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ABSTRACT. Let T be a closed, densely defined, linear operator in a separable,
reflexive Banach space X, and assume that there exists £ € p(T} such that
R¢(T) is a compact operator whose approximation numbers are p-summable,
0 < p < 0. The operator T is a special type of discrete operator, a so-
-called C,(,“)—discrete operator. Let 5p(T) be the smallest closed subspace
of X containing the subspace spanned by the generalized eigenvectors of T.
Sufficient conditions are introduced which guarantee 5p(T) = X. These
conditions require that ||RA(T)|| exhibit the decay rate O(]A}Y) on certain
rays in the complex plane. This work generalizes past Hilbert space theory
developed by Dunford and Schwartz.
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1. INTRODUCTION

Let T be a closed, densely defined, linear operator on a Banach space X and
let 5p (T') be the smallest closed subspace of X containing the subspace spanned
by the generalized eigenvectors of 7. In their celebrated treatise ([1], vol. II,
p. 1088-1116) Dunford and Schwartz used a generalized Carleman inequality and
the Phragman-Lindeloff Theorem to establish sufficient conditions for 3p (7T} to
coincide with X in the case X is a separable Hilbert space. Their results depend
on two assumptions: (1) that there exists a point £ in the resolvent set p(T) of T
such that the resolvent R¢(T) = (£ —T)~! is a compact operator whose singular
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values are p-summable, 0 < p < oo, and (2) that for |A| sufficiently large all
points on n > 2p appropriately located rays belong to p(7T), and that the resolvent
satisfies an inequality ||Rx(T)|| = O(JA|Y) as A — oo along each ray, where N is a
positive integer.

These results do not apply on a general Banach space, nor can their proofs
be easily modified to do so, because they both rely on the use of singular values,
a strictly Hilbert space concept. In this paper, s-numbers, which are numbers
that measure the degree of approximability or compactness of a bounded linear
operator, are used to obtain these results. By using an interplay of two distinct
sets of s-numbers, the approximation numbers and the Gelfand numbers, sufficient
conditions are established in Theorem 4.5 for 5p(7") = X. This result contains the
previously mentioned results, is valid on a general, reflexive separable Banach
space, and applies to many linear differential and partial differential operators 7°
whose resolvents are compact.

Mathematical notation, terminology and some results are introduced in Sec-
tion 2. In particular the approximation numbers and Gelfand numbers are defined,
and are used to subdivide the compact operators on X into smaller subclasses, the
C',(,a) operators and the C,Ec) operators. The properties of the C,(,C).operators are
outlined and then used, in Section 3, to obtain a generalized Carleman inequality,
which is essential to the final arguments of Section 4, where Theorem 4.5 is proved.
This result applies to C,(,a)-discrete operators, a class of closed, densely defined,
linear operators having a compact resolvent. These C,(,")—discrete operators are
defined and briefly studied in the first part of Section 4.

2. MATHEMATICAL PRELIMINARIES

This section sets forth the notation, terminology, and results used in this paper.

Let T denote a linear operator acting on a Banach space X with values in a
Banach space Y. Throughout this paper D(T), N(T), and R(T} will denote the
domain, nullspace, and range of T, respectively, B{X,Y") will denote the Banach
space of all bounded linear operators T, with norm || - ||, such that D(T) = X
and R(T) C Y,T” will denote the Banach space adjoint of T, and X' will denote
the dual space of X. F(X,Y) will denote the subset of B(X,Y) consisting of all
operators with finite dimensional range. To simplify notation, B(X) will denote
B(X, X).

Unless stated otherwise, all spaces X, Y, Z, W, etc., will be assumed to he
complex Banach spaces.
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DEFINITION 2.1. Let T'€ B(X,Y), and n = 1,2,.... The n-th approzima-
tion number a,(T) of T is defined by

an(T) :=inf{(|T - L[| |L € B(X,Y), rank L < n},
where rank L = dim R(L).

DEFINITION 2.2. Let 7' € B(X,Y), and n = 1,2,.... The n-th Gelfand
number ¢, (T) of T is defined by

en(T) := inf{||ITJ3%| |M € X, codim M < n},

where M is a closed linear subspace of X, and J{¢ is the embedding map from M
to X.

DEFINITION 2.3. A map
5: T — (s.(T)),

which assigns a non-negative scalar sequence to each operator, is called an s-scale
if for all Banach spaces X,Y, Z, W the following conditions are satisfied:
D) IT)| =s1(T) 2 s2(T) 2 --- 2 0for all T € B(X,Y).
(1) sn4m-1(S + T) < 5m(S) + 54(T) for S, T € B(X,Y).
(iil) 5,(RST) < [IR||lsn(S)|T|| for all R € B(Z,W), S € B(Y,2), T €
B(X,Y).
(iv) If rank T < n then s,(T) = 0, for all T € B(X,Y).
(v) sn(In) = 1, where I, is the identity map of I2 := {z € 12 : z; = 0 if
i>n} to itself.
sn(T) is called the n-th s-number of T. In addition to the above conditions,
if the following condition is satisfied, then the map is called a multiplicative s-scale:
(V1) $m4n-1(ST) < 5m(8)sn(T) for all T € B(X,Y), S € B(Y, Z).
If the following condition is satisfied, then the map is called an injective
s-scale: ;
(vii) 8n(T) = sn(JT) for all T € B(X,Y), and all J € B(Y, Z), where J is
an isometry. '

THEOREM 2.4. The map a: T — {an(T)}3%, is a muliplicalive s-scale.
The map ¢ : T — {ca(T)}L, is an injective, multiplicative s-scale.

Proof. [2], p. 79-80, 83, 90-91. See (3], p. 53-73, [4], p. 68-70 and [5],
p. 26-37 for related results. &
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In a general Banach space setting there exists a number of distinct s-scales,
e.g., the approximation, Gelfand, Kolmogorov, Weyl, Chang and Hilbert numbers
all generate distinct s-scales, of which the approximation numbers are the largest.
If T € B(X,Y), where X and Y are Hilbert spaces, then the singular values of T
form a multiplicative s-scale. In this case the s-scale is unique: it coincides with
all other s-scales. For more on these numbers see [2], [3], [4]-

DEFINITION 2.5. Let T € B(X) have approximation number sequence

{an(M)}2;. If Y an(T)? < oo for some § < p < oo, then T is a C,S"’ opera-
n=1

tor.

DEFINITION 2.6. Let T € B(X) have Gelfand number sequence {cn(T)}5%,.
[e=]
If 3 ¢a(T)P < oo for some 0 < p < oo, then T is a C,EC) operator.

n=1
In all that follows, the symbol C,(,a)(X ) will denote the set of all C,(,a) operators
acting on X, 0 < p < oo. The symbol C,(,c)(X) will denote the set of all C,EC)
operators acting on X, 0 < p < co.
Let K(X) denote the set of compact operators acting from X into X. The
Gelfand operators, approximation operators, and compact operators are related
in the following way.

THEOREM 2.7. Let 0 < p < 0o. Then CSV(X) € C5H(X) € K(X).
Proof. [2], p- 83,92. 1

The property of C,SC)(X )} operators found in Lemma 2.8 is crucial to the
results of Section 4.

LEMMA 2.8. Let T € B(X). Let Z be a closed invariant subspace of X.
Let T' | Z denole the operator such that T | Z(z) = T(z) for ellz € Z and
T|Z € B(Z). Then cn(T | Z) < en(T).

Proof. Let J£ be the embedding map from Z to X. Then ¢,(T | 2) =
¢n(TJ) since the Gelfand number sequence is an injective map. Combine this
with the observation that ¢,(7T'J%) < ¢n(T) to complete the proof. 1§

The property of C,Sa)(X) operators found in Theorem 2.9 is crucial to the
results of Section 4.

THEOREM 2.9." Let 0 < p < 00 and T € CSV(X). Then an(T) = an(T").

Proof. [3],p- 55. 1
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In the remainder of this section, properties of C,Ec)(X) operators are in-
troduced. These properties are required for what takes place in Section 3: the
development of a generalized Carleman inequality defined on the class of C,Ec)(X )
operators.

By a guasinorm ||| - ||| defined on a complex vector space V, we mean a
real-valued function defined on V having the following properties: (1) |||z||| = 0
iff 2 =0, (2) [flz+olll < nllelll + lyll) for all 2,y € V, where 7 > 1, and
(3) Azl = |A] - |llz||] for all z € V,A € C. If n = 1, then ||| - ||| is a norm.
Every quasinorm ||| - ||| defined on a complex vector space V induces a metrizable
topology such that the algebraic operations are continuous. A fundamental system
of neighborhoods of the zero element is formed by the subsets €U/, ¢ > 0, where
U= {ze V]|l <1} [7). A gquasi-Banach space is a vector space V equipped
with a quasinorm [|| - |||, which becomes complete with respect to the associated
metrizable topology.

Let T € C’,gc)(X), 0 < p < oo, with Gelfand number sequence {c,(T)}3%;.
Define the nonnegative function | - |,: C,(,c)(X) — [0, 00) by

00 1
(1) i), = { (5 )", 0<p<oo
cl(T)7 p = 0.

THEOREM 2.10. C{(X) with the function | - |, 1 Cp(X)(® — [0, c0) is a
quasi-Banach space which is also a two-sided operator ideal.

Proof. [2], p. 90. 1

LEMMA 2.11. If 0 < p < ¢ < oo, then CS(X) € C{(X), with T}, < |T],,
for all T € C,gc)(X). If p,q,r > 0 be such that 1/p+ 1/q = 1/r, then C,EC’(X) o
C(X) € CENX), with |TS). < 2Y7|T,|S, for allT € CSI(X), S € CL(X).

Proof. [2], p. 81. 1

To every T' € C,(,c)(X), 0 < p < oo, we associate the eigenvalue sequence
{M(T)}5%, defined in the following way: (1) if A # 0 is an eigenvalue of multiplic-
ity k, then it occurs in the sequence k times, one after the other. (2) The eigen-
values are arranged in order of non-increasing magnitude: |A(7)| = |A(T)| =
-2 0. In case there are distinct eigenvalues having the same modulus these can
be written in any order. (3) If T possesses less than n cigenvalues A # 0, then we
set An(T) = A1 (T) =---=0.

The next result is a generalized version of the Weyl inequality ([1], p. 154).
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THEOREM 2.12. Let T € CS(X), 0 < p < 0. Then

> Pa(T)P < BITI
n=1

where 3 is a constant independent of T.

Proof. [2], p. 157. 1

3. A GENERALIZED CARLEMAN INEQUALITY

In this section a generalization of Carleman’s inequality ([1], vol. II, p. 1088;
[2], p- 220), is obtained for all T € C,(;c)(X), 0 < p < oo. This result, given as
Theorem 3.16, is obtained through the use of generalized trace and generalized de-
terminant functions introduced below. The arguments presented rely on material
found in Section 2 and in [2], Chapter 4.

The following definition, due to Pietsch ([2], p. 170, 171, 185), is based on the
properties of the familiar trace and determinant functions used in linear algebra.

DEFINITION 3.1. Let @(X) be an operator ideal such that O(X) C B(X). A
trace is a complex valued function tr defined on O(X), which assigns to T' € O(X)
a complex number tr(7’), that satisfies for all T,.S € O(X) and all R € B(X)

(t1) (T + ) = tx(T) + tx(S),

(t2) tr(aT) = atr(7T) for all @ € C,

(ta) tr(TR) = tr(RT),

(t4) if T € O(X) is a rank 1 operator defined by Tz = £{(z)y, where z € X,
and &, y are fixed elements of X', X, respectively, then tr(T) = £(y).

A determinant is a complex valued function det defined on O(X), which
assigns to operators of the form [ + T, Te@(X), a complex number det (I + T),
that satisfies for all T, S € O(X)

(d1) det[({ + T)(I +S)) =det (I +T) det (I +5),

(d2) det (I + aT) is entire in « for fixed T,

(d3) det (I + ST) = det (I +T5),

(da) if T is as in t4, then det (/ + T) = 1 + &(¥).

Determinant property (d2) implies that the Gileauz derivative

det(T) := ,,h_r.% det(J+:7) -1

4

exists for all T' € C§°)(X).
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THEOREM 3.2. Let T € C{(X). Then

NT) = ZI A (T)
is a conlinuous trace. It is called the spectral trace.
Proof. (2]}, p. 176, 180. &
NoTE: it is unknown whether A(T') is the only continuous trace on C;(,c) (X).

THEOREM 3.3. Let T € C\V(X). Then

(I +T):= ﬁ(l + An(T))

n=1

ts a continuous determinant on C§°)(X). It is called the speciral determinant.
Proof. [2), p. 194, 210. ¥

The spectral trace and the spectral determinant have the following relation-
ship: .
THEOREM 3.4. Let T € C(X). Then
MT) = »'(T).
where #'(T) is the Gateauz derivative.

Proof. [2], p. 194, 206, 210. 8

LEMMA 3.5. Let z be ¢ complex number. Let k be a positive inleger. Then
the entire function ¢x(z) defined by

k=1 "
14 ep(z) = { L+ 2)exp (nzzilt};l—z”), fork>2
1+ 2z, fork =1,

has representation £r(z) = zF (k) where (k) is entire.

=] n
Proof. log(1+2)=— 3 "i 2" if |z| < 1. This implies that
==l

1+ e(2) = exp (»—Z (—;)nzn) =1- (_kl)kzk +....
n=k

This expansion shows that ¢(2) = ¢(2) has a removable singularity at 0. W

Zk
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DEFINITION 3.6. Let k be a positive integer. Let T € C£°)(X ). Let ex(T)
be defined by

ex(T) := Tp(T)

where ¢ is defined as in Lemma 3.5.

Note that ¢;(T) is entire and has alternative representation given by

: k=1, ..o
I4ex(T) = {(I+T)exp (21 t,%)—T“) , forkz2
n-
I+T, for k = 1.
LEMMA 3.7. Let k be a positive inleger. Lei T € C,(f)(X). Then ex(T) €
().

Proof. Lemma 2.11 implies that if T € C{7(X), then T* € C{(X). Since
Cfc)(X) is an ideal, then T*o(T) € CEC)(X). ]

In Theorem 3.9 a useful expression for #(7+¢€x(T)) is obtained. The corollary
to the following theorem is essential to Theorem 3.9.

LEMMA 3.8. Let k be a posilive integer. Then the eigenvalue sequence of
T and ex(T) can be arranged in such a way that Ay(ee(T)) = ex(An(T)), for
n=12....

Proof. An extension of the version of the Spectral Mapping Theorem given
by Pietsch ([2], p. 147-148) yields the results. &

THEOREM 3.9. Let k be a posilive integer. LeiT € C,(,C)(X) where 0 < p < k.
Let {X(T)}2, denole the eigenvalues of T arranged in the usual manner. Then

0 k-1
—1®
U +en() = JJ0+ 2y exp (Z %(A:-(T))“) |

Proof. Since T' € C,(,C)(X) C C,(Cc)(X), then e, (T} € C&c)(X), by Lemma 3.7.
Hence 7(I + €x(T)) makes sense. Lemma 3.8 and the definition of 7 on Cfc)(X)
combine to show that

(I +e(T)) = ﬁ(l +er(X(T))). 8

Lemmas 3.14 and 3.15 establish bounds on the above expression, which may
be thought of as a generalized determinant. These bounds are then used to es-
tablish the generalized Carleman inequality given in Theorem 3.16. The next four
results are necessary to establish these bounds. In all that follows, if n < m, then

n
the sum ) equals zero.
j=m



DENSENESS OF THE GENERALIZED EIGENVECTORS 287

LEMMA 3.10. Let k be a positive integer. Lei T € C’,(:)(X) be such that
~1 ¢ o(T). Lei S € C$V(X). Then

k-2
(I+5k(T))—l] =A [((I-;— T)-1 — Z(—l)jTj)S} _
z=0 =

d
A [a;fk(T‘*‘ZS)

Proof. (Proof by Induction). Before beginning the proof, note that the exis-
tence of (I + ex(T)) ™ is assured by the existence of (I + T)~!. For k = 1, and
Te C{c)(X), the equation is obviously true. Assume the results for the integer k.

"
Let T € C$?,(X). Use the fact that I + ex41(T) = (I + £x(T))e " FT" and the
product rule for differentiation to yield

A [;—;Ek-ﬂ(T + 25) o (1 +5k+1(T))-1]

[ {(tromeeor)

T (1 ek(T))_l]

=2 {{ %(I + Ek(T + ZS)) z:OeL:i)iTk
d _nyk " _ (=0 ok -1
+{I+e(D) 5, ¢ TF (T +25) }(e S (1 () )}
=A[§d;'fk(T+zS) ) (I +ex(m)™

+ ((I + Ek(T))gd; TSy ) (e" & (I+ Ek(T))——l)}.

z=0

Note that -El—exp((—l)lc (T + zS)k)l € C'(c)(X) To see this, expand the ex-
dz k #=0 ! ' '

ponential as a power series, take the derivative term by term, evaluate at z = 0,
and note that S is a factor of every term of the power series. Use the ideal prop-

erty of c§°)(x ) to conclude that both terms in the last expression are members of
CEC)(X) and so A is linear in both terms due to trace property (t1). Use this fact,

the induction hypothesis and the commutativity of the operators allowed by trace
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property (t3) in the next step to yield

(I+ea(m)™

2=0

d
)\I’d—zek(T+ 29)

+ ((1 + ek(T))dd—z e F-(T4:9)

' z:D) (e—‘%‘ﬁT" (1+ek{q~))-‘)}
[((1+T Z( l’TJ)} [ ‘—r’—’" ‘—:’—<T+zs> :0].

In order to simplify the second term in the above expression, first expand

exp(g_—,:)i(T + 25)*) as a power series, take the derivative term by term and
evaluate at 0. The problem of simplifying this result is of course caused by the
fact that, in general, ST # T'S. This problem is overcome in the following man-
ner. Use the continuity of function composition on B{X) x c§‘)(x ) into C}C)(X )
guaranteed by part (iii) of Definition 2.3 to multiply exp (— g_—,:ﬁT’“) by each term
of the power series expansion described above, then use the continuity of A to
observe that the trace of the sum is the sum of the traces of individual terms. On
each individual term use the commutativity of operators allowed by trace property
(t3) together with the fact that ' commutes with exp (-—g_—;Lka) to achieve the
desired simplification. This procedure yields
o

k-2 . .
A {((1 +T)1 - Z(—l)f:m')s] + [LrLTdi a8yt

‘ z
j=0

k-2 ]
= [((1 +T)! - Z(—UJ‘TJ') .s*]
i=0

Sl (Z( },):nm(T-i-zS)km)

:A[(HT z( ) }

+ i by [e_ S (T‘nil)cm km(T)’""-ls] :

i

m=1

Use the properties listed in the paragraph above to reverse the process: the sum

of the traces of individual terms becomes the trace of the sum, and then simplify
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to yield

((1 +T)~ Z( 1)! T’)

= A [((I +T)7' - kz—z(—l)jTj) S}

A — =k gk = L%Lk] ] _(—TY-1g
tAle 2 (m—1)! =7

m=1

+Z [ - =gt _,])cm (T)’”"-ls]

i k-2 i
) ((z +T) - Z(—l)ﬂ'w')s X [=(=T)1s]
i=0 ]

- L -
=) ((I+T)‘1—E(—1)jTj)S . n
j=0 |

THEOREM 3.11. [Pietsch]. Lef det #e a confinuous delerminanl on o quasi-
Banach operator ideal Y. Let T(z) be a function from a domain of the complez
plane with values in U. If T(z) is differentiable al zg, then so is det (I+T(z)). If
I+ T(z0) is invertible then

4 det (1 + T(2))| = det’

dZ z=zg

d

(I+ T(zn))“l} det (I + T(20)).

Proof. [2], p. 193. &

LeMMa 3.12. Let T € C,Ec)(X) where k is a positive integer. Let S5 €
Cgc)(X). Then w(I + ex(T + 2zS)) is an entire function of the complez variable
z. Furthermore, if —1 & o(T) then

d
EW(I + ex(T + 29))

= |:((I+T Z( 1)’T’) S] m(I +ex(T)).

Proof. Let T € C‘EC)(X) be such that —1 ¢ o(7") and let S & C'§°)(X). Since
(I + T} is invertible, then (I + £x(T)) is invertible. Apply Theorem 3.11 with
T(z) = ex(T + 25),20 = 0, and det = 7 to yield

d d
o (I +ex(T+29))|,_, =7 [gsk(T + 285)

(I+ Ek(T))—l] (I + e(T)).

z=0
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Use Theorem 3.4 to yield

dz

' [-d—ek(T + z5)

(1+e() ™| (1 +ex(r)

= [%Ek(T+ZS) (U +ek(T))"] (I +ex(T))

z=0

and then use Lemma 3.10 to yield

d
A [-d—z-EZk(T+ ZS)

(1) ]ﬂ(fmm)

=A[((I+T)‘ Z( 1JTJ) }W(I-FEJ‘;(T)) 1

LEmMMA 3.13. Let T € B(X) and 0 < p < co. Then ||T|| € |T|, where

IT|r = sup {|MTB)||B e F(X)}.
1Blz=1

Proof. Assume T # 0; the case when T = 0 is trivial. Let £ > 0 be given
and choose zo € X such that ||zofl = 1, T'zo # 0, and ||T|| < ||Tzo|| + £. The
Hahn-Banach theorem implies that there exists f € X’ such that f(Tzo) = ||Tzo|]
and |If|| = 1. Let L € B(X) be defined by Lz = f(z)zo. Note that |L|, = [|L]|
since L is a rank one operator. Also,

LIl = e Il L]l = i I/ (=)ol = e |F () = [Ifll = 1,

showing that |L|, = 1. Let S be the rank one operator defined by Sz = f(z)Tzo.
Then (ts) of Definition 3.1 implies that ||Tzoll = f(Tze) = AMS) = MTL) =
IA(T'L)|. Consequently, ||T|| < |[Txzol| + & = [MTL)|+ ¢ < |T|r + €. Since ¢ was
arbitrary, the lemma follows. &

LEMMA 3.14. Let k be a positive inleger and let p be such thatk—1 < p < k.
Then there exists a constani I' independent of T such that for all T € C,gc)(X)

[m (1 +ex(T))| < exp(TIT).

Proof. Foranyc€ C,and k—1 < p< &k,

(1+¢) exp(‘; )

< exp(ifef),
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where 1 is constant independent of ¢ ([1], vol. II, p. 1107). Thus by Theorem 2.12
and Theorem 3.9,

(2]

Im(I + ex(T))| H p (12 (T)P) —exp(IZM (T) |P)

n=1 n=1

< exp (lﬂ Z cn(T)”) = exp (Iﬁ|T|£). ]
n=1

LEMMA 3.15. Let k be a positive integer withk—1 < p< k. IfT € C(c)(X)
ts such that —1 ¢ o(T), then there ezists a constant I' depending only on p such
that

(I +e(D) [(T+7) Z( 177 || < exp(T(TIE + 1))

Proof. Cauchy’s theorem, together with Lemma 3.12 imply that

L/ (I + ex (T + 2S5)) dy = 7
2 22 -
v

(I+ex(T)) - A

k=2
((1 +T) ! - Z(—I)J’T")S],

ji=0

where T € C(c)(X) with —1 ¢ o(T), S € C'(C)(X) and 7 is the circle given by
exp(it},0 € ¢ € 27. Lemma 3.14, the quasinorm inequality, and the inequality
(la} + o))" < 27 (]al’ +18|"),7 > 0,a,b € C imply that

dz

__/ W(I+€k(T+ZS)
271

22

< !mla)lc |7r(1 +ex(T + zS))|
Z2]=
5 .

< exp (P2 (TR + |SI2)),

where I, are independent of T. These two observations imply that

k-2
Sup ({7 +ex(T)) - X ((I +T)"1—Z(—1_)"T")S] < exp(Tn”2 (ITI +1)).
STnss =0

This fact combined with Lemma. 3.13 proves the lemma. 1

We can now state and prove a generalized Carleman’s inequality.
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THEOREM 3.16. Let k be a posifive inleger with k — 1 < p < k and T €
C,(;c)(X) with —1 ¢ o(T"). Then there exists constants ¢, I' depending on p such
that

I7(1 +ex(T)(I + )71 < coxp(TITP).

Proof. Lemma 3.15 implies this result when k = 1. Assume k& > 2. When
ITlp > 1 it follows that ||T|| < |IT|F < [T}, < IT < exp(|T}8) for all j
0,1,...,k — 1, and when |T|, < 1, observe that ||T7]| < ||T|J < iT!{, <1
exp(|T[5), for 5 = 0,1,...,k — 1, thereby showing ||77[| < exp(|T[8) for j
0,1,...,k— 1. Now Lemmas 3.14 and 3.15 imply that

VAR

| +eccm)+m)

2 k-2
= 1T+ ()] (1 +T)7 = (1T + Y (1P T
j=0

i=0

k-2 k-2

< [7(1 + ex(T))] ( |(74+T)7t = S| + | S -1y ”)
j=0 j=0

< exp(D1(IT1; + 1)) + exp(T2(I7B)p exp(IT1),

where ['; and I's are constants independent of 7. The above implies that
o (I + ex(T)) (T + T)"1|| £ cexp(I‘IT!g), where ¢, I' are constants independent
of T and dependent upon p. #

The next result, which is the last result of this section, plays a key role in
the next section of this paper. It follows easily from the work preceding it.

CoROLLARY 3.17. Let0<p<ooand N € C,(,C)(X) be quasinilpotent. Then

- c -
(AT =N < mexp(l“l)\l )

for all nonzero A € C, where ¢, I' are constants depending on N and p only.

Proof. Let A # 0. It is clear that —N/X is quasinilpotent and that
(A — Ny = (I — N/X)~L. Since o(—N/A) = {0}, it follows that =(J +
er(—N/X)) = 1 for p € k. This fact and Theorem 3.16 imply that [|(J —
(N/AYH < cexp(l’f(N//\)lg), where ¢, T depend only on p. The result now
follows from these observations. 1
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4.55(M =X

A closed densely defined linear operator 7' in X is discrete if there is a number
€ in its resolvent set p(T') such that the resolvent operator R¢(T) = (£ — T)~!
is compact. In all that follows, unless otherwise stated, T will be assumed 1o be
discrete and X will be assumed to be a separable, reflexive Banach space over C.

"The following shows that for all A € C the operator T) = Al =T is Fredholm,
i.e., that R(Ty) is closed and N(T)), N(Ty) are both finite dimensional. Let
€& € p(T') be such that R¢(T) is compact. Since R(T;) = X, it is closed. Also, since
N(T;) = {0}, it is finite dimensional. Using the equality o(7") = o(7") ([1], vol.
IT1, p. 2354) it follows that & € p(T”). Consequently, N(Tg) = {0}, showing T to
be Fredholm. Fix A € C with A #'¢ and note that T\, = ({—-)\)(Tg)(f_%l—Rf(T)).
Since R¢(T) is compact, 7251 — Re(T) is Fredholm ([6], p. 301), which implies
that T) is the product of Fredholm operators and is therefore Fredholm ([7], p.
103). For A € p(T), € # ), the above resolvent equation together with the fact
that the compact operators in B(X) form an ideal implies that Rx(T') is compact.

The discreteness of T implies that of 7", The converse of this statement also
holds ([1], vol. III, p. 2354). In [1], vol. III, p. 2292, it is shown that o(T") is either
empty or a denumerable set of points {);}$2; (including multiplicities) consisting
entirely of eigenvalues and having no finite limit points. Should o(T) = @, it will
not have any generalized eigenfunctions and therefore, the question of whether
or not 5p(7T") = X is meaningless. For this reason, 1t will be assumed in all that
follows that o(T) £ 0.

For A; € o(T), T, has finite ascent m; and finite descent n; with m; = n;
({7}, p. 101-103). Also, the subspace R(T(};)) = R(Ty:') is closed and X =
R(T(A:)) ® N(T(X:)) (topological direct sum) for all A; € o(T) ([6], p. 290).
It should be noted that N(T'(A:)) = N(T3}") is finite dimensional, since 7Y} is
Fredholm. Let M, = {z € X | P,x = 0,i=1,2,...}, where P; is the continuous
projection of X onto N(T'(X;)) along R(T(X;)). The symbol M/, is defined in
an analogous manner. In [1], vol. 1II, p. 2295, 2355 it is shown that the closed
subspaces My, and M/, are either zero or infinite dimensional and that

4.1 5p(T) = M!* and sp(T")=MZL.
oo

In view of this result, 5p(T) = X whenever M., = {0}. Should M., = {0}, then
it does not follow that 55 (7") = X ([1], vol. III, p. 2555).

The proof of the following theorem is elementary and may be obtained by
paralleling the arguments presented in [8], p. 322-323.
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THEOREM 4.1. The operator Ty maps D(T}N My, one-to-one and onto Meo
for all A e C.

The last few results have pertained to a general discrete operator T with
nonempty spectrum. The results that follow pertain to special subclasses of dis-
crete T'. These subclasses are defined by the following.

DEFINITION 4.2. Let 0 < p < co. A discrete operator T in X is said to be a
C,(,a)—discrete operator if there exists a point £ € p(T) such that R¢(T) € Cpa)()().

THEOREM 4.3. Let 0 < p < 0o and T be a CS”)-discrete operator. Then T’
s a C,(,a)-discrete operator.

Proof. Let ¢ € p(T) be such that Re(T) € CS(X). Let {an}%, be the
- approximation number sequence associated with R¢(T). In (1], vol. III, p. 2354,
it is shown that 7" is discrete with p(T”) = p(T"). This implies that £ € p(T"). The
operator R¢(T") is compact and has an approximation number sequence {a},}32,.

o0
By Theorem 2.9, ¢, = a}, forn =1,2,... . Thus, ) (a},)? < oo, implying that T"

n=1

is a C§*)-discrete operator. &

In all that follows, T" will be assumed to be a C,(,a)—discrete operator. Let
X € C and define Sy = Ty| D(T) N Mo,. Theorem 4.1 implies that (Sx)~! maps
Moo one-to-one and onto D(T) N Me. Let € be such that Re(T) € CI™(X).
Since K = (S¢)!' = Re(T)|Mco, it follows from Lemma 2.8 and Theorem 2.7
that K ¢ C,(,C)(Moo). Thus, K is a one-to-one compact operator. To see that
K is quasinilpotent, assume that A € o(T), A # 0. Since K is compact, X is an
eigenvalue of K and there exists u # 0 in Mo with Ku = du. Thus u = A,
which makes £ — 1/ an eigenvalue of 7. Denote &€ — 1/A by A;. Then u €
N(T(X) N Mg C©N(T(X))N R(T(A:)) = {0}, which is a contradiction.

Let y € M., and z € M be fixed. Let N be a positive integer. Since
K is quasinilpotent, the operator R _xy-1(K) exists for all A # &, which allows
F : C — C to be defined as follows: Let A€ C, A £ ¢

(4.2) FO) =y (W (Rie—ry-1(K)) x) .

The next lemma uses the important generalized Carleman inequality developed in

the last section to show that F has order < p.
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LEMMA 4.4. Let F' be defined as in (4.2). Then there exists a real constant
B such that
|F(A)| = O(eﬂl)‘lp) as A — oo.

Proof. Since K is a quasinilpotent, C;Ec) operator, Corollary 3.17 implies
that [|Rie_x)-1(K)|| € c|€ — Xexp(L|€ — A|P), if X # £, where ¢, T' are constants
depending on K .and p only. Let [A| > 2]¢|. Then 3|A| < [ — A| < 2|A|, which
implies that || Ree—x)-1(K)|| < ¢ |Aexp (2PT'|A|P). Applying this to the definition of
F yields

[P € 2VFBe AZ N D1z |1yl exp (2P TIAP)  for all  |A] > 2¢|
and the result follows. 8

Two alternative representations of F' which will be used in the culminating
theorem arc derived and displayed below.

A consequence of the fact that K is quasinilpotent and compact is that for
all A # € ([6], p. 278)

Rignr(K) = D (€ = WY K7.
i=0

From this a Laurent series representation for F' is derived: Let A # &

(4.3) FO) =) (€ - Ay —N-ty(Kig).

i=0

This shows that F is analytic for A # £.
A rudimentary calculation shows that for all A # ¢

Rig—x-1(K) = (€ = NI+ (£ - 2)*(S\) 7
Applying this to the definition of F' yields another representation of F':
(44) FO) = 7—rvrar #e) + 7y (B (T)a)
' = ({_,\)N+1y (&_A)Ny A

for A #¢&.

The next result is the culminating theorem of this section and paper.
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THEOREM 4.5. Let 0 < p < oo be fized and T be C,(,a)-discreie operalor tn
a separable, reflezive Banach space X with nonemply spectrum.
(1) Forp > %, let n be the smallest integer such that n > 2p. Assume that
there erists a set of n rays, arg A =6;,7=1,2,...,n, such that
(1) the angles between adjacent rays are less than %,
(ii) for |A] sufficiently large, all points on the n rays belong to p(T),
(iii) there exisis a positive inieger N such that

I1RA(TH = O(IAI™)

as A — oo along each ray.

(2) Forp < %, assume that there exists a ray such that for all |A| sufficiently
large, all points on the ray belong to p(T) and that ||Ry(T)|| = O(JA]Y) as A — o0
along that ray.

Then

BT =X ®HT)=X,

Mo = {0} and M, = {0}.

Proof. Theorem 4.3 implies that 77 is a C,(,“)-discrete operator whenever T'
is. This observation implies that it is sufficient to prove that M, = {0}, for
equation (4.1) then yields 5p(7’) = X', and applying the same arguments to 7"
gives M/, = {0} and 55 (T) = X.

Let F be the function defined in (4.2). If A is on one of the rays with
|A] > 2|€], the representation of F displayed in (4.4) yields

N+1 N
(4.5) PO < rin:T el ] + &THRA(T)II I} 13l

Condition (iii) of the hypothesis implies that the right hand side of (4.5) remains
bounded as A — co on the ray. Therefore F' is bounded as A — oo on each of the
n rays.

This boundedness together with Lemma 4.4 imply, by the Phragmén-LindeldfT
Theorem ([9], p. 177-178) that F is bounded on a neighborhood of A = co. This
implies that in the Laurent series expansion of F found in equation (4.3), the
coefficients corresponding to the positive powers of (€ — A) are all zero. Thus,
Y(KN*2z) = y(KN+3z) = y(KN+4z) = ... = 0. Since this is true for all y € ML,
then in particular K¥+2z = 0. But K¥*2 is one-to-one since K is. This implies
z = 0. Therefore My, = {0}. &
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