -algebra generated by $\pi(O_n)$ and u so that $\langle O_n, \Phi \rangle$ is isomorphic to $O_n \otimes C^*(u)$.

Paschke ([19]) proved that if A is a unital simple strongly amenable C^* -algebra and W is a non unitary isometry with the relation:

(II)
$$WAW^* \subset A, \quad W^*AW \subset A$$

then the C^* -algebra $C^*(A, W)$ generated by A and W is always simple. The Cuntz algebra O_n is simple by [7] and amenable ([20]) but not strongly amenable. The next corollary shows that his result does not hold in general without strong amenability.

COROLLARY 4.5. There exist isometries W_1 and W_2 with the relation (II) for O_n which give a simple $C^*(O_n, W_1)$ and a non simple $C^*(O_n, W_2)$.

Proof. Let $\{S_i: 1 \leq i \leq n\}$ be isometries which generate O_n . Put $W_1 = S_1$. Then $C^*(O_n, W_1) = O_n$, so that $C^*(O_n, W_1)$ is simple. Let W_2 be the isometry in $\langle O_n, \Phi \rangle$ which corresponds the *-endomorphism defined by Φ . Then $C^*(O_n, W_2)$ is isomorphic to $O_n \otimes C^*(u)$ by Proposition 4.4. Hence $C^*(O_n, W_2)$ is not simple.

EXAMPLE 4.6. Let $\{e_i, i = 1, 2, 3, ...\}$ be a sequence of projections with Jones relations for a λ $(0 < \lambda < 1)$:

$$e_i e_j = e_j e_i \ (|i-j| \neq 1), \quad e_i e_j e_i = \lambda e_i \ (|i-j| = 1).$$

Let A_k be the algebra generated by e_1, e_2, \ldots, e_k and the unit 1. Then by [12], there exists a faithful state τ with $\tau(xe_{k+1}) = \lambda \tau(x)$ for all $x \in A_k$ and $k \in \mathbb{N}$. Let A be the C^* -algebra obtained from the GNS construction of $\bigcup_k A_k$ by τ . Then the trace τ is extended to a unique trace τ of A. Let γ be the *-endomorphism defined by $\gamma(e_i) = e_{i+2}$. Then γ is canonical because τ and e_1, e_2 satisfies the conditions for γ ([3], [4], [5]).

EXAMPLE 4.7. The example in Proposition 4.1 and Example 4.6 are more generalized as Ocneanu's canonical shift Γ on the higher relative commutant algebras for the factor inclusion $N \subset M$ with finite index ([17], [3], [4]) and also Ocneanu's canonical shifts φ^2 ([17]) on the C^* -algebra A obtained from n-string algebras on a finite bipartite graph G with a biunitary connection ([18] or see [14]).

In fact, the first Jones projection e and the second Jones projection f satisfy the relation (ii) in Definition 3.1 and the C^* -algebra A has a faithful tracial state which satisfies (iii) in Proposition 3.2.

In the case that $M = N \triangleleft \mathbb{Z}_n$ for a II₁ factor N, Γ is nothing else than γ in Proposition 4.1. In the case that G is the Coxeter graph A_n , φ^2 coincides with γ in Example 4.6.

246 MARIE CHODA

LEMMA 4.8. Let A be a unital C^* -algebra generated by an increasing sequence $A_1 \subset A_2 \subset A_3 \subset \cdots$ of C^* -algebras with the same unit. Let γ be a *-endomorphism of A with the canonical property. Assume the following conditions:

- (i) A basic projection e for γ is contained in A_i , for some i.
- (ii) For each $j, m \in \mathbb{N}$, the $C^*(A_j, \gamma(A_j), \ldots, \gamma^m(A_j))$ is contained in A_{j+2m} .
- (iii) For each $j \in \mathbb{N}$, there exists an integer $n_j \in \mathbb{N}$ such that A_j commutes with $\gamma^{kn_j}(A_j)$ for all $k \in \mathbb{N}$.

Then the condition (*) is satisfied for ρ defined by (iii).

Proof. Let $a, \{a_i; i = 1, 2, ..., n\}, \{k_1, k_2, ..., k_n\}$ and ε be as in the condition (*). Then there exist an integer j and $b \in A_j$, $b_i \in A_j$ with $||a-b|| < \varepsilon/2$ and $||a_i-b_i|| < \varepsilon/2$ for all i $(1 \le i \le n)$. We may assume that $k_1 \le k_2 \le \cdots \le k_n$. Put

$$q = \rho^{n_j}(e)\rho^{k_1n_j}(1-e)\rho^{k_2n_j}(1-e)\cdots\rho^{k_nn_j}(1-e).$$

Then ||qbq|| = ||b|| and $||qb_i\rho^{k_i}(q)|| = ||b_iq\rho^{k_i}(q)|| = 0$. Hence the projection q satisfies the condition (*).

THEOREM 4.9. Let $\{A,\gamma\}$ be one of the pairs in Examples 4.6 or 4.7 of finite depth $N \subset M$ or finite graph G. Then $\langle A,\gamma \rangle$ is simple, amenable but not strongly amenable.

Proof. The increasing sequence $\{A_j; j=1,2,\ldots\}$ satisfies the condition in Lemma 4.8 for γ . In the case of Example 4.6, if $\lambda > 1/4$ then the algebra A is simple and if $\lambda \leq 1/4$ then A has a unique non trivial ideal J (see [13], [24]). But $e\gamma(J)$ is not contained in J. In the case of Example 4.7, the algebra A is simple under the assumption. Hence $\langle A, \gamma \rangle$ is simple by Theorem 2.2 and Lemma 4.8 (or [10]). By the definition, $\langle A, \gamma \rangle$ is generated by $\pi(A)$ and W which satisfy the condition of [20]. Hence $\langle A, \gamma \rangle$ is amenable. Since $\langle A, \gamma \rangle$ does not have any tracial state, $\langle A, \gamma \rangle$ is not strongly amenable.

M. Izumi told me that these C^* -algebras $\langle A, \gamma \rangle$ in Theorem 4.9 are not always Cuntz algebras O_n , because they have different $K_0(\langle A, \gamma \rangle)$ from $K_0(O_n)$. He obtains interesting results on the Cuntz algebras with relations in the index theory of III factors in [12] and in a preparing paper. Also Katayama obtains an genaralization of Cuntz algebras in a different method from in this paper.

REFERENCES

- H. Araki, Structure of some von Neumann algebras with isolated discrete modular spectrum, Publ. Res. Inst. Math. Sci. 9(1973), 1-44.
- W. ARVESON, Analiticity in operator algebras, American J. Math. 89(1967), 578–642.
- M. CHODA, Entropy for canonical shifts, Trans. Amer. Math. Soc. 334(1992), 827–849.
- 4. M. CHODA, F. HIAI, Entropy for canonical shifts II, Publ. Res. Inst. Math. Sci. 27(1991), 461-489.
- 5. M. Choda, Square roots of the canonical shift, J. Operator Theory 31(1994), 145-163.
- M. Choda, Extension algebras of II₁ factors via *-endomorphisms, Internat. J. Math. 5(1994), 635-655.
- 7. J. CUNTZ, Simple C^* -algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
- 8. J. CUNTZ, Regular actions of Hopf algebras on the C*- algebra generated by a Hilbert space, preprint.
- S. DOPLICHER, J.E. ROBERTS, Endomorphisms of C*-algebras, crossed product and duality for compact groups, Ann. of Math. (2) 130(1989), 75-119.
- G.A. Elliott, Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups, Publ. Res. Inst. Math. Sci. 16(1980), 299

 311.
- 11. F. GOODMAN, P. DE LA HARPE, V.F.R. JONES, Coxeter Dynkin Diagrams and Towers of Algebras, Math. Sci. Res. Inst. Publ., vol. 14, Springer 1989.
- M. IZUMI, Subalgebras of infinite C*-algebras with finite Watatani indices. I. Cuntz algebras, Comm. Math. Phys. 155(1993), 157-182.
- 13. V.F.R. JONES, Index for subfactors, Invent. Math. 72(1983), 1-15.
- 14. Y. KAWAHIGASHI, On flatness of Ocneanu's connection on the Dynkin diagrams and classification of subfactors, J. Funct. Anal., to appear.
- A. KISHIMOTO, Outer automorphisms and reduced crossed product of simple C*algebras, Comm. Math. Phys. 81(1981), 429-435.
- 16. R. LONGO, A duality for Hopf algebras and for subfactors. I, preprint.
- A. OCNEANU, Quantized groups, string algebras and Galois theory for algebras, in Operator algebras and applications, vol. II, London Math. Soc., Lecture note series 136, Cambridge Univ. Press 136(1988), pp. 119-172.
- 18. A. OCNEANU, Quantum symmetry, differential geometry of finite graphs and classification of subfactors, noted by Kawahigashi.
- W. PASCHKE, The crossed product of a C*-algebra by an endomorphism, Proc. Amer. Math. Soc. 80(1980), 113-118.
- J. ROSENBERG, Amenability of crossed products of C*-algebras, Comm. Math. Phys. 57(1977), 187–191.
- P.J. STACEY, Crossed products of C*-algebras by *-endomorphisms, J. Austral. Math. Soc. Ser A 54(1993), 204-212.

22. M. TAKESAKI, The structure of a von Neumann algebra with homogeneous periodic state, Acta Math. 131(1973), 79-122.

23. Y. WATATANI, Index for C*-algebras, Mem. Amer. Math. Soc. 424(1990).

MARIE CHODA
Department of Mathematics
Osaka Kyoiku University
Asahigaoka, Kashiwara 582
JAPAN

Received December 19, 1993.