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1. INTRODUCTION

Let L2(D) be the Bergman space on the open unit disk D. Thus L2(D) consists of
analytic functions f in D with

A1 = [ 17:)P 44(2) < +oo,
D

where dA is the normalized area measure on D. The Bergman projection, denoted
P, is then the orthogonal projection from L%(D,dA) onto L2(D).

For f in L*®(D) we consider the Toeplitz operator Ty : LZ(D) — LZ(D)
defined by Trg = P(fg), g € LI(D). It is clear that Ty is bounded with ||T}|] <
|| fllos. A natural and fundamental question arises: When is the Toeplitz operator
Ty compact on LZ(D)?

Although a complete answer to the question above is still lacking, several
special cases have been well understood; these earlier results (outlined below) also
serve as the motivation for the present note.
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First, if f : D — C extends continuously to the maximal ideal space of
H*(D), then T} is compact on L2(D) if and only if f € Cy(D); see [1]. Here the
space Co(D) consists of continuous functions g in D with g(z) = 0 as |z —17. In
particular, if f extends continuously to the closed disk D, or if f is harmonic in
D, then T is compact on L2(D) if and only if f € Co(D).

Second, if f > 0, then the following conditions are equivalent (see {3], (7] or
8)):

(i) Ty is compact on L(D).

(i1) Fisin Co(D), where

a1
foy = g S/ f(w)dA(w), zeD.

Here
S, ={weD: |z < |wl< 1,|argz — argw| < 2n(1 — |2|)}

is the Carleson square at z and |S,| is the d A-measure of S,.
(iii) f is in Co(D), where

|21)?

flz) = f flw -—_|4dA(w), zeD.

The function f 15 called the Berezin transform of f.
(iv) For every (or some) 0 < r < 1 the function f is in Co(D), where

fi) = f f(w)dA(w), z€D.

<r}

is the pseudo-hyperbolic disk “centered at” z with “radius” r.

Third, if ¢, is the Mobius map of the disk that interchanges the origin and
the point a, then T} is compact if and only if {|P(f o wa )|l — 0 as |a| — 175 see
[5]. Although this characterizes the compactness of T for arbitrary f € L*(D), it
is of limited use because the condition involved is hardly checkable except in very

ID(Z Nl

Here

1—zw

D(z,r) = {wED:

special cases.

In this note we look at another special class of bounded functions in D,
namely, the class of bounded radial functions, for which we shall be able to char-
acterize the compactness of Toeplitz operators in terms of a geometric condition.
The following is our main result.
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THEOREM. Let f be a bounded radial function in D. Then the following
conditions are equivalent:
(i) Ty : LE(D) — L2(D) ts compact.
(i) f(z) —0asjz]—1".
(i) = ff(t) dt - 0asx— 1~

2. TWO TAUBERIAN THEOREMS

The proof of our main theorem will depend on two Tauberian type theorems which
we prove in this section. The quantities f( z) and t— f f(t) dt are certain averages

of f, so Tauberian theorems naturally play a role in the study of them. After all,
Tauberian theorems are most effective in dealing with averages.

LEMMA 1. Suppose A 2 0 and
: 4\ n _
tl_l,';n_(l t) ,,Z:%ant 0
Ifan 2 —C(n+1)*~1 for some constant C > 0 and all n 2 0, then

Z
k= =0.
n+

i oo

Proof. . This is well-known; see page 32 of [4]. 1

THEOREM 2. Suppose f € L°[0,1) and

1
an(f)=(n+1) /f (r)r" dr, n 0.
0
Then an(f) — 0 as n — +oo tf and only if

hm 1-t)? E(n + Dan(fHt" =

Proof. Since
oo
(1= (n+ 1)t =1

n=0
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for every t € [0,1), an easy &-6-N argument shows that a,(f) — 0 (n — 400)

ll]‘lplleS
lllll 1 - t E n + 1 (1 i )f, —_ 0-

To prove the other implication, we need to use Lemma 1. So assume

o0

Jim (1 - 2 (n+1)an(f)1" = 0.

n=0

Rearranging terms, we obtain

Jim (1-¢) [ﬂo(f) + [0+ 1an(f) - neas(f)] t"] =0.

n=1

~ Recall from the definition of a,(f) that

1 1
(v + Dan(f) = nans(f) = (v D [ 16)5m dr = [ syt dr

=@+ 1) [ $)rdr o [ g0 -
0 0

Elementary calculus shows that the above is bounded in n if f is bounded. Using
Lemma I (with A = 1) we see that the condition

‘l_i'ql_(l —t)? i(nﬁ- Da(f)t" =0

n=0
implies
ao(f) + 3 [(k + Dar(f) — kar_1(f)]
hm . k=1 — 0,
n—+4co n+1
or
WL, () =0

This finishes the proof of the theorem. 1

LEMMA 3. Let Ky, K; € L'[0,+00). If

+00
j K;(t)t'=dt #£0

0
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for 7 =1,2 and all real z, then the two conditions

+00
hm / Ki(t)g(et)dt = 0, llm / Ks(t)glet)di =0
)

are equivalent for g € L*[0, +00).

Proof. This is a version of the Tauberian theorem of Karamata-Wiener. For
example, it is a consequence of Theorem VIII in [6] via a logarithmic change of
variables.

THEOREM 4. Suppose f is in L°[0,1). Then

11m —/f(t)dt =0
if and only if

1
nl]»Too(n + 1)/f(t)t dt = 0.
0
Proof. Let
1
hiz) = ﬁ/f(t) di, z €[0,1).
An application of Fubini’s theorem shows that

1 1
(n+2){(n+ 1)/h(;c) (1 —z)dz = (n+ Q)ff(t)t“‘H dt
0 0

for all n 2 0. This clearly gives the “only if” part of the result.
To prove the “if” part of the desired result, we shall need to use Lemma 3.
Since f is bounded and the L(0, 1}-norm of t" — ¢"*1 is O(Z;), the condition

1
nkTm(n+l)/f(t)t dt =10
]

is equivalent to (just compare ¢* and t” for n < s < n + 1}

s—+o00

1
lim s]f(i)ts dt = 0.
0
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Changing variables, we get

sjf(t)i’dt:s/lf(l—t)(l—t)’dt
-[r-9(-9 o

fa-1v, 0<tg1
g(t) =
0, t>1,

K. (D)g(et) dt,

a\-é.

where £ = 1/s,

and
(1-et)e, 0<igt
K.(t)=
0, t> 1.

Since 0 € K.(t) € e~*, dominated convergence implies that K, (t) — e~ in

L'[0,4+00) as € — 0*. Therefore, the condition

1
s_lgrllms/f(t)t dt =0
¢

1s equivalent to

li “tg(et)dt = 0.
Jim [ e g(et)

O'\-"‘-é-

Similarly, the condition

lim —/f(t)dt—()

T—1-
is equivalent to

hm

£—0

X[o,1)(t)g(et) dt = 0.

o&____ﬁ.é.

The desired result now follows from Lemma 3. 1
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3. PROOF OF THE MAIN THEOREM

We now begin the proof of our main result. First note that when f is radial, the
Berezin transform of f can be rewritten as

F(z) = (1= |2|?)? _‘—fﬁvzdﬁé;f)
D
o0 2
= (1= B [ )| S+ 02| aa)
o n=0

. 1
= 2(]_ — |z|2)2 z(n + 1)2|z|2"/f(r) p2n+l gp
n=0 s

¥

==Y+ 1)[z[2“/f(\/}7) " dr.
n=0 0

Let f*(r) = f(3/7), 0 < r < 1, and apply Theorem 2. We see that f(z) — 0 as
|z| = 17 if and only if an(f*) — 0 as n — 400, where

1
an(f*)=(n+ 1)/f*(r)r" dr, n>0.
0

On the other hand, the following functions constitute a natural orthonormal
basis for L2(D):
en(z) = vVn+12", n=101,2,....
It is easy to check that Ty is a diagonal operator with respect to the basis above

when f is a radial function. In fact, the diagonal elements of Ty under the basis
{en} are given by

(Tyensea) = (n+1) [ (/)" dr = an(f").
0

Therefore, for a radial function f the operator 7y is compact on L2(D) if and only
if a,(f*) — 0 as n — +o00. Combining this with the previous paragraph we have
proved the equivalence of (i) and (ii) in the main theorem.
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Finally, using Theorem 4 and the remark in the last paragraph we see that
Ty is compact if and only if

lmlrl_ -—/f‘(t) dt =
Since f is bounded and

1 i 1
_‘"1_12/f'(t)d’= 1+2¢5 1_1ﬁ/f(t)(t-l)dt+l_lﬁJ[f(t)dt ,
T \/; =

we see that the first equation in this paragraph is equivalent to

lim -—-—/f(t)dt-O

z—1-
This proves the equivalence of (i) and (iii) in the main theorem.

4. CONCLUDING REMARKS

It is easy to see that our result alsc holds for weighted Bergman spaces on the open
unit disk with radial weights like (@ + 1)(1 — [2|?)®, @ > —1. Our result also holds
for Toeplitz operators on the Fock space (see [2]) with some obvious adjustments.

Our main theorem also suggests some natural problems. For example, we
can ask whether the requirement f € L°°(D) is necessary. We can also ask the
companion question for boundedness of Toeplitz operators with radial symbols.
We can even ask the question of membership in the Schatten ideals for Toeplitz
operators with radial symbols. The conjectures are cbvious, but the techniques
used in this note do not work in the case of unbounded functions.

Research supported by the National Science Foundation.

REFERENCES

1. S. AXLER, Bergman spaces and their operators, Surveys of Some Recent Results in
Operator Theory, vol. 1, (J.B. Conway and B.B. Morrel, editors), Pitman
Res. Notes Math. Ser. vol. 171, 1988, pp. 1-50.

2. C. BERGER, L. CoBURN, Toeplitz operators on the Segal-Bargmann space, Trans.
Amer. Math. Soc. 301(1987), 813-829.



AN APPLICATION OF TAUBERIAN THEOREMS 361

3.

4.

5.

D. LUECKING, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73(1987),
345-368.

A.G. PosTNIKOV, Tauberian Theory and its Applications, Proc. Steklov Inst. Math,
vol. 2, Amer. Math. Soc., 1980.

K. STROETHOFF, D. ZHENG, Toeplitz and Hankel operators on Bergman spaces,
Trans. Amer. Math. Soc. 329(1992), 773-794.

N. WIENER, Tauberian theorems, Ann. of Math. (2) 33(1932), 1-100.

K. ZHu, Positive Toeplitz operators on weighted Bergman spaces of bounded sym-
metric domains, J. Operator Theory 20(1988), 329-357.

K. Zau, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.

B. KORENBLUM and K. ZHU
Department of Mathematics and Statistics
State University of New York at Albany
Albany, New York 12222
U.S.A.

Received June 24, 1994; revised October 17, 1994.



