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ABSTRACT. We consider a selfadjoint operator function L of the form L(}) :=
A — A+ B*(C — A)"' B under the assumption that the spectrum of L splits
into two parts. In case of the sign + with the pencil L there is associated a
selfadjoint operator A in some Hilbert space H O H, in case of the sign —
with L there is associated a selfadjoint Bin a Krefn space K O H. Spectral
properties of these associated operators are crucial for the study of the spec-
tral properties of L. Sufficient conditions for the fact that the eigenvectors
corresponding to certain parts of the spectrum of L form a Riesz basis in M
are given.
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Let A and C be (possibly unbounded) selfadjoint operators in some Hilbert spaces
H and H, respectively, and let B € L(H,H), that is, B is a bounded linear operator
from H into H. In this note we consider operator valued functions

(1) L()\) ‘=X — A+ B* (C _ A)_i

defined for all A € p(C) (hence at least for A € Ct U C~) and with the A-
independent domain D(A4).
Ifin (1) the sign + holds on the right hand side, then L is an operator valued
Nevanlinna function, that is
S(L(N)z, z)

20 i ctucC.
) 0 ifeeD(A), xeCtucC
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Starting from this simple observation, we establish some spectral properties of L,
considering L()) as an operator pencil. So, e.g., an eigenvalue Ag of L, Ap € p(C),
is a complex number for which there exists a nonzero vector xg € H such that
L(/\o)mo =0.

The main result of this note is Theorem 3.5, where it is shown that under
some assumptions the eigenvectors of L, corresponding to eigenvalues in a certain
subset of R, can be chosen to form a Riesz basis of H. As a main tool, we represent
the operator function —L(A)~", which is again a Nevanlinna function, in the form

@) sy = [ )

with a (unique) selfadjoint nondecreasing operator function F on R such that
F(—00) = 0, F(+o0) = I and F(t+) = F(t) (¢ € R); here the limits are to be
understood in the strong operator topology. If there is a point & € R such that
o(A) > a and o(C) < a, it is shown that

3) F((a,00)) := F(00) — F(a) % 45

for some 6 > 0.
The operator function —L({A)~! can be considered as the compressed resol-
vent of some selfadjoint operator A in some Hilbert space H D H, that is

L)'= P(A-N"YH, rectucCT,

where P is the orthogonal projection from H onto H. In fact, A can be chosen to

~ A B* o~ ~
A.—(B C) mH =HaH.

be

The relation (2) implies that the spectral subspaces E+, L£L_of A, corresponding to
the spectrum o(A4) N (e, 00) and o(A) N (—o0, a), respectively, can be represented
by means of an “angular operator”. E. g., £_ admits the representation

E-:{(I&"C) : 5672}
z

with a contraction K € L£(H,H). Using this contraction, the restriction A|C,
turns out to be unitarily equivalent to the operator A — BK*, which is selfadjoint
with respect to the inner product in 4 defined by

[z,y] =((I + KK )z,y) (z,y€H).
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In the last section we show that under certain assumptions similar results can
be proved for operator functions (1) with the sign — on the right hand side. Then
L(}) is not a Nevanlinna function. In this case, however, a natural “linearization”

~ A B
B‘(—B c)

which is selfadjoint in H with respect to a suitably chosen Krein space inner

is given by the operator

product.
The results of this note can immediately be applied to eigenvalue problems
of the form

(4) Y 4+ =0 o [0,1], 4(0) = %(1) =0,

where ¢, u are real summable functions on [0,1], v < 0, ¢ > 0 (see [2], [6]) or to
the corresponding problem for an elliptic partial differential operator (see [3]). It
follows that under these conditions on u, g the eigenfunctions of the problem (4),
corresponding to the eigenvalues in (0, 00), can be chosen to form a Riesz basis
in L2(0,1). If u is a step function, also the eigenfunctions corresponding to the
negative eigenvalues have this property.

After this manuseript was completed we came to know about the paper [8]
(see also [9]) by A. K. Motovilov. He proves expansion theorems and develops a
scattering theory for an eigenvalue problem of the form (1). Although there is a
nonvoid intersection of his results and ours, the methods are different.

1. THE OPERATOR NEVANLINNA FUNCTION L

In this section we consider the operator function
(1.1) LX) :=X—A+B*(C-N"'B,

where A, B, C satisfy the assumptions mentioned at the beginning of the intro-
duction.
LeMMA 1.1. Suppose A € CtUC~. Then the following relations hold:

S(L(AN)z, z)

(i) 3\ >0 ifzeDA), z#£0

(ii) R(L(A)) =H;
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(iii) L)Y < ISAI7Y
(iv) lim [linL(in) 'z —z||=0 if zeH.

nToo

Proof. For z € D(A) and ) # X we have
(1.2) LNz, 2) = (SN)(|Iz[|* + I(C — 1)~ Bz||?),
hence (i) follows. Further, the relation (1.2) implies
IL)z( 2]l = (L=, 2)| > [S(LA)z, )| = 1A =),
therefore L(1) is injective and the range R(L(})) is closed. As
R(L(A)) = (ker LA)*)* = (ker L))" = %,
also (ii) and (iii) follow. Finally, if z € D(A) we have
llinL(in)™ = — 2|l = [|L(in) "' (A= — B*(C — in)~' Ba),
and the expression on the right hand side tends to zero if 5 T co. As D(A) is dense
in H and [linL(in)~!|| < 1 also (iv) is proved. &
On the set C* UC~ we consider the operator function
N(A) = =L(X)™?
with values in L(H). Evidently, if z # 0:

S(V(A)z,2) _ SEA)yar, 1a)
33 - TA
where yy := L(A)~'z, hence N is an operator valued Nevanlinna function. Using

>0

the relation (iv) of Lemma 1 it follows that N admits the representation

o
dF(t) <
(1.3) NV = / ﬁ (£ X)
with a (unique) selfadjoint operator function F on R with the properties mentioned
after the relation (2), see, e.g., [10], [1]. If we suppose for simplicity that F is
continuous at ¢ = ¢, the Stieltjes inversion formula yields the relation

| a+ico o0 ] atioo
_ =~ — — )" HdAdF()
2m / N()da _/ 2m / (¢ ) ®

a—ico t=—o00 A=a—ioco

= F((—00, @)} = F((a, +00))
where the singular integrals along the imaginary axis are to be understood in
the sense of Cauchy principal values at infinity and at o« in the strong operator
topology.

The main result of this section is the following
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THEOREM 1.2. Suppose that, additionally 1o the assumplions aboul A, B,
C at the beginning of the introduction, there ezists an o € R such that o(C) < o
and o < o(A). Then the operator function F in the integral representation

has the property
(1.4) F((er, +00)) — F({~co,a)) 2 &
for some 8, > 0.

In the proof of Theorem 1.2 we shall use the following

LEMMA 1.3. Let A be a selfadjoint operator in H, o(A) > v with some
v > 0 and let D(n), n > 0, be an L(H)-valued continuous function of n such thal
1D — 0 if n T co. Then there ezists an 1o > 0 such that

(in— A+ D)) TA(=in—-A+D(n)*)"' >

1.5
(1:5) 2%(in—f‘*)']A(—in—A)'1 if 72

Proof. Choose d > 0 such that 2d+d? < v and n; > 1 such that ||D(n)|| < d
if n > ;. Observing that |A(in — A)~Y| < 1 it follows that for > 9, we have

ID(n)(in — A)~* A(—in — A)~' D(n)* + D(n)(in — A)" A+
+ A(=in— Ay 'D(n)*|| < d* +2d <,

hence
S(Dn)(in — A)™ A(=in — A)7 D(a)” + D(n)A(in - A)~"+

+ A(—in - 4)7' D)) <

[T
N
o] —

and therefore
1 . . _ . _ . .
5(D(n) +in — A)in = A) A(=in — A)TH(D(n)" —in— 4) < A

This inequality is equivalent to (1.5) if the inverse { D(n) +1in— A)~" exists, which
is true for sufficiently large . The lemma is proved. 1
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Proof of Theorem 1.2. Without loss of generality we suppose that o = 0.
Then

l o0
N(A)dr = — in)~4
27”/ ( 27ri/L("’) idn
-0

—ico

(=) 0
= % [/(in—A+ B'(C—in)'B)"ldn+ /(in—A+B"(C—in)‘1B)‘1dn

=:|~

= < [ Ly (= A+ BY(C +im)O(C ~ i) B)L(-in) dy

17 .
< —-7;/L(ln)"lAL(—n))"l dn < 0.
0

Putting D(n) := B*(C +in)~'C(C — in)~' B, it holds
B
oo < 2L,

and we can choose an 7 according to Lemma 1.3. It follows from (1.5) that

(o) o0
1
(1.6) p / L(in)"YAL(—ip) ' dy > —21? /(in — AT A(=in - A)"rdy..
No o
With the spectral function E of A and a positive lower bound € of A we can write

(in—A)"A(—in—-A)".—./i2+ _dE(),

E

and the expression on the right hand side of (1.6) becomes

// T dpdEQR) = f (— — arctan ——) dE()
£ 7o
1 rxm
b oy (5 — arctan 3—?) > 0.
Theorem 1.2 is proved. &

COROLLARY 1.4. Under the assumptions of Theorem 1.2 it holds
(L.7) F((e,00)) > 5+
for some § > 0.
Indeed, F((—co,a)) + F((xr,00)) = I, hence {1.4) implies
2F((@,00)) = F{{a,00)) + (I = F{{—o0,a))) 2 1+ é1.
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2. THE LINEARIZATION OF L

We consider again the operator function L(A) in (1.1), where A, B, C satisfy the
assumptions formulated at the beginning of the introduction. In the Hilbert space
H := H & H we define the selfadjoint operator

1) A= (g ’é) on D(4)®D(C).

At least for nonreal ) the resolvent of A can be written as

( ~L(A)™! L()™1B*(C — 3! )

(22) (A-N"!
(C=XN)"'BL(A)™! —(A—C+ B(A—))"1B*)"!

THEOREM 2.1. If there exist B,v € R such that o(C) < v < B < ¢(A)}, then
the interval (v, B) belongs to p(A).

Proof. If X € (v, B) then A € p(C) and we have
LA =A—A+B*(C—-N"'B<A-p<0,

hence the selfadjoint operator L()) has a bounded everywhere defined inverse. By
the same reasoning, for these A also (A—C+ B(A—X)"! B*)~! exists as a bounded
everywhere defined operator and the claim of Theorem 2.1 follows from (2.2). &

If Py denotes the orthogonal projection in H onto M, we have
(2.3) —L(3)™! = Po(A- M)A,

that is, —L(A)~! is a compressed resolvent of the operator A. The operator function
F in the representation (1.3) can therefore be expressed as

(2.4) F(t) = PE(t)|H,

where I denotes the spectral function of A.

~ ~ r
In the following we represent the elements of H as column vectors : = = (?E)

withz e H, T € 7. We shall show that in this representation, as a consequence of
Theorem 1.2, the spectral subspaces of A:

(2.5) L= E((~c0,aVH, L4 := E((a, +00))H,
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have contractive angular operators.

LeMMA 2.2. Let A, B,C be as in Theorem 1.2. Then there ezisls a contrac-
tion K € L(H,H), ||K|| <1, such that

(2.6) E-:{(K;) : ﬁeﬁ},
(2.7) Z’f:{(—;*x) : zE’H}.

Proof. We suppose again without loss of generality @ = 0. The Corollary 1.4

implies that for £ = ; € H we have

~ _ 1 2
(28) el > 1PoB(0, 0003l > (5 +6) [l
Now consider a sequence of elements Jn € £, n = 1,2,..., such that with

U = (;") we have {|ya|] = 1, ||#al] — 0 (n — co0). For arbitrary elements
n

Zp = (z(;) cH,n=12,..., lznll = 1 (n — o0) it follows that

0= ((;) B, +°°””"’") = (v, POB((0, +00))2n ) +
+ (5 (1 = PYE(0, +00)5)

The second term on the right hand side tends $o zero if n — 00 as [|ya|| — 0 and
l|Za]] — 1. Therefore also the first term tends to zero, or

(¥n: F((0,4+00))22) = 0 (n — o0)

for each sequence (z,) C H, ||za]| — 1. Choosing z, = yn, the relation (1.7) with
a = 0 implies ||gx|| — 0 (n — o0), a contradiction to the assumption ||a|| = 1.

Therefore, if € L, § = 3,{ , the first component y can be written as Ky with
Y

some bounded linear operator K from ’ﬁo into H, where ’ﬁg is a closed subspace
of H : Ho == (I— Po)f,....
Next we show that Ho = H. Consider 5 € H, §.LHo such that § # 0. Then

() 2)-o
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hence (9) € L4. It follows that
Yy

() ())>e

as L4 is the spectral subspace of A corresponding to (0,00). On the other hand
we have from (2.2) and the assumptions ¢(C) < 0, ¢(A) > 0:

(- (9)-(2) =co-smranco

a contradiction. Thus the representation (2.6) of £_ with some bounded linear
operator K is shown. The representation (2.7) of £, follows immediately from
the fact that £, = £+.

It remains to show that K is a contraction. To this end we introduce the
operator Q := E((0, 00)) Py, mapping H onto £ . The representation (2.7) implies
H = PyL, therefore for arbitrary 7 € £ we have

IPoZ(|* = [|PoE((0, 00))Z||* > 0.
Since the relation (2.8) implies

(2.9)  QQ>:+6 onH

bOf =

it follows that

~ ~ 1 ~
QR = E((0,00)) P E((0,00)) 2 3 +é onL,.
Ifz = (_ j*z) € L, is arbitrary, we get

" 1
el > (el + °2lP) (5 +5) (2 € 70,
which implies || K*|| < 1. The Lemma 2.2 is proved. &

It is easy to check that the orthogonal projections E((e, o0)) and E((—ooc, ))
admit the following matrix representations by means of the angular operator K
from Lemma 2.2:

(I+KE9™' —(I+KK*)'K )

E((a, 00)) = (
—K*(I+KE*)™! K*(J+KK*)'K
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KK*K+D'K* KK'K+D!
E((~o0,0)) = (

(K*K +I)~'K* (K*K+1)!
The main result of this note is the following theorem. For simplicity we assume
that the operator C is bounded.

THEOREM 2.3. Let A be a selfadjoint operator in'H, C e bounded selfadjoint
operator in H, B € E(’H,'ﬁ) and suppose that there exists an o € R such that
d(A) > a and 0(C) < . Then there exisls a contraction K € £(7"Z,’H), |K] < 1,
such that:

(i) The subspaces Ly, defined in (2.5), have the representations

5 Ky\ . = =~ r .
Eo{(9)sen). ={(_5)wen)

(if) The operator K has the property R(K) C D(A) and it satisfies the
Riccati equation

(2.10) KBK — B* — AK + KC = 0.

(iii) The restriction A|L, is unitarily equivalent {o the operator A — B* K*,
which is selfadjoint in the Hilbert space (H,[,]), where [-,] denotes the inner
product

[z,9] = (I + KK")z,y) (z,y€H).

(iv) The restriction A|L_ is unitarily equivalent to the operator C + BK,
which is selfadjoint in the Hilbert space (H,[-,-]a), where [-,-]n denotes the inner
product

2,81 = (I + K" K)3,9) (8,5¢€H).

If the resolvent of the operator A is compact then also K is a compacl operator.

Proof. The existence of K and the statement (i) follow from Lemma 2.2.
The operator A is bounded from below and hence £_ C D(A). On the other hand
we have

D(Z):{(;): z € D(A), EE')"Z},

and the representation of £_ by means of K yields R(K) C D(A). The Riccati
equation 1s equivalent to the fact that A maps L_ into itself. Indeed, if T =

Kz ~ o~ Ky ~
( \:1:) €L, AZ =y = ( E\y) € L_, the relation
y

z
(A B*\ (KZ\ _(KJ
B ¢c)\3/) " \3§
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is equivalent to AK + B* = K(BK + C). Thus (i) is proved. If ,5 € £_
the equation AZ = ¥ is equivalent to (C + BK)Z = § and the norm || - || in H
generated by the inner product [, ]a is just the norm of the corresponding element

Kz ~
?c':( A:z:) eLl_:
z

- A . n = K&\
Z,Z)]a = (I + K*'K)z,2) = N
T

The selfadjointness of the operator C' + BK in this inner product, that is the
relation
(I+ K*K)(C+ BK)=(C+ K*B*)(I + K*K),

follows either from this isomorphism or it can be checked directly using (2.10).
Thus (iv) is proved; the proof of (iii) is analogous.
Finally, the Riccati equation (2.10) can be written in the form

KBK — B* = (A— K + K(C ~ p) = 0

with an arbitrary complex number p. Choosing g € p(A4) and multiplying this
relation from the left by (A — u)~!, it follows that K is compact if (A — p)~! is
compact. Theorem 2.3 is proved. 1

REMARK 2.4. The above construction implies that under the assumptions
of Theorem 2.3 the contractive solution K of the Riccati equation {2.10) can be
represented as

(2.11) K = Q.Q7!

with {
@ = —— f(/\ —C+ B(A~- A)'lB*)‘l dX,
27
T

Q= —Qiﬂ }{(A —A)7'B* (A~ C+ B(A-X)"1B")"1d),
r

where T'is a closed contour in p(A) which surrounds o(A)N(~o0,a) and does not
surround any point of U(Z) N{a, 00). Here also the invertibility of the operator Q1
follows from the above consideration.

This formula resembles the well-known form of the solution Kg of the equa-
tion

KoC — AKo = B*;
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namely, if 6(A) No(C) = @ then

.o 1 -1 p* -1
Ko= -7 f(A—A) B*(C — A1 d,
Cc

where I'c is a Cauchy contour which surrounds o(C) and does not surround any
point of o(A).

3. THE SPECTRUM OF L

In this section we consider the spectrum of the operator function L in (1.1):
L(A):=X— A+ B*(C-X"!B,

where A, B and C are again supposed to satisfy the assumptions formulated at
the beginning of the introduction.

While in the common definition of the spectrum etc. of the operator pencil L
there would be considered only those points A which belong to p(C), that is where
L(}) is defined and holomorphic, it seems to be more natural here to define the
resolvent sel p(L) as the set of those A € C into which L(A)~! can be continued
analytically, and to put o(L) := C\ p(L). Evidently, C* UC~ C p(L), and it is
easy to see that also points of ¢(C) may belong to p{L), e.g. if they are isolated
eigenvalues of C or if B has a nontrivial kernel.

In the representation (2.3) of L(A)~! the space H can possibly be reduced
without changing the operator function L. Indeed, let

Hy=cls{(C—2)"'BH : A# 2} (CH).

It is easy to see that ’f-Zl contains R(B) and that 7:21 is invariant under C. By
C, we denote the restriction of C to 7?1, by By the operator defined by B as a
mapping from X into H;. Then, evidently,

L(A):=2—A+B(C—-A)"'B=A— A+ Bj(Ci — A)~'B,.

Besides the operator Ain ﬁ, defined by (2.1), we consider the operator

~ A B ~ ~
A= L = .
1 ( Bl Cl ) mn Hl H 23] H1

Evidently, in (2.3) and (2.4) A and E can be replaced by A; and its spectral
function E‘l, respectively.
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THEOREM 3.1. Under the assumplions al the beginning of the introduction
it holds
o(L) C o(A) and o(L) = o(A;).

Proof. The inclusions p(A) C p(L) and p(,/’lvl) C p(L) are clear from (2.2) and
a corresponding representation of the resolvent (/L — A)~!. In order to prove the
converse of the second inclusion it is sufficient to consider a real point Ag € p(L)
and to show that for each connected neighbourhood Ag of A with Ay C (L)
we have E;(AO) = 0. If Ag has the property that its closure belongs to p(’[:)
the Stieltjes inversion formula and (2.2) imply that in the matrix representation
of E1(Ao) the left upper entry is zero. Hence the matrix representation of the
nonnegative operator IE‘I(AU) must be of the form

Ei(Ag) = (g E‘I(OAO))

with some selfadjoint projection Ey(Ag) in ﬁl.
As the range of E1(Ag) is invariant under A, the range of E;(A¢) is invariant
under Cy and B} E;(Ag) = 0. Then for nonreal A we find

(Cy = N E1(Ao)Hy C Ev(AoYH,

and it follows that

(Ey(Bo)H1, (Cy — X) ™ ByH) C (By(Ao)Hy, BiK)
= (B Ex(80), H) = {0}.

Therefore ]51(A0)ﬁ1 is orthogonal on a total subset, ofﬁl, hence £1(Ag) = 0 and
E‘}(AQ) = 0 follows. Theorem 3.1 is proved. 1

In the rest of this section we suppose without loss of generality that the
space # is chosen minimal: H = ’H] We define the point spectrum or the set of

etgenvalues JP(L) of the operator function L as the point spectrum of A=A
op(L) = o, (A).

LEMMA 3.2. If Xg € 0,(L) N p(C) and (zq To)" € H is a corresponding
cigenveclor of A, then Zg = —(C — Ag)7 1 Bxo and zo # 0,
(3.1) L(/\o):l.’o =0.

Conversely, if Ag € p(C) and there exists an element xqg € H such that xq # 0 and
(3.1) holds, then (zo — (C — Xo)"!Bxo)" is an eigenveclor of A corresponding lo
the eigenvalue Ag ofA.
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The straightforward proof of the lemma is left to the reader. The vector zo #
0, satisfying (3.1) is called an eigenvector of the operator function L corresponding
to the eigenvalue Ay € p(C). We mention that also for eigenvalues of L in ¢(C)
the notion of an eigenvector can be introduced as the nontangential boundary
value of some vector function which is holomorphic in C*. This question will be
considered elsewhere.

In the sequel we often suppose that for some (and hence for all) A € p(A)
the resolvent of A is compact.

LEMMA 3.3. If, additionally to the assumplions at the beginning of the in-
troduction, the resolvent of A is compact, then UGSS(Z) = 0ess(C). Moreover, if

¢1 :=sup 0(C) € vess(C),
there exisis a § > 0 such that
(cr,¢1 +6) Na(A) =0.

Proof. 1t follows from (2.2) and (2.11), (2.12} that the resolvent of Ais
finitely meromorphic outside of gess(C). In order to prove the second claim suppose
first that ag := inf (A) > ¢;. Then the interval (c;, ag) belongs to p(L) as L(A) <
—8 for some 6 > 0 if A € (e1, ag).

If ap € ¢1, we denote by P the orthogonal projection onto the linear span
of all the eigenspaces of A corresponding to eigenvalues € ¢; and put @ =1 - P.
Then we have o{AQ + (c1 + 1)Q) > o(C}, hence the aperator

-~ [(AQ+(a+1)Q B
A"‘( B c)

has all the properties of the operator A considered in connection with Theorem 2.3.
According to what has been shown already, the spectrum of Ag has a gap of the
form (c1,¢1 + 6). As A is a finite dimensional perturbation of Z(], it can have only
a finite number of eigenvalues in this gap. The lemma is proved. 1

COROLLARY 3.4. Under the assumplions of Lemma 3.3, the specirum of
L in C\ 0.(C) consisis of isolated eigenvalues and for some 6 > 0 we have
(ci,c1 4 8) C p(L).

THEOREM 3.5. Lel A be a selfadjoint eperator in'H with a compact resolvent,
C a bounded selfadjornt operaiorin M, B € ,C('H,':Q) and suppose that there exisls
an @ € R such thal o(A) > «, ¢(C) < . Then the spectrum of L in (a,00)
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consists only of 1solated eigenvalues; the corresponding eigenvectors can be chosen
lo form a Riesz basis of H.

Proof. 1t follows from Lemma 3.3 and Corollary 3.4, that ¢(L) consists out-
side of the essential spectrum of C only of isolated eigenvalues and that an interval
around « belongs to p(L).

We shall show that the eigenvectors of L corresponding to an eigenvalue in
(a, 0) coincide with the eigenvectors of the operator A — B* K* in Theorem 2.3
to the same eigenvalue. As A — B*K* is similar to a selfadjoint operator in H (see
Theorem 2.3 (iii)), these eigenvectors can be chosen to form a Riesz basis.

Let zy be an eigenvector of L corresponding to Ag € (&, 00). Then, according
to Lemma 3.2, (a:g - (C - /\o)'leco)T is an eigenvector of A to Ag and

(zo —(C ~ Xo)"'Bzo)” € £y
Therefore (C — Xg)~!Bzo = K*z( and we find
(A= B*K* = Xo)zo = (A= B*(C = X)" 1B = Ap)zo = 0.
Conversely, if (A—B* K*—Xg}zo = 0 then the reasoning in the proof of Theorem 2.3

~ o _
(A= Xg) (~K*xo) =0,

and Lemma 3.2 yields L{Ag)zg = 0. Theorem 3.5 is proved. @

implies

REMARK 3.6. For the last statement of Theorem 3.5 the assumption that
the resolvent of A is compact can be replaced by the assumption that the essential
spectrum of A consists only of a finite number of points. If (under the assumption
d(C) < o and o(A) > a) the essential spectrum of the (bounded selfadjoint)
operator C consists only of a finite number of points, also the eigenvectors of L
corresponding to eigenvalues in {—oco, &) can be chosen to form a Riesz basis of H.

REMARK 3.7. Under the assumptions of Theorem 3.5, the eigenvalues of L
in (&, 00) can also be characterized by a minimum—-maximum principle. To this
end we consider on [a, 0o} the scalar functions

¢z(A) == (L(A)z,2) (z € D(A), ||lz]| = 1).

Then ¢z (a) < 0, lle (X)) = 0o and ¢,(A) > 0 if A € [o, 00). Denote the unique

zero of the function ¢, in (o, oc) by p(z). Then, if we denote the nondecreasing
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sequence of eigenvalues of L in (¢, 00), counted according to their multiplicities,
by (X;(L)), we have

(L) = 1
()= moin B e P

(see [7]). Moreover, with po(z) := (Az, z) we have
¢z(po(2)) = ((C = po(2))~' Bz, Bz) <0,
hence p(x) 2 po(x). It follows that the eigenvalues of L satisfy the inequalities
ML) 2 A5(4), §=1,2,...,

where (A;(A)){° denotes the nondecreasing sequence of eigenvalues of A, again
counted according to their multiplicities.

4. A KREIN SPACE SITUATION

In this final section we make some remarks about the operator function
M(X) :=X—A— B (C=N"B (€ p(C)),

where, again, A and C are selfadjoint operators in X and ﬁ, respectively, and
B € L{(H,H). With M we associate the operator

~ A B
B = ,
(—B c )
which is selfadjoint in the Krein space K := H & H with inner product

[,9) = (2,y) — (8,7), where ¥ = (2,%)7, y = (v,5)T € K.

Suppose first that additionally C is bounded, A is semibounded from below and
has a compact resolvent. Then it follows as in {6], Section 2.2, that the operator
B is definitizable (for the definition and properties of definitizable operators see
(5]). Indeed, let ¢; = sup o(C) and, if (A;)$° is the sequence of the eigenvalues of
A arranged in nondecreasing order and according to their multiplicities, let A, be
the first eigenvalue with the property

An = é1 > |1BI.
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Denote by P the orthogonal projection onto the linear span of the eigenspaces of
A corresponding to Ay, Ag, ..., Ap_1, @ := 1 — P. We consider the operators

5 <QAQ+AnP B*)
0 .= ) C )
5 (QAQ+ AP 0

5w (VOFF 0

As ¢(QAQ + M\ P) > X, and o(C) < ¢, it follows that the operator By — %ﬁ
is nonnegative in the Krein space K. Then, as the gap in a(gl) is greater than
2||B||, also the operator By — c“;)"‘ is nonnegative in K. Thercfore (see [4]) the

operator B, which is a finite dimensional perturbation of By, is definitizable.

We shall not formulate the consequences of the definitizability of B. Instead,
we consider a situation where a complete analogue of Theorem 3.5 and hence also
analogues of the results in Section 3 can be formulated.

In Theorem 4.1, a subspace M is called invariant under the {unbounded)
operator B if D(B) N M is dense in M and B(D(B) 1 M) C M; by a(B|M) we
denote the spectrum of the restriction E[’D(E} MM, considered as an operator in

M.

THEOREM 4.1. Let A and C be selfadjoint operators in H and 'ﬁ, respec-
lively, 0(A) 2 &, 0(C) < o for somec €R, B € L(H,’HA), and suppose addition-
ally that

(4.1) |(Bz,2)|> < (A — @)z, 2)((a — C)&,%) (z € D(A), € D(C)).

Then the operator B~ a is nonnegative in the Krein space K. If, additionally,
a € p(C) and M(a) is boundedly invertible, then there exists a contraction K €
L(H,H), || K|| < 1, such that the following statements hold:

(1) The (mazimal uniformly negative) subspace

is invariant under B and o(B|M_) = o{B) N (—oo, @), the (mazimal uniformly

My = {(Axx> : "’EH}

is invariant under B, o(B|My) = o(B) N (a, +00) and K = My [+]M_.

positive) subspace
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(ii) The restriction B| M, is unitarily equivalent to the operator A+ B* K",
which is selfadjoint in the Hilbert space (M,[-,"]) where [,-] denotes the inner
product

[z,y] =((I - KK")z,y) (z,y €H).

(iii) The restriction B|M_ is unitarily equivalent to the operator C + BK,
which is selfadjoint in the Hilbert space (H,[-,]a) where [-,]n denotes the inner
producl

&9 = (I - K*K)Z,35) (Z,5€H).
Proof. ¥ % = (z )T € D(B), then z € D(A), Z € D(C) and we get
[(B - a)F,%] = (4 - a)z,z) + 2R(Bz, %) — ((C - 0)%, %)
> (A= 0)z,2) - 2((4 - a)z,2)%|((C - )&, )|} + |((C - «)3,8)| > 0,

where the assumption (4.1} has been used. If M(a)} is boundedly invertible, then
o € p(B) hence B has the only possible critical point co. This is a regular critical

point of the operator
~ A0
By := .
’ ( 0 C)

According to a criterion of K. Veselié, it is also a regular critical point of the oper-
*

~ 0
tor B as th turbati
ator B as the perturbation (—B 0

subspaces ./W+ and M_ of B, corresponding to (a, co) and (—oo, &}, respectively,

is bounded. It follows that the spectral

are uniformly positive and uniformly negative, respectively. Therefore they admit
arepresentation with a strictly contractive angular operator. The other statements
follow as the corresponding ones in Theorem 3.5. &

The formulation of the analogues of the results in Section 3 for the operator
function M in H is left to the reader.
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