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REPRESENTATIONS OF OPERATOR SPACES
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ABSTRACT. Let V be any abstract operator space. We represent it com-
pletely isometrically into some B(H) in various ways, then examine the dif-
ferent C"*-algebras and different operator systems it generates. In particular,
we construct two C*-envelopes of an operator space. Using the off-diagonal
0 v
0 0
two C*-algebras which are Morita equivalent C*-algebras. As an application,
we compute the C*-envelope of MIN({X), which turns out to be a function
algebra over the set of extreme points of Ball(X’) modulo the action of the
unit circle. Finally, we introduce a partial ordering on the operator systems
spanned by an operator space. We show that there is a maximal element
with respect to this ordering.

representation v , from any operator space we are able to build
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1. INTRODUCTION

Throughout this paper, V denotes an abstract operator space and B(H) denotes
the von Neumann algebra of all bounded operators on the Hilbert space H. The
letter € denotes our scalar field — all complex numbers. M,, is the set of all
n x n scalar matrices. For any set X, we use M,(X) to denote the set of alln x n
matrices with entries from X. C*(S} stands for the unital C*-algebra generated by
the set .S of operators. We will let C(Y') denote the space of continuous functions
on a compact Hausdorff space Y.

An operator space is a subspace of some C*-algebra together with the in-
herited matrix norms. An abstract characterization of operator spaces is given
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by Ruan in [16]. Since then some effort has been made to study the structure of
operator spaces. In this paper, we discuss the behavior of abstract operator spaces
by embedding a fixed operator space in different ways concretely into B(H) and
comparing the C*-algebras and operator systems that it will generate.

A representation of V is a complete isometry & : V — B(H) for some Hilbert
space. For different representation k, (V') will generate different C*-algebras and
different operator systems. What we are looking for are the canonical ones. It is
fairly easy to construct the greatest C*-algebra generated by an operator space,
which will have C*(«(V)) as a quotient for all representations . That is so called
the free C*-algebra generated by V. To obtain its construction, let F be the free
x-algebra (no topology) generated by the set V, and define a norm on F via

llall = sup{llo(a)ll},

where the supremum is over all possible *-homomorphisms p : F — A, induced
by representations « : V — A, and A is any C*-algebra. It is easy to check that
[} - ||+ is a C*-algebra norm on F.

However, for many questions, a smallest C*-algebra is important. For the
case of abstract operator systems, Hamana ([8]) proved the existence and unique-
ness of the C*-envelope, which in a certain precise sense is the smallest C”-algebra
generated by an operator system. Motivated by his work, in Section 2 we study
the off diagonal representation

0 «], 2
[ 0 0] (Ve B(H?)
where « is any representation. We will see that the operator system S corre-
sponding to this kind of representation is independent of the choice of k. Using
Hamana’s idea of C*-envelope, we study the C*-envelope of an operator space by
making use of the off-diagonal representation. Also, by examining the four entries
of C*(8) C M,(B(H)), we obtain a very broad class of examples of Morita equiv-
alence, and we are able to construct a C*-algebra generated by an operator space
which is in some sense minimal.

The technique of the representations of Section 2 is used in Section 4 to
consider the representations of MIN(X) for any finite dimensional normed space
X. We will exactly compute the C*-envelope of MIN(X) and as a consequence
study when MIN(X) can be imbedded into a finite dimensional C*-algebra. The
answer to this question is related to the number of extreme points of X’'. (To
avoid confusion with operator adjoints, we will use X, instead of X*, for the dual
space of X.)
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In Section 5, we discuss the ways in which an operator space can span an
operator system. We introduce a partial ordering between these operator system
spans. We prove that there is a maximal operator system spanned by an operator
space, but in general no minimal one exists.

This paper is part of the author’s Ph.D. thesis directed by professor Vern
Paulsen. The author wishes to expréss his profound -gratitude.

We thank D. Blecher and J. Froelich who suggested numerous refinements.

2. C*.ENVELOPES OF OPERATOR SPACES

For a fixed operator space V, our tool of constructing C*-envelopes of V is the
following operator system,

S:{("* v):)\,pEC, v,wEV}.
w* p

Accordingly, for a representation x of V, we let
A
SN:{( . 'C(U)):)\,;J.EC, v,wEV}.
s(w)”  p

The following proposition is the first step in the course of obtaining C*-
envelopes.

PROPOSITION 1. For any represeniations k,,ky of V, the map

. ('92(/:11)* mzigv)) — (m(/:v)* mp(tv))

defines a unital compleie order isomorphism from S, onto Sy, .

Proof. ¢ is clearly well-defined, unital and invertible. The only non-trivial
thing to show is that both ¢ and ¢~! are order preserving.
For any € > 0, and any operator 4, we set A, = A +¢el. Let

Ly “D...

be any positive element in M, (S.,). By canonical shuffle this is equivalent to
(Aij) 20, (uij) >0 and

(i) (Ka(viy))
[(Nz(wu))* (#i5) ]20'
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The latter inequality is equivalent to, for any ¢ > 0,

I i3)7 F (i) (i)

g . _1 ? 0
(pij)e 7 (kalwi;)) (Mij), ? In

which is true if and only if (v; ;) = (w;:) and
_1 _1
H(Ais)e ? (m2(vij)) (mej)e Il €1 foralle > 0.

But k1, ko are both representations of the same operator space V, so it is

easy to verify that the above inequality is equivalent to
_1 1
(Ais)e * (1(vij)) (mis)e *ll <1 foralle > 0.

By a similar argument as above, this is equivalent to

(e
wa(wij)" nxn
in Mp(Sk,). 1

Proposition 1 says that S is independent of the choice of representation of
V. Thus we now unambiguously have a C*-envelope of §.

But at this point we have to notice that C*(S,) does depend on the repre-
sentation .

If x : V — B(H), then C*(8,) is a C*-subalgebra of B(H?) = My(B(H)).
A moment’s thought confirms that all the elements appearing as (1,1)-entries of
C*(8x) comprise a C*-algebra contained in B(H), and so do the elements of the
(2,2)-entries. Thus, C*(S,) has the form

cso={(5 })inehven sye X},

where A, B are C”-subalgebras of B(H) and X C B(H) is a subspace.
We first prove a lemma which will be used in Section 4 too. For an abstract

operator system S, we use C2(S) to denote the C*-envelope {in Hamana’s sense)

of S.
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LEMMA 1. Let 71 C*{(Ss) = C2(S8) be an onto *-homomorphism, which is
an extension of the canonical map Sx v 8. Then © must be of the form

a z mi(a) 7rz(:c)> (a a:) .
w = , . € C*(8),
(G 3 )=(r ma) (o 3)eos
where w1, 74 are onlo *-homomorphisms.

Proof. We suppose C2(S) C B(K). Let Ej;’s be 2 x 2 matrix units. It is
easily verified that 7 (E;;) and 7 (E3;) are orthogonal projections in K such that
‘F(EU)W(EZZ) =0 and K(Eu) + 'R‘(Egz) = Ix.

Let w (Ey;) = Pk,, ™ (E22) = Pk,, where Pk, , Pk, are the projections onto
the subspaces K;, K3 respectively. Then K1 L Ky and K1+ Ky = K1 @ K2 = K.
With this decomposition we can write 7 (Ey;) = E13, 7 (E2) = Eay. Now,

7r(En ® a) = ‘K(EH(EU ® a)Eu)
= Eun(E11Qa)Ey
& E11 ® m(a).
Similarly, = (E12 ® x) = Fi2 ® 7|‘2(:E), T (E21 ® y*) = Fy ® 7r3(y)* ; W(Ezg ® b) =
Eo; @ ma(b) for some ma, w3, ms. All of my, 72, 3,74 are linear onto since 7 is.
Furthermore, it is easy to verify that they are x-multiplicative in the following
sense:
(i) i (aa’) = my (@)m ()
(i1) ma(bb') = wa(b)ma(¥');
(iii) mi(a)ma(x) = ma(azx);
(iv) ma(e)ms()" = malov);
(v) m(a*) = ma)"s
(vi) ma(b*) = ma(b)”;
(vii) ma(z*) = 73(z)™;
(viit) ma(y*) = m2(y)*. W

The above ideas necessitate the following notation.

DEFINITION 1. Let
Cliiy(S) = ExC*(8)Ejj, Clupy(S) = BuCe(8)Ej;, Li=12

We call C;'(m)(S), ;(2,2)(8) the row, respectively column C*-envelopes of V
respectively.
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LEMMA 2. Let V C B(H) be an operalor space, then
Cany(8) =C*(VV™), Chp(8) =CT(V*V),
where VV* = {vw*, v,w € V}, V*V = {w'y, v,w e V}.

Proof. Let’s first note some trivial facts. If A is a set of operators, then
C*(A) = d ({)\+Za1a2~-an XEC, ay,as...,0, € AUA*}) .

If B is another set of operators, A C C*(B), B C C*(A), then C*(4) = C*(B).
We now prove the lemma by analyzing the entries of any finite product of
elements of §. Claims :
(1) The elements in (1,1) entry are in C*(VV'*);
(ii) The elements in (2,2) entry are in C*(V*V);
(iii) The elements in (1,2) entry are of the form
Z a;v;, a;€C'(VV"), v eV,
finite sum
(iv) The elements in (2,1) entry are of the form
> wibi, beCHV'V), wmeV.
finite sum

The verification is an induction argument over the number of factors of the

A .
product. If n = 1, then ( . v) clearly satisfies the claims. If the claims are
w* op

Aoy e vk {a b
(wi’ #1)”.(102 #k) - (C d)'
Then forn = k41
(/\1 Ul)“. (/\k Uk) (Ak+1 vk+1)
wi ko) \Wig o Mepr
= (2 o) i )
“\e d) \wiy e
(/\k+1a +bwy,, avgy+ uk+1b)
Ak+1c + dw;c'+l CUk41 + yk.,.,d '
Taking the induction hypothesis into account, we easily see that all the four entries
satisfy the claims. Consequently, the (1,1), (2,2) entries of C*(S) are contained in

C*(VV?*), C*(V*V), respectively.
Conversely, by the facts :

w* 0) (0 v 0 0 0 0y _ (0 0 0 v
( 0 0)“(0 0) (w" 0)’ (0 w*v)_(w" o) (0 0)
we easily get that C*(VV*), C*(V*V) are contained in the (1,1), (2,2) entries
respectively, 1

true for n = k, let
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DEFINITION 2. We let
Ce(Vv™) = Cz:(l,l)(S)’ Ce(V*'V) = ;(2,2)(5)
denote the C”-algebras generated by VV* and V*V, respectively.

THEOREM 1. (Universal property) If k : V — B(H) then there is an onto
*-homomorphism 7 : C*(k(V)&(V)*) — CXH(VV*) such that n(k(v)a(w)*) = vw*.
Similarly, there is a *-homomorphism from C*(k(V)*k(V)) onto CX(V*V).

Proof. Let Il : C*(S,) = CZ(S) be the onto *-homomorphism in Hamana’s
sense. Then by Lemma 1, when II is restricted to the (1,1} corner of C*(Sx), it
is also *-homomorphic and onto the (1,1} corner of C(S), and we denote this
restriction by . Now

m(k(v)s(w)*) = T ((w(«og(w)* 8))

()
o3 (3 EYa((C Y -

The proof of the other half is similar. 1

Arveson ([1], [2]) defined the C*-envelope of a unital operator algebra. Let A
be a unital operator algebra, then A 4+ A* is an operator system. It can be shown
that A + A* is independent of the unital completely isometric representation of
A. Indeed, it is known (see [11], 2.12) that if ¢ : B — C is a unital contraction
from a unital operator space B into a C*-algebra C, then the natural extension
@ B+ B* — Cis well-defined and positive. Hence a unital completely contractive
map has a completely positive natural extension. Considering the inverse map,
we see that a unital complete isometry has a completely order isomorphic natural
extension. Thus C}(A + A*) is well-defined and it is defined to be the C*-envelope
of A.

On the other hand, since A is unital, A € AA*, A C A*A. AA” and
A”A are both operator systems. Thus, there is a C*-envelope C7(AA™) (and a
C:(AA)).

ProposiTioN 2. CI(A + A*), CI(A*A) and CZ(AA™) are x-isomorphic.
Proof. For any unital representation p : A — B(H), it can be easily seen

that C*(p(A) + p(A)*) = C*(p(A)p(A)*), therefore the conclusion follows. The
proof of the other isomorphism is similar. &
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This proposition says that C:(AA™) ( = C;(A*A) ) is also the C*-envelope
of A. Thus our definition of C*-envelopes for an operator space is consistent with
that of an operator algebra.

An operator system has one C*-envelope which contains the operator system
completely order isomorphically. In contrast, an operator space V has two C*-
envelopes which may not contain V completely isometrically. However, in the next
theorem we will see how to recover for operator spaces the pleasant property of
operator systems.

THEOREM 2. Suppose that an operator space V has a represeniation & such
that 1 € k(V), then C2(V*V) = CZ(VV?*), and they contain V completely isomet-
rically.

Proof. 1t is easy to see by observing the proof of Lemma 2 that C*(Sk) =
Ma(C*(&(V))) since k(V') contains the identity. By Hamana’s theorem there exists
an onto *-homomorphism

# - My(C* (x(V))) = C(S),

where CZ(S) C B(K). As mentioned before, 7 (((1} 8)) and 7 ((8 (1)))

are projections. Let them be Pk,, Pg, respectively, then B(K) = B(K @ K3).

Suppose
_{f0 1 {0 Q .
((60))=(0 5) @mmr

()5 9 e

It is easy to see that QQ* = Ik,, Q*Q = Ix,. This means that @} and Q* are
inverse of each other, which implies that K, K ate of the same dimension, i.e.
B(K) = B(K%) and Q is a unitary. We now build a new *-homomorphism

=(5 060

W(EIJ) - Eij) i) j: }-r 2|

then

It is easily checked that

and that if

W(ov,v_ow,- tlenWoo_(oo
"o o/ \o o) " v, o)/ \w o)
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The above arguments have insured that there is a unital C*-algebra homo-
(%)
T= ,
T W1
and thus C7(S) = My(C*(m1(k(V)))). Hence, CXHVV*) = CXV*V) =
C*(m1(x(V))) which contains a copy x(V) of V. 1

morphism 7, such that

ProPoOSITION 3. If A is a unital C*-algebra, then
C:(AA") = CI(A*A) = A.

Proof. Let k. : A — B(H) be a unital representation of A (as an operator
space) such that ‘

C"(ke(A)re(A)7) = CI(AA") = C7(re(A)"Re(A)) = CS(ATA).
Let 7 : C*(AA*)(= A) — C*(ke(A)ke(A)*) be the *-homomorphism, then = is

one-one since 7| A is a complete isometry. 1

" The author thanks Roger Smith for asking the question which leads to this
proposition.
PROPOSITION 4. IfS is an operator system, then CX(SS*) and CX(S*S) are

both equal to Hamana’s envelope CX(5).

Proof. Let ¢ be a unital complete order isomorphism of S such that
C*(9(S)) = C2(5).

Remark that ¢ is a complete isometry and C*(@(S)w(5)") = C*(¢(S)) = C2(S),
thus by Theorem 1, there is a

T C*(0(S)p(S)") — CX(SS*).

Suppose & is a completely isometric representation of S such that CY(SS*) =
C*(k(S)k(S)*). k is in fact unital by the arguments in Theorem 2. Consequently, &
is a unital complete order isomorphism. Noticing that C*(x(S)x{S)*} = C*(x(S)),
we see that the map 7 is an onto x-homomorphism

™ CI(S) > C° ((S))

which has to be a *-isomorphism.
By a similar argument one proves the other isomorphism. 8
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3. OPERATOR SPACE AND MORITA EQUIVALENCE

There are more facts connecting the four entries of C*(S). For convenience, in
this séction we let A = Cf; 1y(S), B = Cp 9(S), X = Cfj 5(8), then X* =
Cl1,2)(8)" = C(y,1)(S). By the observation in the proof of the previous lemma, we
see that X is a left A right B bimodule. And hence X* is a left B right A bimodule.
This leads to the question of whether or not A and B are Morita equivalent. The
answer turns out to be “yes”, with a minor amendment of A and B.

EXAMPLE. Let V = R, be the n dimensional row operator space. If we
assume the representation

A Xy ... ITn

u 7 0 )
S= . ) A)pec) zayeln 5

yn 0 . ’_‘

then C*(S) = CZ(S), C(1,1)(S) = €, C(5,5)(S) = My Therefore C1.1y(S) and
C{z,z)(s) are Morita equivalent.

Indeed, since Cf, ,y(S) contains all rank one elements of My, Cl2,2)(8) = Ma.
If C2(8) = C*(S:), let 7 : C*(S) = C*(S:) be the onto x-homomorphism. = is
obviously one-to-one onto the (1,2) and (2,1) entries because C(*lyz)(S) has the
same elements as the (1,2) entry of S, and a similar thing for the (2,1) entry. = is
one-to-one on the (1,1}, (2,2) entries since C, M, have no non-trivial ideal.

The following is an example where C'("l 1) and C'("2 ;) are not Morita equivalent.

EXAMPLE. Let V = R, be the infinite dimensional row operator space. We
can prove that

A Iy Tz I3
Yi u 0 0
§={]w 0 nx 0 , X pEC, z, yel
0 0

satisfies C'('m)(S) = CI 4+ K, where K is the set of all compact operators. As in
the above example, we can show that C*(8§) = C:(S). It is well known that C is
Morita equivalent to K, but not to CI + K.

In fact c(*1,1)» C(*z,z) are “almost” Morita equivaleni. As a matter of fact we
do not have to require that they contain units.
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LEMMA 3. Let V C B(H) be a concrete space of operators. Let
V:{(O* v)’ v,w”EV}
w0

Cti,n(V) = CG(VV™); Clyny(V™) = C3(V™V)

then

and
Cfl,z)(—v—): C(*L,z)(s) X, C(z 1)( ) C(z 1)(3)

Here C§(S) denotes the possibly non-unital C*-algebra generated by S. The
proof is similar to that of Lemma 2, we omit it.

For convenience, we let Ay = C5(VV*), Bo = C§(V*V). Then X =
C(*l'z)(V) (X* = CEM)(V) ) is an Ao-Bg (Bo-Ag) bimodule. We now define an Ap-
valued inner product (v, w)a, = vw*, and a Bo-valued inner product (v, w) = v*w,
where v, w € X. Then it is easy to verify that

(i) (z,2)a, 2 0, (z,2)5, 2 0;

(i) {2, 94, = (¥ 2040, (2,05, = (¥ 2)B0i

(iii) for any a € Ag, b € By, {az,y)a, = a{z, ¥} 4o, (2, ¥0)B, = (Z,¥)B,b;

(iv) (2, ¥) 402 = 2{y, 2) Bo;

(v) (zb,zb) 4, < ||B]|? < 2,2 > 4,, {az,az)p, < ||a||*{z, z) 5,

THEOREM 3. Let V C B(H) be a concrete operator space. Then C5(VV™)
and C5(V*V) are Morita equivalent.

Proof. By the above remarks about the inner products, the only thing left
to verify is that

(1) {Z Ty, T, i €X, n= 1,2,...} is dense in Cg(VV™);

){Z:c i, T, wE X, n=1,2,. } is dense in CH{V*V).

But (1) contains VV*, and (2) contains V*V. So, the closure of (1) is a
C*-algebra containing Cg(V V™), and the closure of (2) is a C*-algebra containing
Cg(V*V). Consequently, C3(VV*) and C5(V*V') are Morita equivalent. 1

The significance of this thgorem is that from any operator space V, we can
always construct a pair of C*-algebras which are Morita equivalent to each other.
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4. REPRESENTATIONS OF MIN(X)

For any Banach space X, there are two special operator space structures MIN(X)
and MAX(X) that can be assigned on X. See [3], [12] for definitions and properties.
Looking at the definition of its matrix norm, it is not hard to see that MIN(.X)
can in fact be regarded as a space of functions defined on the unit ball By(X') of
X', where X’ is endowed with the weak*-topology.

In this section we suppose that dim(X) is finite. We are going to compute

C: (MIN(X)MIN(X)) (= C:(MIN(X)MIN(X))})

and then we consider whether or not MIN(X) can be imbedded into a finite di-
mensional C*-algebra. We prove that the “finiteness” is somehow related to the
number of extreme points of By (X').

Following the notation before, we still set

m  s={(J 1), auec .9 € MINGO) | € Ma(C(B (X))

NoTATiON. Let X be a Banach space, then we will use the following notation
in the sequel: B;(X) = unit ball of X; X; = unit sphere of X; E(X) = the set of
all extreme points of B;(X); T = unit circle in C.

It is easy to see that

(i )llmin = sup {[|(f(z:;))lln = f € X1}
= sup {[[(f(z:5))lln = f € HE(X'))}.

Thus we now have obtained another two natural representations of MIN(X):

Ky : MIN(X) = C(X]),
K2 : MIN(X) — C(cl(E(X"))).

In this section we use k1, k5 to denote these two representations only.

DEeFINITION 3. For any Banach space X, we define a relation on X, as
follows. For any z,y € X, & ~ y if there is an e € T such that = = ¢y,

Since T is a group under multiplication, we easily see that ~ is an equivalence
relation. We will use S/ ~ to denote the quotient space of S induced from the
equivalence ~.
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PROPOSITION 5. If E(X')/ ~ has n elements, then MIN(X) can be imbedded
into M,.

Proof. Let z{,...,z;, be all the inequivalent extreme points. Define & :
MIN(X) — M, by
f(=1) 0
x(f) = .
0 f=)
Then )
I(=(fi; Dlln = [|(diag{fi; (1), ..., fi(zn) DI
(fii (=) 0
0 (fij(z3))

= max{[|(f;;(=}))ll, 1 <k < n}
= sup{||(fis (=" DIl, ="l < 1}
=)0 w

PROPOSITION 6.  C*(k1(MIN(X))x; (MIN(X))} s x-isomorphic to
C(X1/ ~).

Proof. By the maximal modulus theorem we see that «; : MIN(X)MIN(X)
— C(X1) such that ,(f7) = k1(f)x1(g) is a complete isometry.

For any generator fg € MIN(X)MIN(X),

(f9)(2") = f(e®2")g(e"2") = & f(a)e ™ g(a') = (Fo)(=).

So h(ez’') = h(z') for all @ and for any fixed h € C*(MIN(X)MIN(X)). Conse-
quently, we may regard C*(x; (MIN(X))x; (MIN(X))) C C(X]/ ~).

If ', ¥y € X{ are linearly independent, then there exists f € X such
that f(z') = 0, f(¥') # 0. Therefore (ff)}(z') = 0, (ffYy) > 0. Thus
£1(MIN(X ))& (MIN(X)) separates points of X}/ ~, and therefore

C* (k1 (MIN(X))x1 (MIN(X))) = C(Xi/ ~). 8

Let § be as in (1), 7 : C*(8) — CZ(S) be the onto *-homomorphism. By
Lemma 1, Cyy 1)(8) = 7(C; 1)(8)) is the same as C; (MIN(X)MIN(X)) which is
called the C*-envelope of MIN(X). (By the commutativity, the row and column
C"-envelopes are the same in this case.)
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LEMMA 4. k2 : MIN(X)MIN(X) — C(cl(E(X"))/ ~) defined by
k2(fO)NE) = f(2")g(="), fgeXX
ts a well-defined complete tsomeiry.

Proof. The well-definedness is already seen in the proof of Proposition 6.

lle2(£ DI = sup{lr2(f TYUE), o € N(E(X)/ ~}
= sup{|f(z")g(z")|, ' € N(E(X"))}
=sup{l(f7)(="), lI='ll < 1} = £ 3},
I(r2(£i;35 ) MIn = sup{|J(~2(£i;35)(ENI|, &' € HE(X"))/ ~)
= sup{|I(fi;(=")gi; =N, =’ € HE(X'))}
= sup{l|(i;(=")gi; NI, 12’ < 1}
= (f5; 7 Imin- 8

THEOREM 4. C(MIN(X)MIN(X)) is *-tsemorphic to C(cl{ E(X"))/ ~).

Proof. By Lemma 4 we have a representation k2 of MIN(X)MIN(X) such

that C*(x2(MIN(X)MIN(X))) is commutative. If
7 : C*(k2(MIN(X)MIN(X)}) = CI{(MIN(X)MIN(X))

is the *-homomorphism onto map, then we easily see that CZ{(MIN(X)MIN(X))
is commutative too. Therefore, there is a compact Hausdorff space Y such that

C:(MIN{X)MIN(X)) = C(Y)
*-isomorphically. Hence there is by Hamana ([8]) an onto *-homomorphism
7 Cll(E(X"))/ ~) — C(Y).

It is well known that for such a «, there is a continuous map % : Y — X]/ ~ such
that n* = 7 which means that #(f)(y) = f(n(y)) for all y € Y and
f € C*"(r2(MIN(X))rk2(MIN(X)). n is one-to-one since 7 is onto. If n(Y) is
not onto cl(E(X"))/ ~, let ' be an element in E(X’)/ ~ (notice n(¥) is com-
pact) but not in n(Y'), and let ¢ : X{ — X]/ ~ be the quotient map. Since n(¥’)
is compact, ¢7'(n(Y)) € X{ is a compact set and z' is not in ¢~ (n(Y)). This
implies that z’ is not in the convex hull conv(g~!(n(Y))) because z’ is an extreme
point. And in fact conv(g~!(n(Y))) is also a compact set. Therefore, there is an
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f € X such that Re(f(¥')) < Re(f(z")) for all ¥ € conv(g~!(n(Y))). This implies
that |f(y')] < |f(z')| for all ¥ because f(conv(g=!(n(Y)))) is a disk centered at
the origin. Now

e (FF) = sup{|n(F )(W)|: veY}
=sup{{(fH)(n(w))| : v.€Y}
=sup{|(fH)): ¥ € a7 (n(Y))}
= sup{|f(¥)I* : ¥ € conv(g™!(n(Y)))}
<If&)? < AP = IF7I-

This contradicts the fact that #|MIN(X)MIN(X) is a complete isometry. Thus
E(X")/ ~ (thus cl(E(X'))/ ~) is contained in n(Y). On the other hand 7(Y) is
a quotient of cl( E(X'))/ ~, thus by Proposition 4 we have cl( E(X"))/ ~= n(Y).
This completes the proof. #

THEOREM 5. MIN(X) can be imbedded completely isometrically into My, for
some n if and only if E(X'}/ ~ has finitely many elements.

Proof. The “if” part is proved by Proposition 5. Now the “only if” part.
Let k : MIN(X) — M, be a complete isometry. Then there exists an onto *-
homomorphism

7 1 C* (k(MIN(X))s(MIN(X))*) — C*(MIN(X)MIN(X)).

Since C*(x(MIN(X))e(MIN{(X))*) € M,, we have that C;(MIN(X)MIN(X}) is
finite dimensional. By the *-isomorphism of the above result, C(cI(E(X’))/ ~) is
finite dimensional and hence E(X')/ ~ must be a finite set. 1

Timur Oikberg recently has proved in his thesis that if MIN(X) is contained
in X(I%) (compact operators on [?) completely isometrically, then X can be imbed-
ded into some finite dimensional [ isometrically. The basic tool of his proof is
some Banach space techniques. Here we indicate how to prove this result using
our previous two theorems. Since MIN(X) C K,

C*(MIN(X)MIN(X)) C K+ CL
There is an onto *-homomorphism

7 : C*(MIN(X)YMIN(X)) — C(l(B(X"))/ ~) (= CZ(MIN(X)MIN(X)) ).
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If £(X')/ ~ is an infinite set, choose an f € C(cl(B(X’))/ ~) such that the
spectrum o(f) is an infinite set bounded away from 0. Since 7 is onto, f = n(T) for
some T' € C*(MIN(X)MIN(X)). Then o(T) 2 o(f) which is impossible because
T isin K+ CI. This means that E(X’}/ ~ is a finite set. Thus X is isometrically
contained in some {5°.

We now study C*(8) as a C*-subalgebra of M3(C(X|)). We already have
seen what the elements in (1,1) entry and (2,2) entry look like. They are in fact all
the elements f of C*(X}) satisfying f(e'®z’) = f(z'). To characterize all elements
of C*(8), we want to know the relations that characterize C{1,2)(S) and C7, (S ).
By observing the proof of Lemma 2, it is easy to sec that any element f € C(I,Z)(S)
satisfies

f(eiam:) — eiﬂf(x/) elf €T, ' € X;,

and any element g € C("Q.I)(S) satisfies
g(e?z) = e ¥g(z") P eT, 2 eX]|.

The following proposition proves that C'(1 2)(S) and C l)(.S') contain exactly all
those kinds of elements respectively.

ProrosITION 7.

C*(Sx,) = {({ Z) € My (C(X1)):

f el 'y = f z’ , g(eiamf) — g(xf), ) , ,
hEe"’ ’3 = eigh()a:‘), I(e?) = e~ "i(z"), CeT, oe Xl}'
Proof. Suppose h € C(X}) such that h(e'®z') = e®h(z’). Let f1,f2,..., fm
be a linear basis of X, and U; = {' € X{, fi(z') £ 0}, i =1,2,...,m. Then
{U:i}1L, is an open covering of the compact Hausdorff space X{. If ¢ is the quotient
map with respect to Definition 3, then {g(U;)}2, is an open covering of X}/ ~.
Let {a;}72, be a partition of unity subordinated to {g(U:}}™, then {a;}, can be
considered as a partition of unity subordinated to {U;}™, with {a;}™, C C(X}).

Define
oy /
hi(z") {%;%h(m) z' € Ui

otherwise.

Then {h;}%, are continuous functions in C*(x;{MIN(X})«x;{MIN(X))). Notice
that

=Y filz)hi(z")

i=1]
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0 R\ _ (0 YAk Sk 0\ [0 f
(0 0)‘(0 o )‘g(o 0><0 0)‘

So h is in the (1,2) entry of C*(Sy,).
In a similay fashion we can show that any function ! satisfying I(e'?z’) =
e~ ®i(2) is in Cfy (S, ).

PROPOSITION 8. Lel

C= { ({ ;‘) € My(C(E(X"))) :

f(eio :c’) = f(:r'), g(eio :z:') = g(z'), i ' '
h(eig:c’) — ei”h(:c’), l(eiexl) — e—iﬂl(zf)) eo € Tu LS CI(E(X ))}

Then C2(S) and C are *-isomorphic.

Proof. Let m : C +— CZ(8) be the onto *-homomorphism in the sense of
Hamana. By Theorem 4, 7 is one-to-one when restricted to (1,1) or (2,2) entries.

e ([
(7 ) =+(C (D)

Hence ff = 0, ie. = 0. So 7 is one-to-one when restricted to {1,2) entry.

Similarly 7 is one-to-one when restricted to (2,1) entry. We conclude that 7 is a

#-isomorphism. 1

The (1,1) and (2,2) corners of CZ¥(S) are actually both *-isomorphic to
C(cl(E(X'))/ ~). This makes it natural to try and represent C¥(S) as a sub-
algebra of My(C(cl{(E(X'))/ ~)). In the following results we discuss when this is
possible.

THEOREM 6. Suppose that there is a continuous function s : {E(X’))/ ~
= cl(E(X')) such that q o s = iq(g(xr))/~, the identity map on cl(E(X'))/ ~.
Then CZ(S) = My (C(c(E(X")/ ~)).

Proof. Let m: C3(8) — Ma(C(cl(E(X'))/ ~)) be defined by

((05)=(5%0) (F))eaw
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To verify that 7 is *-homomorphic is trivial. One-to-one : If

(fos hosY _ (0 0)

los gos/ \0 0/

then f(s(2')) = 0 for all & € cl(E(X'))/ ~. By the property f(e'®z’) = f(z')
we get f(z') = 0 for all z € cI(E(X')), i.e. f = 0. Similar arguments prove that

g=0, h=0,{=0. Onto: Let (';: g) be any element in Ma(C(cl(E(X')))).

Let f(z') = f(&'), 9(2') = §(&), h(e?s(&)) = &PR(F'), I(e5(3")) = e~ I(#') for
all e’ € T and 2’ € cl(E(X')). Then

(e e (65 5)
(3 4~ o

CoROLLARY 1. If E(X')/ ~ is finite, then C%(S) = Ma(C(I(E(X"))/ ~)).

PROPOSITION 9. If CZ(S) is x-isomorphic to Ma(C(Y)), then Y is homeo-
morphic to cl{( E(X'))/ ~.

Proof. The center of C2(S) is

{(5 ?) | feC(E(X')/,.)}gc(dw(x’))/fv),

while the center of M,(C(Y)) is clearly isomorphic to C(Y). Therefore
c(E(X'))/ ~ is homeomorphic to Y. &

5. PARTIAL ORDERING OF REPRESENTATIONS

In this section we study the problem of finding “canonical” operator systems as-
soclated with a fixed operator space. Given a representation & : V +— B(H), we
use SP; to denote the operator system spanned by x(V), i.e.

SP, = {M + k(v) + s(w)*, XEC, v,w € V}.
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We start our discussion by observing that for a fixed V, SP,, and SP,, may
be different operator systems (i.e. they may not be completely order isomorphic)

for different x; and k. For example:

A
Let V' = C (the usual complex plane), 51(}) = A, ko()) = [g 0] , then

SP;, = C, and SP,, = {[ﬁ A} ,/\,,u,'yEC}. SP.,, SP,, are clearly not
completely order isomorphic. g

For any vector space V, we abstractly define another vector space V* such
that the map % : v — o* is a conjugate linear vector space isomorphism. Let

V=C@®V @V*. We define a natural extension & of K, &V B(H) via
EA@vew) = A+ &(v) + &(w)*.

DEFINITION 4, Let k1 : V — B(Hy), k3 : V — B(H:},) be two representations
of V. We say that x1 < 3 if there is a unital completely positive map ¢ : SP,,
SPg, such that £ = ¢ o &s.

NoTE. The existence of ¢ means that the map ¢ : A + k2(v) + Kka(w)* —
A+ k1) + K1 (w)* is a well-defined completely positive map. But the abstract

definition is easier to use.

ProprosITION 10. The ordering “<” defined above is a partial ordering on

the set of equivalence classes.

NoTE. Two representations x(, «» are said to be equivalent if and only if

the above ¢ is a complete order isomorphism.

Proof of Proposition 10. Reflexivity is true because the identity map i :
SPx + SPy is unital completely positive. Transitivity follows from the fact that
the composition of two unital completely positive maps is again a unital completely
positive map. Now for the anti-symmetry. I k1 < kg, K3 < k1, let £ = @ o Ko,
Kz = oy, then, K1 = (po) ok, £ = (Yo p)oks. Since the image of £, £ are
dense in SP,, SPs, respectively, we conclude that ¢ o 1 is the identity map on
SPy, and 1 o p is the identity map on SP,,. Hence ¢ = ¢~ ! and ¢ is a complete

order isomorphism. &
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EXAMPLE. If T is an isometry on H and ;, k3 are related by
k1(v) =T k2(0)T veEV

then k; < k,.

EXAMPLE. It is proved in [16] that the map v — g 3 is a complete
isometry from V' into M3(V'). So, for any representation « : V — B(H)
— v [0 &(v)]
R(v) = [0 o | vev

defines a new representation.

In the sense of our partial ordering k, % are not comparable in general. For
example, V = C, the map

l @
(ﬁ 1)H1+a+ﬁ

1s not even positive. This means that the off diagonal representation of V is not
bigger than the identity representation. But we have the following:

PROPOSITION 11. Suppose k), kg are any represcniations of V, then the
- 0 & _ 0 ﬁ,g]
K1 = N S —
Tlo oo >“lo o

The proof of this proposition is similar to that of Proposition 1 which looks
(but is not) more general.

new represenialions

are equivalent.

Choi and Effros ([4]) abstractly characterized operator systems as vector
spaces W endowed with an order on M,,(W) for each n, satisfying certain axioms.
We will use this characterization to prove the main result of this section.

To define an ordering on W as in Choi-Effros’ theorem is the same as char-
acterizing all positive elements of M, (W) for all n. If P, denotes the cone of
all positive elements of M,(W), then we let the pair (W,{P,}5%,) stand for an
operator system W endowed with the order {P,}5,.

Now, for any fixed representation « : V + B(H), we define an operator
system structure on V=C &V @ V* by the following cones:

P = {((/\ij @ vi; Dwij)) € Ma(V) = [N + wlvi) + w(wif)] 2 0},
n=123,....

It is trivial to verify that {P,g")} does satisfy the axioms needed for an oper-
ator system.
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NOTE. Let W, = {(/\ Sv@w) €V A+ r(v) + s(w) = 0}. One thing
to notice is that the operator system (17, {P,gn)};‘;;l) in fact means the quotient
(V/we, (PY,)

It is easily seen that &3 < k9 if and only if P,E?] C P,:;') for all n, if and only
if the canonical map (17, {P,g?) ,;“’:1) — (17, {P,E{‘)}sgl) is completely positive.
Notice that in the implication of k1 < ko from Py, (n) C P, (n) for all n, we need
a well-defined . This is insured because, if A + k2(v) + x2(w)* = 0, then it is
in P 0 (=PD), s0 A + ky(v) + k1 (w)* is in P A (= PEY). Thus A+ k1 (v) +
k1(w)* = 0.

PROPOSITION 12, SP, is completely order isomorphic to (V,{P{™}s2,) .

Proof. Notice that (A @ v @ w*) = A + x(v) + s(w)* is well-defined and
one-to-one when V is considered to be 17/ We. 1

Before proceeding, we first remark that any completely positive map ¢ is
completely bounded and ||¢|lcb = ||| = |le(1)]} (see [11], 3.5). Hence, unital
completely positive maps are completely contractive. The following is well known,
we include it for completeness.

LEMMA 5. A unital linear map between twe operator systems ¢ : S — S
15 a complete order isomorphism if and only if il is a complete isomeiry.

1

Proof. Since both ¢ and ¢~! are completely contractive, ¢ has to be a com-

plete isometry. The converse follows immediately from [11], 2.12. &

We are now going to deal with families of representations of V. For any
operator space V, the class of all representations may not be a set. But all pos-
sible operator system structures on V is a set. So, if we identify the equivalent

¢

representations, the “class” becomes a “set”.

THEOREM 7. Any operator space V has a representaiion « such that SPy is
mazimal in the partial order. We denote this operator system by SPY_ . .

Proof. Let {4} e be the set of all non-equivalent representations of V. For
any a € A, let (V, {P,(c:)},?f:l) be the corresponding operator system structure on
V. Define

PM= (Y PM  n=1,23,....
a€A

We verify that {P{")}%2, will give an operator system structure on V.
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(i) Since each P, (") is a connected positive cone, the intersection P() is

again a connected positive cone.

(i) Let ¥ = (7:;) be any m x n scalar matrix, then

" Py =y (ﬂ P,ET)‘)’) = [ rPiMyc ) P = PO,

aEA aEA aEA

(i)

10 0
0 1 0
00 --- 1 0
00 -« 0 1],.,

is an order unit of M,((V, {P{™}%_,)) for each € A, and P™) C P{™ for all
a, hence the above matrix automatically is an order unit of M,((V, {P™}%_,)).
(iv) That P 0 (=P = {0} is obvious.
(v) To show that each P(™) is Archimedian, notice that

P = {((/\u @ vi; ®w];)) € Ma(V}: (Mij + malvi)+xa{wi;)") 20, aE-A}-

For any (zi;) € Ma((V,{P™}% ), the subscript h means that (z;;) is self-
adjoint, and for any (y;) € P 5f

(=)(yi5) < (z45)

for allt > 0, i.e.
(Ralzi;)) + t{Ralyi;)) 2 0
for all £ > 0 and for all & € A, then (Rq(2i;)) > 0 for any a. So, (z:;) € P(") by
the definition of P(").
Consequently, we obtain an operator system (V,{P{(™}%,). Now let @ :
(V,{P(™)}) — B(K) be a unital complete order isomorphism, then by Lemma 5,

® is a complete isometry. Let k = ®|V, then & is a representation of V and & = @,

and by the construction we see that k, <k forallae A. 1

The following is an example of the maximal operator system spanned by an
operator space.
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EXAMPLE. Let V = MAX(£!), where £} is the n dimensional space with
¢' norm. We claim that the maximal operator system SPY, is the operator
system spanned by n free unitaries. First observe that for any representation
k of MAX(£L), there are contractions T},75,...,T, such that «(e;) = T;, i =
1,2,...,n, where {e;}, is the canonical basis. The T}’s can be dilated by

T; (1-T:1y)3 :
= 1 * y _—_1,2,.-., s
g ((1 _TT)y Ty ) ‘ g

so that the S;’s are unitaries. Observe that

Y aes| =Y Aen
=1 i=1

for any A;, Ay,...,Apn € M,,. So we easily see that the map ¢; — S; (I =
1,2,...,n) is also a representation of MAX(£%), furthermore, the map S; — T;
(i=1,2,...,n)induces a unital completely positive map from the operator system
spanned by {S;}?., onto the operator system spanned by {T;}{, since it is a
compression. Hence the maximal operator system can be attained by unitary
representations (i.e. e;’s go to unitaries).

Now let F,, = C*(Uy,Us,...,Uy), where U;,Uy,..., U, are free unitaries.
Define p : MAX(£L) — F, via

2

plegy=U;, i=1,2,...,n.

Then p is an isometry : for any (A1,...,An) € £}

f:,\.-'U,-
i=1

On the other hand, for any isometry ¢ : £} — B(H) with ¢(e;) unitaries, there is
an onto *-homomorphism ¥ : F, — C*((£})) such that the diagram

”P()‘I; ey )‘ﬂ)” =

<3l = 1A )l
i=1

12
pl NP
o — C*((£,))

commutes, since F,, is free. But a *-homomorphism is necessarily a contraction,
thus p is an isometry. If the above ¢ is a representation of MAX(£}), and since

(eI 2 (i)
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for all (2i;) € Mm(£},}, we see that p is also a representation of MAX(£1). By the
freeness of Fy,, the map

@ (/\0 + Z-\s‘ (ei) + Zﬂiﬁ(ei)‘) = o+ i";“P(ei) + Zﬂiw(ei)'
i=1 i=1 i=1

i= i=1

is well-defined and in fact it is a restriction of the onto *-homomorphism induced
from the canonical map p(e;) — ¢(e;). Hence ®|SP, is unital completely positive.
So, SP, = SPY... 1

THEOREM 8. Let £’ be a representation of V such that SPy is completely
order isomorphic to SPy... Then for any representation x : V > B(H), there is
a Hilbert space K D H and g x-homomorphism 7 : C*(SP,:) — B(K) such that

oc(v) = PH'ﬁ(t})IH ve V.

Conversely, if for a representation «', C*(SPy:) satisfies the above universal
property, then SPy is completely order isomorphic to SPY_ .

Proof. Let SPY,, = SP,, then
() + £'(v) + £ (w)") = A + &(v) + w{w)"

defines a unital completely positive map. By the extension theorem for completely
positive maps, there is an extension 9 : C*(SP.} v B(H) which is completely
positive. By Stinespring’s theorem, there is a *-homomorphism 7 : C2(SPy/) —
B(K) such that &(z) = Pyn(z)|H for all z € CZ(SPY,,). Consequently x(v) =
Pym(v)|H forallve V.

Conversely, if C*(SP,) satisfies the universal property, suppose SPY_ =
SPy:, where £’ : V — B(H). Suppose K 2 H and

&'(v) = Pgm(v)|H wveV

where 7 : CZ(SPc) — B(K) is +-homomorphism. Then obviously Pyw(SP.)|H =
SPy:. Thus SP, is completely order isomorphic to SPY,.. @

There is also a natural question about the existence of minimal operator
system. The following example gives a negative answer to this question.
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ExAMPLE. Let V = C. Let « be a minimal representation of V. k() = A

defines another representation of V. Then map A ~— (A} is a unital completely

positive and onto. On the other hand, x2(A}) = —A also defines a representation

of V, but —A ~ &(A) can not be a positive map. Hence C can have no minimal

representation.

W N e
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The author thanks the referee for the helpful criticisms.
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