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1. INTRODUCTION

Let H and K be two complex separable Hilbert spaces. Denote by B(H) and
B(H,K) the Banach spaces of all bounded linear operators from # into X and
from H into K, respectively. Recall that 7" € B(H) is said to be positive, denoted
by T 2 0, if {Tz,z) > 0 for all z € H, and to be selfadjoint if 7" = T, where
(-,-) is the inner product. It is known that for positive operators A € B(H) and
A C
B € B(K), and for an operator C' € B(K,H), the operator matrix (C* B)
is positive on H @ K if and only if there exists a coﬁtraction X € B(K,H), ie,
[IX]] € 1, so that C = AY2X B2, Given a pair (A, B) of positive operators in
B(H) x B(K), let
A A3 X B3
Mx (4, B) = (B%X*A% B )
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{for short, Mx) be a positive completion of the partially specified operator matrix

A 7 ,
( 2 B ), where X € B(K,H)} is an arbitrary contraction. It is clear that

{Mx (A, B); Xl < 1}
?

? B
The purpose of this paper is to characterize the sets \/(4, B) and A(A, B),

the union and the intersection of the spectra of all Mx (A, B), that is,

. .- . A
is the set of all positive completions of ( o

V(4, B) = U{e(Mx (4, B)); X[ <1}

and
NA, B) = N{o(Mx(4, B)); (IX]| <1},

where o(T') stands for the spectrum of the operator T
This paper is a continuation of [3] in which we showed that

(1) max{||All, || BII} < [IMx (4, B}|| < ||All +{|Bll
and described the sets
L(A, B) = {X; ||Mx(A, B)|| = max{||Al|, || B},

and
S(A, B) = {X; |Mx(A, B)l| = ||l Al + i BlI}-

Similar problems were studied by H. Du and C. Gu in [2] for the completions

Mx(A, B,C) = (; g)

with A, B,C fixed and X arbitrary. They obtained the complete characteriza-
tions for { Jo(Mx (4, B,C)) and [o(Mx (A, B, C)) in finite dimensional case and
X 4

partial descriptions in infinite dimensional case.

The present paper is organized as follows. In Section 2-4 we discuss the
spectra of positive completions: Section 2 deals with the case when both H and X
are finite dimensional; Section 3 considers the case when one of the spaces H and
K is finite dimensional and the other is infinite dimensional; while in Section 4
the case dimM = dim K = oo is considered. Finally, in Section 5, we consider the

- : A T . .
similar questions for Hermitian completions of ( 2 B) for a given pair (A, B)
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of selfadjoint operators and also get the complete descriptions of the union and
the intersection of the spectra of all Hermitian completions.

Now we introduce some notation which are used in this paper. For an oper-
ator T', we shall denote by kerT, R(T), (T, op(T), 0e(T), p(T) and LatT the
null space, the range, the spectrum, the point spectrum, the essential spectrum,
the resolvent set and the invariant subspaces lattice of T, respectively. For S a

subset in H, \/{z; = € §} will denote the minimal linear subspace containing S.
A

For a positive operator A, A = [ tdE, will denote the spectral decomposition of

0
A, respectively. The terminology used in this paper agrees with [5] and [8].

2. FINITE DIMENSIONAL CASE

In this section we assume that dim* = n < oo and dimK = m < oo. Let
A € B(H) and B € B(K) be positive (i.e., positive semidefinite).

THEOREM 2.1. IfdimM = n end dimK = m, then
V(4, B) = [0, [|All + | BIl \ {max o(T"), min o(S)),

where T'= A or B and S = B or A.

Proof. Notice first that if dimH = dimX = 1‘ and A =a, B = b, then
2) V(A, B) = V(a,b) = [0, min{e, b}] U [max{a, b}, a + b].
In fact, for any ¢ € C with |¢| < 1, we have

o(Me(a, b)) = {94 (0), p- (1)}
with t = |¢| € [0,1] and
wi(t) = % (a-l—b:t \/m) :

The formula (2) is implied by the continuity of the functions w4 (t) .
Let o(A) = {a;}[=; and ¢(B) = {b;}7L,. It is easy to see from (2) that

|J0, min{a;, ;)] € V(4, B),

ij

U[max{az-, b}, a; + b;] € (A, B)

i.d
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and hence we must have

(0, min{[JAl}, || B||}] U [max{min{a;}, min{; }}, [|All + [|B]l] € V(4, B),
that is,
(3) (0, [|All + 1BI] \ (max ¢(T), min o(S5)) € V(A B),

where T = A or Band S= B or A.
If max ¢(T) 2 mino(S), (3) will imply that

[0, [IAll + 18]I} € V(A, B)
and by virtue of (1), we get
(4) V(4, B) = [0, |4l + 1 B[l}-

If max o(T) < mina(S5), for the sake of preciseness, say T= A and $= B, i.e,if
[JAl] = max ¢(A) < mine(B), applying Theorem 4.3.15 in [7], it is not difficult to
check that for any contraction X,

(5) o(Mx) C [0, || Al}] U [min o(B}, || All + || BI]
and o(Mx) N[0, [|Al] # 0, o(Mx) N [mine(B), |A]] + || Bl|] # 6. Hence we have
V(4, B) C [0,]|All] U [min ¢(B), ||Al} + (| BI|],

completing the proof. 1

THEOREM 2.2. Let dimH = n and dimK = m. Let A € B(H) and B €
B(K) be positive. Then

A4, B) = ({0} N (o(4) Ua(B)))
U {};dimker(A — A) > dim(ker B)* or dim ker(B — ) > dim(ker A)1}.

Proof. Since Mx (A, B) is invertible (i.e., nonsingular) if and only if both
A and B are invertible and ||X|| < 1, it is obvious that 0 € A(A, B} if and
only if 0 € ¢(A) Uo(B). Denote A|(ker A)t and B|(ker B)* by A; and By,
respectively. A; and B; are invertible. According to the space decompositions

H = (ker A) ® (ker A)* and X = (ker B): @ (ker B), A = (g /:) ) and B =
1

B
( 01 g) If X = (Xij)2x2 € B(K,H) is a contraction, and if A # 0, then



THE POSITIVE COMPLETIONS 303

A € p(Mx (A, B)) if and only if A € p(Mx,, (A1, B1)). So, A € A(A, B) if and only
if A € A(A1, By) whenever A # 0. By this observation, we can, without loss of
generality, assume that A and B are invertible. Notice also that we always have

NA, B) C o(A)Uo(B).

Let A# 0 and A € 0(A) U o(B).

If dimker(A — ) > dim (ker B)* = m or dimker(B — ) > dim(ker A)* = n,
then Mx — A is not surjective for any X. This implies that A € A(A, B).

Now assume that dim ker(A' — A) € m and dimker(B — A) < n. We have to
prove that A & A(A, B), or equivalently, there exists a contraction X for which A €
p(Mx). To do this, diagonalize A and B, i.e. write A = UD,U*, B = VDgV*.
Here U and V are unitary matrices, D, and Dp diagonal matrices. Instead of
considering My one may consider the analogous matrix given by

U* 0 ( A A3XBi\ (U 0
0 v+)\Bix*Az B 0 Vv

L L
Da DIX'D}Z
= 1 1
DiX"D: Dpg
where X' = UXV*. Since D4 and Dp are diagonal, some simple choices of X' are
sufficient to construct the necessary examples. For instance, if A € o(4) N o(B)

and has multiplicity one in both of these spectra, an operator unitarily equivalent
to Mx 1s in the form

)\ \/X.‘E,’j\/x

\/X:_c}'j\/x A
\ : 0 )

Choosing all entries, except (2, 7), of X’ to be zero, one obtain A ¢ o(Mx).

This construction can be modified to cover all the other cases one needs, and we
will leave 1t to the reader.
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3. THE CASE ONE SPACE IS INFINITE DIMENSIONAL AND THE OTHER IS FINITE
DIMENSIONAL

We begin with two lemmas which are useful in the sequel.
LEMMA 3.1. Let M and K be two complezx Hilbert spaces, let A € B(H) and
B € B(K) be two postlive operators. Then
(max{{|All, [IBI}, LAl + 1 Bll) C V(A, B) € [0, [IA{| + | BI|]-
Furthermore,
Al + 1Bl € V(4, B)

if and only if
(1) 0 € op(llAll = A) Nap(l| Bl| — B), or
(i) 0 € (| All — A) N o.({| Bl - B).

Proof. The inclusion \/(A, B) C [0, ||Al}+ || B]|] is obvious. Given € > 0, take
unit vectors z € H and y € K so that ||A/%z||> > ||A||—é and || B/2y||* > || B|| -6,
where § = ¢/3. Let

Y A TR AR
A1+ 1B =TI+ B

Then, ||z, ® yof| = 1 and

Al
A x 2 ”
1A%l < e
“32on|2 ”B”

B
T Rt
Let X € B(K,H) defined by XBY?y, = ||1'3||’!T|AI:|B||—6Al/z:ino and Xz = 0 if
z L BM?y,. 1t is clear that || X|| < 1 as

B|l(1Bl| - &
UEMUB =9 o2z, 2 < 520l

But
(Mx (20 @ o), (2o ® %)) = |A% 20| + || B3 go||? + 2Re (X Biyo, ATz,)
1
(AN — 8} Al + (1BI1? = 1Bl + 2(I1BI| - 8)(IIAll — 8))

2____.
141+ (Bl
2l Al + 1Bl -,
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S0
I Mx(| > |l + 1Bl - &

Note that ||M,x]||, as a function of ¢, is continuous on [0, 1] and ||M;x]| € o(M.x).
It follows that

[max{[|All, 1811}, I4ll + 1Bl —e] € | o(Mix) C V(4,B).
0<tg1

Let ¢ — 0, we get
[max{||All, 1BI1}, [lAll + I BIl} € V(A, B).

Moreover, [|Al| + || B|| € V(A, B) if and only if there is a contraction X such that
[JAl]+||B|| € o(Mx), which happens if and only if |[Mx[| = ||A|]+||B||. Therefore,
by (3], I|All + ||Bl| € V(A, B) if and only if 0 € op(||Af| — A) Nop(||Bl| — B) or
0 € 0. (||]A|| — A) no.(|| Bl — B). This completes the proof. &

Also observe that o(A) Uo(B) C (A, B).

The following lemma was obtained by A. Fragela Kol’yar in [4].
I T3
T
maxo(T1) < mino(T) = B, then (a, B) C p(T).

LEMMA 3.2. If operator mairiz T' = ) is selfadjoint and if & =

Now we return to the questions of this section. For the sake of convenience,
we suppose that dimH = oo and dim K < co. The other situation can be discussed
in the same way.

THEOREM 3.3. Let dimH = oo and dimK = m < co. Let A and B be
positive operators acting on H and KC, respectively. If ||A|| € g,(A), then

V(A, B) = [0, [|Al} + | BI] \ (max ¢(T"), min (5)),
and olherwise,

V(4, B) = [0, [|A]| + | BI)\ (max a(T"), min o(S)).
where T = A or B while S = B or A.

Proof. Since dimK < oo, it follows from Lemma 3.1 that [|A|| + || B €
V(A, B) if and only if ||A| € ¢p(A). And by Lemma 3.2, we always have

V(4, B) € [0, [|All + | BIl] \ (max o(T), min o(S)).
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So, we need only to prove that
(6) (0, 1Al + 11 BI) \ (max o(T), min 0(5)) C V(A, B),

where T'= A or B while S = B or A.

Let a € ¢(A) and b € 0(B) = ap(B).

If a € 0,(A), then similarly to the proof of Theorem 2.1 we have
(7 [0, min{a, b}] U [max{a,b},a + b] C (A, B).

a+e
Suppose a € g(A)\ 0,(A). For sufficiently small £ > 0, let A, = [ tdEq,
0

Al
Ay = [ tdE, Let B, = Blker(B—5). “Then V(A;,B1) C V(4,B) and

V(4z, 1;-1-)c C V(A, B). Notice that [|A;]] < a +¢€. So, by Lemma 3.1,
[max{a +¢,b},a + b) C \/(A41, By) C V(A, B).

Let € — 0, and note that a,b € \/(4, B), we get

(8) [max{a,b},a+b) C (4, B).

On the other hand, for any natural N, there exists an X : ker(B — b) —

li4]
Ha = [ dEH with || X|| < 1 such that

a
(- X*X)7 = N.
For t € [0, 1], let

Ay t\/r;A%X)

Mix(Az, B1) = Mix(Az,b) = (t\/SX"A% b

M;x (A2, By) is invertible and

A% D -1 1 tX -1 (A% 0 )-1
/! A -1 - 2 ]
fox(4aB1) ( 0 b%) (tX* 1 ) 0 bt
_( Ata-exxytat i exe T
—tb~3(1 - 2X*X) "' X" Ay ? =11 — £2X* X)"!

[N

So,

©IMix(Ag, By)™Y| 2 max{]l47 21— XX A ), 671 - 22X X))
=e(t), telo,1].
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It is clear that ||[M;x (A3, B1)"!|| and (t) are continuous functions of ¢ on [0, 1],

and
1

1

|Ma(Az, B1)="[] — #(0)
1 1 1 b

< £ < —.

[IMx (A2, Bi)=Y| ~ (1) = 6=1[(1-X*X)~1|| © N

mino(Mo(Az, By)) = | > min{a — ¢, b},

mino(Mx (A2, B1)) =

Therefore, it follows that
b . .
[—ﬁ’ mm{a - g, 5}] C U MIHO'(MU((AQ, Bl)) C V(AQ, Bl)
t€[0,1]

By the arbitrary choice of N and ¢, as well as the fact that 0 € \/(A, B) is always
the case, we get

(9) [0, min{a, b}] C (A2, B1) C (4, B).
Combining (7)-(9), it is easily seen that
[0, min{{|A[], || Bl|}]U[max{min ¢(A), min (B)}, {| Al + || B|)
g( U [O,min{a,b}]) U ( U [max{a,b},a+ b))

a€e{A} a€a(A)
b0 (B} bEo(B)

CV(A, B),

but this is the same as (6). &

COROLLARY 3.4. Let A and B be as in Theorem 3.3. Assume that ||Al] 2
mino(B) and ||Bl| > mino(A). If (|A]| € gp(A), then

V(4, B) = [0, {lAll + [|BIll,

otherwise,

V(4, B) = [0, 1Al +11BID)-

Now, we compute the set A(A, B). We begin doing this by listing two easy
lemmas whose proofs are left to the reader.

LEMMA 3.5. Let M be an infinite dimensional Hilbert space and T € B(H) a
selfadjoint operator which is not algebraic. Then, there is a vector x € H such that
oo

V {T*z} is infinite dimensional and (T™z,z) # 0 for every natural number n.
k=0

LEMMA 3.6. Let A=A @A 20and B=B19B20. If A & A(A1, B1)U
A(Az, By), then X & A(A, B).
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THEOREM 3.7. Let dimH = oo and dimK = m < co. Let A € B(H) and
B € B(K) be positive. Then,

A4, B) = (0} n (s(4) Uo(B)))
U{}; X €a.(A) or dimker(A — )) > dim(ker B)*}.

Proof. We firstly assume that 0 ¢ o(A) U o(B), i.e, both A and B are
invertible. So, dim(ker B): = m.

If A € 0,(A) such that dimker(4 — X) > m, then Mx(4,B) — X is not
surjective for every contraction X. Hence,

xe () o(Mx(4,B))= A4, B).
IX)<1

If X € 0.(A), then X € 0.(A & B). For any contraction X € B(K,H),

Moo (A0, 0 AiXB7
¥~\o B BiX* A3 0

is a finite rank perturbation of A@ B. Therefore A € 0,(Mx) C o6(Mx) and hence
X e A(4, B).

To complete the proof of the case 0 & o(A) U o(B), we have to show that
A ¢ 0.(A) and dimker(A4 — A) < m will imply A ¢ A(A,B). As A(A,B) C
o(A) U o(B), we need only check this for A € ¢(A) U (B).

Case (i). A € ¢(A)\ (0.(A) Uc(B)) and dimker(A — X) < m.

Obviously, A is a isolated point of o(A4). Let A; = Alker(4 — A) and A, =
Alker(A — M\t. Then, A ¢ o(A,). However, A; and B are positive operators
acting on finite dimensional spaces. By Theorem 2.2, A ¢ A(Ai1, B) and hence
A & A(A, B) as Az — X is invertible.

Case (ii). X € o(B) \ o(A).

In this case, Mx (A, B} — X is invertible for some contraction X if and only
if

®:(X)=(B—-X)—BiX"A(A-A)"'XB3?
is invertible.

If there exists a finite dimensional subspace M € Lat A(A — A)~! so that
dimM 2 dimker(B — A) = n, then there exists a A/ € Lat A(A — A)~! with
dimN = n. Let X € B(K,H) be a partial isometry with initial space ker(B — A)
and final space V. It is easily seen that ®,(X) is invertible. Hence, A € A(A, B).

If there is no such finite dimensional invariant subspace of A{(4 — A)~!, then
A(A = X)~! is not an algebraic operator. By Lemma 3.5, there is a vector z, € i
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such that dim \/ {A*¥(A = X)~*z,} = co and {A™(A4 — X)""z,,2,) # 0. Let X be
k=0

n—1
a partial isometry with ker(B — A) and \/ {A¥(A4 — A)~*z,} the initial and final
k=0

space, respectively. Because that R{A(A — A)"' X B2} = V/ {A*(4 = N)"*z,)}
k=1
n—1
and (A"(A — A\)™"z,, o) # 0, we have R(X*A(A — X)X BY?2) = \/ {A*¥(A -
k=0
A)~Fz,}. It follows that BY/2X* A(A — A)~1 X B*/?|ker(B — )) is invertible. So,

writing By = Blker(B — A)*,

BiX*A(A-A)"'XB: 0 )

(X)) = ( 0 By — )

is invertible, and hence, A &€ A(A, B).

Case (iii). A € (6(A)}\ 0.(A))No(B) and dimker(A4A — A} < m.

If dimker(B — A) < dimker(A4 — ), let Ay = Alker(A — X), then by Theo-
rem 2.2, A € A(A1, B), which implies A ¢ A(A, B) since obviously the operator
(A — A)| ker(A — M)t is invertible.

If dimker(B — A) > dimker(A — X), write ker(B — A) = M; & M, with
dimM; = dimker(A — X). Let A; = Alker(4 — }), Ay = Alker(A - \)t, By =
B|M; and By = B{M;{ . It follows from Theorem 2.2 that A ¢ A(A;, B;) and
from what proved in Case {(it) that A € A(Az, B2). Applying Lemma 3.6, we get
again that A ¢ A(A, B).

Combining what proved in Case (i), (ii) and (iii), we can claim that if 0 ¢
a(A) U o(B), then

(10) A(A, B)y = {}; A €c.(A) or dimker(4 - A) > m},

i.e., the theorem holds in this situation.
Now assume that 0 € g(A) U o(B). It is trivial to see that 0 € A(A, B).
Suppose A # 0 and A € ¢(A) U o(B). Take any real number ¢ so that 0 < & < A,

€ JIA]|
Let A; = [tdE;, Ay = [ tdE,, B, = Blker B and B; = B|(ker B)*. It is clear

that A ¢ /O\(Al,Bl) andej\oe o(A)Uo(Bz). If A & g.(A) and dimker(4 — X) <
dim(ker B}, then the same is true for (As, B2). Thus, by (10), XA & A(A2, B2),
but this implies from Lemma 3.6 that A & A(4, B). Clearly, A € o.(A) will imply
A e AA,B). If X € o(A)\o.(A) and if dimker(A — A) > dim(ker B)*, with
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X X
respect to the decomposition as above, writing X = ( 1Az )) we have
X21 X2z
A - 0 0 AFXy2B}
Mx(A,B)—-Az 0 Az — A 0 A;Xzng
0 0 —x 0

1 1 1
BIX1,AY BIXpAI 0 By— )

Since dimR(A3* X2, B3/%) < dimker(A; — A), it is clear that Mx (A, B) — A can
not be surjective and therefore, can not be invertible for any X, but this will mean

that A € A(A,B). 1

4, THE CASE OF INFINITE DIMENSIONS

In this section we assume that both A and K are infinite dimensional. Let 4 €
B(H) and B € B(K) be positive operators. Similarly to the arguments in Section 2
and Section 3, one can show that

(11) [0, min{a, 8}] U [max{a, b},a + b) C \/(4, B)

whenever a and b are satisfying one of the following conditions:
(1) a € 0,(A) and b € 0,(B);
(2) a € 0(A)\ 0p(A) and b € 0,(BY};
(3) a € 0p(A) and b € o(B)\ 0,(B).
Now consider the case that a € 6(A)\o,(A) and b € o(B)\o,(B). Replacing

bte 1181t
= Blker(B —b) by By = [ sdF, and B, = [ sdF, in the proof of (8) and
0 b—e

(9) in Section 3, respectively, a similar demonstration shows that (11) still holds
true. Thus, we have proved that

[0, min{[|A]], [|BII}] U [max{min ¢(A), mina(B)}, |4l + |BI)) € V(4, B).

Now, the following theorem is an immediate consequence of Lemma 3.1 and
Lemma 3.2.

THEOREM 4.1. Let H and K be infinite dimensional. Let A € B(H) and
B € B(K) be positive. If 0 € a,(||Al| — A) Nop(||B|) — B) or 0 € a.(]|A]| = A) N
o.([|1B|] — B), then

V(4, B) = [0, |All + [ BI] \ (max o(T), min o(S));
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Otherwise,

V(4, B) = [0, [|Al| + [ BII}\ (maxe(T), mino(S)),
where T = A or B, while S = B or A.

As to the intersection of the spectra of all positive completions Mx (A, B),
we have

THEOREM 4.2. Suppose that A € B(H) and B € B(K) are positive operators,
and dimH = dimK = oo. If0 & o(A) U o(B), then

/\(A: B) =

Otherwise,

A(A, B) = {0} U {X; X € ¢.(A) and B is compact}
U{A; X € ge(B) and A is compact}.

Proof. We first assume that 0 & o(A) U o(B).

Claim 1. If A € o(B)\ 0(A) or A € a(A)\ o(B), then A ¢ A(A, B).

Suppose that A € o(B)\ o(A). It is similar to the argument in the proof of
Theorem 3.7 that for any contraction X € B(K,H), X € p(Mx (A, B)) if and only
if the selfadjoint operator

&5(X) = (B~ ))— BT X"A(A - ))"'XB* € B(K)

is invertible, and, A € ¢(B)\ o.(B) implies A ¢ A(A, B). Hence, to complete
the proof of Claim 1, we may assume that A € ¢.(B). Fix a number d > 0 so
that |JA(A — A)~1z|| > d||z|| for all # in H. Take ¢ > 0 small enough so that

Ate
0 < min{A, (A —€)?d}. Let K. = [ dF,K . It is clear that dimK, = oo. Let
A—r

X € B(K,M) be any partial isometry with initial space K, and final space H. With
regard to the decomposition K = K. @ K2, and for each y = y1 @ y2 € K. ® K,

19A(X)ll” = (B = Mys — B X" A(A = 3) ' X B3y | + [I(B = Neall?
> (1B X" A(A = N X BEy | = [1(B = Nuall)? + € flwell?
> (A= &)’d = e)*[lwa i + €*[lw2ll* = 8 Mlwll?,
where § = min{e, (A —)?d — €} > 0, which means that ®,(X) is invertible on K.
Hence, A € A(A, B).

By the symmetry of A and B, we also have that X € ¢(A4)\ o(B) will imply
A ¢ A(A, B). So, Claim 1 is true.
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Claim 2. X € 0(A) N o(B) implies A ¢ A(4, B).

We shall prove this claim by considering several cases.

Case (i). A € (0(4)\ 02(A)) N (a(B)\ 0. (B)).

In this case, A is an isolated point of ¢(A) and o(B) and both ker(A—}) and
ker(B — A) are finite dimensional. Let A; = Alker(A — X), A; = Alker(4 —X)*,
By = Blker(B — A} and Bz = Blker(B — A)*. By virtue of Theorem 3.7, we must
have X ¢ A(A1, B2) U A(Az2, B1), and hence A ¢ A(A, B), by Lemma 3.6.

Case (ii). A € (6(A)\0e(A)) Na(B) or A € 7.(A) N (c(B)\ o.(B)).

By the symmetry of A and B, it suffices to deal with the case that A €
(e(A)\ o (A)) No(B). Let K, = A_-fh dF,K. Note that dim(ker(4 — X)) =

Awg
dimK, = oo. If there is an £ > 0 such that dimK} > dimker(A — }), then

by Theorem 2.2, Theorem 3.7 and Claim 1, we have A ¢ A(Alker(A — A}, BIKYH)
U A(Alker(A — M), BIK,). It turns out that A & A(A, B).

If for every € > 0, dimKZL < dimker(A — ), then we must have ) € a,(B),
and dimker(B—A)* < dimker(A—)) = m < co. Take a subspace M C ker(B—2)
such that dimM = m — dimker(B — A\)L. Obviously, M @ ker(B — A) € Lat B.
Let A; = Alker(A —X), Ay = Alker(A — )+, B; = BIM @ker(B - ))* and
By = Blker(B — ) © M. Again, we have X & A(41, B1) U A(Az, B3) by use of
Theorem 2.2 and Claim 1. This leads to the desired assertion that X € A(4, B).

Case (iii). A € 0,(A) No.(B).

Ate
For a fixed £ > 0 satisfying § = (A —¢)? —¢2 > 0, let H, = [ dE.H and
A—g

A4e
K. = [ dF,K. Let Ay = A|M., By = BlK,. If X € B(K, H.) is a unitary
A-g
operator, then
”le*fhx - (81 — A)X‘(Al - A)IH 2 “B]X‘All‘n - “(31 - )\)X*(Al - }\)z”
> (A —e)ljzll — Iz} = dli=|]

for all z in H,. Similarly,
lA1 X Biy — (A1 = X (By — Ayl > 8|yl

for all y in K.. So, By X* A1 — (B — \)X* (A1 — A) € B(H,,K,) is invertible. This
implies that B;/2X* 4,1/% — (B, — M)B,~Y/2X* A;~"/%(A; — )) is invertible and
from it, one can easily check that Mx (A;, Bi)— A is invertible, i.e., A € A(A1, By ).
It is trivial to see that A ¢ A(A|HZL, BIK}). So we still have that A & A(4, B),
and Claim 2 holds.
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Claim 1 and Claim 2, taken together, imply that

N(A, By =10

whenever both A and B are invertible.
Now assume that 0 € o(A) U o(B). It is clear that in this situation we
always have 0 € A(A, B). Let A € o(A) UO’(B) and A 75 0. Given ¢ so that

0 < e < A, denote by H; and K; the subspaces f dE;H and f dF, K, respectively.

Let Ay = AlH,, Ay = A|Hi, By = BIK,; and Bz B|Ki.

If neither of A and B is compact, then we may choose € so that dimM{ =
dimK{ = oo. It is clear that A g A(A1,B)) as A & o(4;1) Uo(By), and X ¢
A(Az, B3) by the first half part of the theorem that has just been proved. So, by
virtue of Lemma 3.6, we have A ¢ A(4, B).

If both A and B are compact, then dimH; = dim K; = co while i and K{
are finite dimensional. Since A Q o(A1}and X ¢ o(B,), it follows from Theorem 3.7
that A & A(A1, B2) U A(Az, B1), and therefore, X & A(4, B).

Suppose that A is not Compact but Bis. If A € o.(A), then A & o(A4) or
A is a isolated point of o(A) with dimker(A —~ A) < co. Again, by Theorem 3.7,
A& N(Alker(A = X), B) U A(Alker(4 — X)*, By). Hence, A € A(A, B). However,
if A € 0.(A), then A € 0.(A @ B). Since A1/2X BY/? is compact for each X and

A 0 0 Al/2x gi/2
MX(A’B): (0 B>+(Bl/2x*A1/2 0 )

is a compact perturbation of A @ B, so A € 0.(Mx) C o(Mx). Hence, we have
AeANAB) .
The case that A is compact while B is not can be treated similarly.
Therefore, we have shown that if 0 € ¢(A4) Uo(B), then A(A, B) consists of
0 and those A that A € 0.(A) and B is compact or A € ¢.(B) and A is compact.
The proof of the theorem is finished. #

COROLLARY 4.3. If neither of the positive operators A and B is compact,

then \(A, B) = {0} if 0 € o(A) U o(B) and \(A, B) =0 if 0 € o(A) Ua(B).

COROLLARY 4.4. If A and B are compact positive operalors acling on infi-
nile dimensional Hilbert spaces then A(A, B) = {0}.
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5. THE SPECTRA OF THE HERMITIAN COMPLETIONS

In this final section, we deal with the analogous questions for the Hermitian com-

pletions Ny (A, B) = (;i
A € B(H) and B € B(K), where Y runs over all operators in B(X,H). We de-
note by \/(A, B) and A(A, B) the union and the intersection of the spectra of all

a a
Hermitian completions Ny (A, B) for (A, B), i.e.,

Y
B) for a given pair (A, B) of selfadjoint operators

V(4, B) = U{o(Ny (4, B)); Y € B(K, H)}
and
A4, By = n{o(Ny(4,B)); Y € B(K,H)}.
Since we have more freedom in choosing Y, it is not difficult to find out \/(A, B)

and A(A, B). We shall just list our results and leave the proofs to the reader.

THEOREM 5.1. Let A € B(H) and B € B(K) be two selfadjoint operators.
Then
V(A, B) = R\ {max o(T), mino(S)),

a

where T=A or B and S = B or A.

THEOREM 5.2. Lel A € B(H) and B € B(K) be selfadjoint operaiors.
(1) If dimH = n < o0 and dimK = m < oo, then

A(A, B) = {}; dimker(A — A) > m or dimker(B — X) > n};
a

(2) If dimM = oo and dimK = m < oo, then

A(A, B) = {}; dimker(A - A) >mor A€ a.(A)};

(3) If dimH = dimK = oo, then
A4, B) = 0.
a

REMARK. The separability of Hilbert spaces H and K is only necessary for
Theorem 4.2 and Theorem 5.2 (3).
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