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ABSTRACT. Canonical property for a unit preserving *-endomoxphism v of
a unital C*-algebra A and the extension algebra {A,v) of A via ¥ are intro-
duced through the method of the crossed products by *-endomorphisms. The
relation between Cuntz’s canonical *-endomorphisms and Ocneanu’s canon-
ical shifts are obtained.
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1. INTRODUCTION

Let A be a unital C*-algebra and v a unit preserving *-endomorphism of A. When
« satisfies a certain condition which naturally comes from the Jones index theory
({13]), we say that + has the canonical property. For such a *-endomorphism 7y of
A, we define a x-endomorphism p of A which is a *-isomorphism from A onto eAe
for some non zero projection e € A. The crossed product M = A a(p) is defined
as the C*-algebra which is generated by A and an isometry w with the following
relations :

(1) waw” = p(a), (a€ A), w'AwC A

and has a faithful conditional expectation £ onto A with E(w*) = 0 forall k > 1.
If the *-endomorphism p is induced (in the method described below) by + with the
canonical property, then there exist a representation 7 of A and an isometry W
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with the relation (I), that is, Wa(a)W* = m(p(a)), (a € A) and W*x(A}YW C n(A)
so that the C*-algebra C*(A, W) generated by m(A) and W is isomorphic to A«{p).

The C*-algebra (A, v) generated by m(A4} and W is called the extension alge-
bra of A via the *-endomorphism ¥ with the canonical property. A *-endomorphism
v of A with the canonical property is always extended to a *-endomorphism ¥ of
(A, ) which has also the canonical property.

In the category of *-algebras, the terminology “canonical” is used by Ocneanu
([17]) for *-endomorphisms on some important *-algebras in the classification the-
ory of subfactors of the hyperfinite Il; factor and his canonical *-endomorphisms
are generalization of ®2 of the *-endomorphism @ in [11], Section 4.4, which has
an important role to give the irreducible subfactor of the hyperfinite II, factor.
Same terminology “canonical” is used by Cuntz ([8]) for a *-endomorphism on the
Cuntz algebra ([7]) induced naturally from the definition of the Cuntz algebra.
These “canonical” *-endomorphisms are also canonical in our sense. We show
that the extension algebra {A,v) is simple for Ocneanu’s canonical shift ¥ on an

€«

approximately finite dimensional C*-algebra A and that Cuntz’s “canonical” inner
+-endomorphism ® is the extension ¥ of a special Ocneanu’s canonical shift -y.

Our extension algebra (A,7) is generated (under some identification) by A
and an isometry W with the relation (I). Paschke ([19]) proved that if A is strongly
amenable and simple, then the C*-algebra C*(A, W) generated by A and W with
relations (I) is always simple. The extension algebra (O, ®) is generated by O,
and an isometry W with the relation (I) but (O, ®) is not simple.

In the index theory of infinite factors, Longo’s “canonical” *-endomorphism
(for example see [16], [12]) plays an important role. We investigate in [6] a similar
subject for factors as in this paper and some parts in this paper are essentially
the same as the results for factors in [6] but we denote them for the sake of

completeness.
2. CROSSED PRODUCTS BY #-ENDOMORPHISMS

In this section, we define the crossed product of a C*-algebra A by a *-endomor-
phism p and investigate some properties of the crossed products which we need in
the next section. Our method is somewhat similar to the method for von Neumann
algebras in [1] and [22]. Related topics on the crossed products of C*-algebras by
+-endomorphisms are investigated in [9], [19], [20], [21].
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Let A be a unital C*-algebra acting on a Hilbert space Hp and p a
*-endomorphism of A (that is, a *-homomorphism from A into A) with an isometry
w on Hy such that

(0 pla) = wew* (a € 4), w*Aw C A.

In the next section, we show that the s-endomorphism p induced by a
*-endomorphism vy with the canonical property satisfies automatically these con-
ditions.

Put

pn=p"(1) and p=p;.
Then p(A) = pAp because p(A) = wAw* = pwAw'p C pAp C ww*Aww* C
wAw* = p(A).
Put

and H = Z@Hk.

Hk { 3 ( ~ )
kel

" lpeHo, (k21)
Let 7 be the representation of A on H defined by
TNk (k < 0)
w(z =
(r(=)m {p’“(x)nk (k= 1),
and W be the isometry defined by
_fwmor (k<0
(W(’?))k - {wz'flk-—l (k > 1)’

where 7 = (9z )rez and 7; € Hy. Then W and 7 preserve the relations:
Wa(a)W* = n(p(e)) and W*n(a)W = w(w*aw) (a € A).

Under the assumption (I}, let A « {p) be the C*-algebra generated by n(A)
and the isometry W. We call A «{p} the crossed product of A by p. As we show
later, A a (p) does not depend essentially on w nor {r, W}.

Lemma 2.1. (i) There ezists a faithful conditional ezpectation E of A a{p)
onto w(A) such that
E(WH¥) =0 forall k>1.

(i) Let ¢ be a faithful state on A and B the *-algebra generated by w(A)
and W. Pul ¢ = - E. Each z in the x-algebra B is wrillen for some integer k in
the form:

k k
z= Z W*z_; + zo+ Z:c;-Wi (z; € n(A))

i=1 i=1
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and

llellz = > llpezally + D llw i zrw* ([}
k21 k20
(iii) For the form of 2,y € B in (ii), we have z = y if and only if 2o =
Yo, zim(pi) = vim(ps) and n(ps)z_i = 7(pi)y—i for all i > 1.

Proof. (i) For each integer k, let gx be the projection of H onto H; (identified

as a subspace of H). For each y € B(H), we put E(y) = 3 qryg:r (the sum
_ kez
taken in the strong operator topology). Then E is a faithful normal conditional

expectation of B(H) onto {gi;k € Z}'. Since w(A) is contained in {gx; k € Z}',
aW"q =0forall k € Z, n # 0 and E has norm one, we have that the restriction
of E to Aa{p) (which we denote by the same notation E) has the desired property
(<f. [2]).

(ii) For an ¢ € B, put z_; = E(W'z), 2z = E(z) and z; = E(zW*'). Since
Win(a)W* = 7(p*(a)) W'~ and W*a(a)WI = W*E=D(W* n(a)W7) for all 4, j
and a € A, it implies that £ € B can be written in the form. The relation about
|} - |l comes from the property of the conditional expectation E.

(iii) Since z_; = E(W'z) = E(n(p;)W'z) = w(p;)z—i and z; = ziw(p;), we
have z = y if and only if the coefficients for z and y satisfy the properties. 1

The crossed product A < {p) is defined by the above representations = of
A and W of w. However, the algebra does not depend on the representations as
follows.

PROPOSITION 2.2. Let M; be the C*-algebra generated by o C*-subalgebre
A and an isomelry w such thal wAw* C A and w*Aw C A. Assume that there
erists a conditional ezpectation E; of My onto A with E;(w*) =0 for all k 2> 1.
Put p(a) = waw*, (a € A). Let W € My = A a(p) be the isomelry corresponding
to w. Then there ezists a *-isomorphism ¥ from M, onio My with

¥(a) = 7(a), (a € A) and W(w*)=W* (k2> 1).

Proof. Let 1 be a fixed faithful state on A and E; the conditional expectation
of M, onto m(A) with Ex(W*) = 0 for all k > 1. Let p; be the faithful state on
M; defined by ¢; = ¢ - E;. For each z in the *-algebra generated by A and w, the
relations (ii) and (iii) in Lemma 2.1 hold by the same proof as Lemma 2.1. Hence
we have an isometry T from L2(M;, ;) onto L?(M>, p3) defined by T(w™*z€;) =
W*kn(z)€, and T(zwké;) = sW*E, for all k 2 0 and = € A, where &; is a cyclic
and separating vector for M;,(j = 1,2). Put ¥(z) = T2T* (z € M;). Then ¥ is
the desired isomorphism. 1
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Let us consider the following condition ()} for a *-endomorphism p of A,
which is introduced by Kishimoto ([15]) to investigate the simplicity for the crossed
product of a C*-algebra by an outer automorphism group.

CONDITION (*). Forana € A, {a;;i=1,2,...,n} C A, {k1,k2,...,kn} and
€ > 0, there exists a positive z € A with ||z]| = 1 such that

\|zaz|| > {la]| — €, [raip® (@)l <e (i=1,2,...,n).

THEOREM 2.3. If p satisfies the condition (x), then A = A< {p) is simple
when the only proper ideal J of A for which p(J) C J is the zero ideal.

Proof. By a similar method as [10], [15], we prove the statement. Let W € A
be the isometry which corresponds w and E the conditional expectation of A onto
m(A) obtained in Lemma 2.1. Let J be a proper closed two sided ideal of A. Since
E is faithful, it is enough to show that E(J) = {0}. Since J N 7(A) is a closed
ideal in m(A) such that W(J n#(A))W* C J Nnw(A), JN7(A) = 0. Hence to
prove that E(J) = 0 it is sufficient to prove that E(J) C J. For an z € A, put
||z||| = inf{||z +j||;7 € J}. Since JN7(A) = 0, we see that the restriction to m(A)
of the canonical homomorphism from A onto .A/J is injective, so that ||jz||| = [|z||
for all z € w(A). We show that ||E(z)|| < |||z||] for all z € A. Since |||y]|| = 0, for
all y € J, this implies that E(J) = 0.

By a densxty argument, we may assume that 2 € A is of form z = a +

z Wiz_;+ E z;W*, for some integer n, where a,z; € 7(A) forall i (1 < |¢| < k).
i=1 i=1
Let € > 0. Then there exists a positive y € n(A) which satisfies the condition (*)

for a, {zi;1 < ¢ <k}, {ki=|i[;1 <7< n} and . Hence

n n 1 n
y(z W*z_i + ZmW")y < Z |W* o (w)a_yll + Z llyz: ' ()W
i=1 i=1 Z i

an (v)z-s] +Zuyz,p Wl < 2ne.

By the fact [{|a||| = ||a|| for all a € 7r(A)
NE@)|| = llall € lyayll + € < [lyzyll] + (2n + De < [llzlil + (2n + De.
Since this holds for all € > 0, we have the desired inequality. &

REMARK 2.4. If the C*-algebra A is strongly amenable, then we do not need
the condition (*) for simplicity of A = A<(p) by [19]. However, if A is not strongly
amenable, A4 is not always simple. We show in Section 3 an example of a pair of
an amenable C*-algebra A and a canonical *-endomorphism y which implies non
simple A.



240 MaRrie CHODA

3. EXTENSION VIA CANONICAL *-ENDOMORPHISMS

In this section, we consider a canonical property for a unit preserving *-endomor-
phism v of a unital C*-algebra A which induces a *-endomorphism p of A to
give the crosed product A < {p). Applying the method of crossed products in Sec-
tion 2 to the *-endomorphism p induced from such a *-endomorphism 4 with the
canonical property, we investigate relations between the crossed products by such
*-endomorphisms p and *-endomorphisms v with the canonical property.

DEFINITION 3.1. Let A be a unital C*-algebra. A unit preserving *-endomor-
phism v of A is said to have the canonical property, if there exists a 7 invariant
faithful state ¢ of A, an isometry w on the Hilbert space H,, (the GNS represen-
tation space by ¢ ) and a projection f € y2(A)' N A with the following relations
(i) and (ii) :

) Y(a)w =wae for allae A and ww* =e € A,

efe=Ae} { fre)f =i }

(i) ede = y(Ae, { fef = Af r{e)fr(e) = Hv(e)

for some A (0 < A < 1).
The projection e = ww* is called a basic projection for 4. The *-endomor-
phism p, on A is defined by

(1) py(a) = ey(a), forallac€ A.

We remark that the relation (i) implies e € y(A)' N A.

PROPOSITION 3.2. Lel vy be a unit preserving x-endomorphism of A. If ihere
erist projections e € Y(A) N A, f € ¥*(A) N A with the relation (ii) and a faithful
state ¢ of A with

(iii) : p-y=¢9 and (y(a)e) = Ap(a), foralla€ A,

then v has the canonical property.

Furthermore, if A has a unique faithful tracial siate @ and projeclions e €
Y(AY NA, f € Y2(A) N A with the relation (ii), then v satisfies the condition (iii),
so that o has the canonical property.

Proof. Let us consider A as the C*-algebra of left multiplication operators
on L?(A, ) for the state ¢ satisfying (iii). Let w be the isometry on L2(A, )
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defined by

w(aéo) = % ey(a)fy foralla € A,

where £o is the cyclic separating vector 1 € A C L%(A, ¢). Then y(a)w = wa for
all a € A and ww* = e € y(4)’ N A. Hence all conditions are satisfied.

Assume that ¢ is the unique faithful tracial state of A, then the restriction
of ¢ to ¥(A) is the unique tracial state because y(A) is *-isomorphic to A. Hence
@ - v = . Put ¥(v(a)e) = p(a) for all a € A. Then ¥ is a unique faithful tracial
state of y(A)e. Since y(A)e is isomorphic to A, v(A)e has a unique tracial state ¢’
defined by ¢'(y(a)e) = A~ p(v(a)e). Hence p(y(a)e) = Ap'(v(a)e) = rp(v(a)e) =
Ap(a). 1

LEMMA 3.3. If vy has the canonical property, then the isomelry w in Defini-
tion 3.1 satisfies (I) :

w*Aw=A and py(a) =waw* (a€ A).

Proof. Since ww* Aww* = y(A)ww*, we have w* Aw = w*y(A)w = w*wA =
A and py(a) = ww*y(a) = waw* for alla € A by (i). 1

DEFINITION 3.4. Let v be a unit preserving *-endomorphism of a unital C*-
algebra A. Assume v has the canonical property. The eziension algebra (A, ) of
A via v with the canonical property is defined as the crossed product A < {py} of
A by py.

THEOREM 3.5. If a unit preserving *-endomorphism y of a unital C*-algebra
A has the canonical property, then v is extended to a *-endomorphism § of {A, 7}
which has the canonical property and

$(n(2)) = 7(x(2)) for allz €A, F(W)= (W)W,
where v = (A)~1y(e) fe for projections e and f in Definition 3.1.

Proof. Let ¢ and w be as in Definition 3.1. Put p = py in (1). Let 9 be the
+-endomorphism of 7(A) defined by ¥(z) = vp(zx)v* for all z € ¥(A). Then,

P(v(a)) = ver*(a)v” = v(p(a)), (a € 4)
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and ¥(z) = vwz(vw)*, (z € 7(A)) for the isometry vw with (vw)*y(A)vw = y(A).
Let u be the isometry on L2(A, ) defined by u(aég) = y(A)&o for all a € A where
& = 1€ A C Hy. Then vwy(e)(vw)* = ¥(v(a)) = ¥(p(a)) = vwu*y(a)(uwu)* for
all a € A. Let U be the isometry defined by (Un)e = ung, where 7 = (M )rez € H
for m € H} in Section 2 for A and p. Let s be the isometry defined by sy(a)éo =
(M~ p(v(a))éo- Then ¥(z) = szs* for all ¢ € y(A) and s*y(A)s = ¥(A). Put
ro = uu”. Then

ciry, = [ TO@)rom (£<0)
(Un(a)U" () = {,,.(,,,n y(@)rome (k> 1),

and

srome (k< 0)

OWT ) = {szronk k1)

Put vo = 1,9, = vp(v)- - p""}(v) and r, = v},uu"v,. The projection r, commutes
with p"(7(A)). Let V be the isometry defined by

_(n (k<)
(Ve = {,,p(v)”.,,k-l(v)m (k> 1),

respectively, where n = (ne)x € H, (e € Hi). Then V*U is an isometry on H. Put
¥(z) = V*UzU*V for all z € (A, 7). Then ¥ is a *-isomorphism from (4, v) onto
v(A) « (1} such that ¥(n(a)) = n(y(a)) and ¥(W) is the isometry in y(A) a {¢)
corresponding to . By Proposition 2.2, we have the x-endomorphism ¥ of (A, 7}
with §(x(a)) = 7(y(a)) and (W) = n(v)W.

Next, we show that % has the canonical property and n(e) is basic for 4. By
the relation 4(W)w(e) =(y(e)e)W =n(e)3(W), we have 7(e) € ({4, 7)) N {4, 1}-
The relation y(e)e = ev implies that

m(e)W¥n(e) = n(e)7(W*).

Hence the basic projection e for v satisfies m(e)(4, y)m(e} = ¥({A,7}))7(e). Let E
be the conditional expectation of {A,7) onto m(A) with E(W*) =0 for all k # 0,
then E-4 = v-E. Let ¢ = ¢-E. Then ¢ is a faithful state of (A, 7} which satisfies
¢ % = ¢ and @¢(3(z)m(e)) = p(v(E(z))e) = Ap(E(z)) = Mp(z). 1t is obvious
that the pair {m(e), 7(f)} satisfies the relation (ii). Therefore % has the canonical
property by Proposition 3.2. 8
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4. CUNTZ’S ENDOMORPHISM AND OCNEANU’S ENDOMORPHISM

In this section we shall restrict ourselves to the case of concrete *-endomorphisms
of C*-algebras and show relations between *-endomorphisms with the canonical

property.

PROPOSITION 4.1. Let Ag be the set of ellnxn matrices and A be the infinite
C*-tensor product 2, A;, where A; = Ag for all i. Then the 1-shift translation vy
to the right on A has the canonical property.

Proof. Let 7 be the unique tracial state of A. Then 7 is ¥ invariant. For a
matrix unit e; ; of Ag, we identify e; ; and e;; ® 1 ®---. Put e = e3,3. Then it is
clear that eAe = y(A)e and r{y{e)e) = (1/n)7(a).

n
1 L
u= Zei,i—I) f= ;Zu’ ® &5
i=1 i
Then 7, T, e and f satisfies the conditions in Proposition 3.2 for A=1/n. 1§

Cuntz ([7]) defined the simple C*-algebra O,, generated by isometries {S;;1 <
j < n} with S;S; = & ;1 and ) 5:S} = 1. He obtained in [8] interesting results
3

based on his “canonical” inner *-endomorphism & on O, defined by
&(z) =Y _S;zS; for all z € On.
i=1

PROPOSITION 4.2. Let A and vy be the same as in Proposition 4.1. Then the
extension algebra {A,7) is the Cuntz algebra O, and the eztension 7 of v to (A, 7)

s Cuniz’s canonical inner x-endomorphism ®.

Proof. Put
T; = w(ej )W, for all 1< <n.

Since e = e,y is basic for v, T; is isometry for all j, with Tj*’_l’,- = 611 and
S TiT; = 3 m(e;;) = 1. The C*-subalgebra B of {A,7) generated by {T; : j =

j i .
1,2,...,n} contains W = Ty and w(ej ) = T;WW?" for all j. Hence B contains
m(A) and W which generate (A,7) so that (A4,7) is the Cuntz algebra On.
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By the definition of 7,

SoTa)T] = Y ales ) Wr(@)Wra(er ;) = 7(3esav(a)ess)
j=1

i j

= (3 eis7@) = n(x(a))
2

= ¥(x(a)),
for all a € A. On the other hand,

v=ny(e)fe= Zej,l ®er; = Eej.l‘)’(el.j)-
=1 ‘ i

Hence

b J

YBWTY =3 a(e )WWWn(e;) = 3 wles)n(x(er )W = 3(W).

Since these ® and 4 is norm continuous *»-homomorphism, we have ® =4. 1

COROLLARY 4.3. Let ® be Cuniz’s canonical tnner x-endomorphism on 0.
Then @ has the canonical property.

Proof. By Proposition 4.2, ® is the extension ¥ of v on A in Proposition 4.1.
Since v has the canonical property, ® has the canonical property by Theorem 3.5. &

PROPOSITION 4.4. Let & be Cuntz’s x-endomorphism of On. Then {O,, ®)
is isomorphic o the tensor product O, ® C*(u) of On and the C*-algebra C*(u)
generaied by some unilary u € {On, ®) with E(uF) =0 for all k > 1, where E is
the conditional expectation from (On, ®) onto 7(Cn).

Proof. Let p be the *-endomorphism of O, defined by (1) for ®. Let 7 be
the representation of O, and W be the isometry defined by ® in Section 2. Put
u = 7(S})W. Then u is a unitary in {On,®) because e is basic for v and #(e) is
basic for 7. The unitary u satisfies u* = 7(S$;)*W* and E(u*) = 0 for all k > 1.
Since :

7(Sy) Wa(z) = 7(S; (z))W = n(z)n(5:)*W, for all z € Op,

we have u € O, N (On,®). The algebra (O, ®) is generated by n(On), W and
W = 7(S1)u. Hence (O, ®) is the C*-algebra gencrated by 7(On} and u so that
{On, ®) is isomorphic to O, ® C*(u).
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Paschke ([19]) proved that if A is a unital simple strongly amenable C*-
algebra and W is a non unitary isometry with the relation:

(1) : WAW* C A, W*AW C A

then the C”-algebra C*(A, W) generated by A and W is always simple. The
Cuntz algebra Oy, is simple by [7] and amenable ([20]) but not strongly amenable.
The next corollary shows that his result does not hold in general without strong
amenability.

CoRroLLARY 4.5. There exist isometries Wy and W with the relation (II)
for O, which give a simple C*(O0,, W) and a non simple C*(O,, W>).

Proof. Let {S; : 1 < i < n} be isometries which generate O,,. Put W) = 5.
Then C*(On, W1) = Oa, so that C*(O,,, W,) is simple. Let Wy be the isometry in
{On, ®) which corresponds the +-endomorphism defined by &. Then C*(O,, W>) is
isomorphic to O, ® C*(u) by Proposition 4.4. Hence C*(0,,, W5) is not simple. 1

EXAMPLE 4.6. Let {e;;f = 1,2;3,..‘.} be a sequence of projections with
Jones relations for a A (0 < A < 1):

eiej = eje; (|i—jl#£1), eiejei = des (i —jf =1).

Let Ar be the algebra generated by ej,es,...,e; and the unit 1. Then by {12],

there exists a faithful state 7 with r(zex41) = Ar(z) for all z € Ay and k € N. Let

A be the C*-algebra obtained from the GNS construction of | jAx by 7. Then the
k

trace T is extended to a unique trace 7 of A. Let v be the *-endomorphism defined
by v(ei) = ei4+2. Then v is canonical because T and ey, e» satisfies the conditions

for v ([31, (4], [5])-

ExaMPLE 4.7. The example in Proposition 4.1 and Example 4.6 are more
generalized as Ocneanu’s canonical shift T' on the higher relative commutant al-
gebras for the factor inclusion N C M with finite index ([17], [3], [4]) and also
Ocneanu’s canonical shifts ? ([17]) on the C*-algebra A obtained from n-string
algebras on a finite bipartite graph G with a biunitary connection ([18] or see [14]).

In fact, the first Jones projection e and the second Jones projection f satisfy
the relation (ii) in Definition 3.1 and the C*-algebra A has a faithful tracial state
which satisfies (iii) in Proposition 3.2.

In the case that M = N «Z,, for a II; factor N, I' is nothing else than ¥ in
Proposition 4.1. In the case that G is the Coxeter graph A,, ¢ coincides with
in Example 4.6.



246 Marie CHODA

LEMMA 4.8. Let A be a unilal C*-algebra generaied by an increasing se-
quence Ay C Ay C Az C --- of C*-algebras with the same unit. Lel v be a
x-endomorphism of A with the canonical property. Assume the following condi-
iions:

(1) A basic projection e for v is conlained in A;, for some i.

(ii) For each j,m € N, the C*(Aj,v(A;j), ..., 7Y™(A;)) is contained in Ajtom.

(ili) For each j € N, there exists an integer n; € N such that A; commutes
with v*"i (A;) for all k € N.

Then the condition () is satisfied for p defined by (ili).

Proof. Let a, {a;; 1 =1,2,...,n}, {k1,k2,...,kn} and € be as in the condi-
tion (*). Then there exist an integer j and b € A;, b; € A; with |ja—b|| < €/2 and
lla: = bill < e/2 for all i (1 < i < n). We may assume that k; € k3 € --- < k. Put

g =p"i(e)p" 17 (1 — e)p*ami(1 —e)-- - p¥o"i(1 —e).

Then ligbgll = bl and [lgbes*(a)ll = [Iiap™ ()il = 0. Hence the projection g
satisfies the condition (x). # '

THEOREM 4.9. Let {A,~} be one of the pairs in Ezamples 4.6 or 4.7 of finile
depth N C M or finite graph G. Then (A,7) is simple, amenable but not sirongly
amenable.

Proof. The increasing sequence {A;;j = 1,2,...} satisfies the condition in
Lemma 4.8 for 4. In the case of Example 4.6, if X > 1/4 then the algebra A is
simple and if A € 1/4 then A has a unique non trivial ideal J (see [13], [24]). But
ey(J) is not contained in J. In the case of Example 4.7, the algebra A is simple
under the assumption. Hence (A,%) is simple by Theorem 2.2 and Lemma 4.8
(or [10]). By the definition, {A,~) is generated by m(A) and W which satisfy the
condition of [20]. Hence (A4, v} is amenable. Since {4, v} does not have any tracial
state, (A, +) is not strongly amenable. 1

M. Izumi told me that these C*-algebras {A,7y) in Theorem 4.9 are not
always Cuntz algebras O, because they have different Ko({A,7}) from Ko(Opn).
He obtains interesting results on the Cuntz algebras with relations in the index
theory of III factors in [12] and in a preparing paper. Also Katayama obtains an
genaralization of Cuntz algebras in a different method from in this paper.
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