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COMPOSITION OPERATORS BETWEEN BERGMAN SPACES
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ABSTRACT. We prove a Carleson measure theorem for the Bergman spaces
associated with a strictly pseudoconvex domain in C". We use the theorem
to study composition operators between Bergman spaces associated with a
strongly convex domain in C”.
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0. INTRODUCTION

If Q is a smoothly bounded simply connected domain in C!, then every holo-
morphic self-map of Q induces a bounded (linear) composition operator of the
associated classical (i.e., Hardy or Bergman) function spaces into themselves. A
similar situation does not occur in C” for n > 2 ({4], [15} for example). Sufficient
conditions are known for a holomorphic self-map of the ball in C* to induce a
bounded composition operator on the associated Hardy or Bergman spaces ([13],
[15]). Moreover, there are polynomial self-maps of the ball in C? which induce
unbounded composition operators on the associated Hardy spaces ([4]).

It was shown by MacCluer and Mercer ([14]) that a holomorphic self-map
of a bounded strongly convex domain Q@ C €” induces a bounded composition
operator from the Hardy space HP(Q) into the Bergman space AL _,(Q). (See
Section 1 for precise definitions.) The proof of this resuli uses a well-known Car-
leson measure theorem of Hormander ([5]) about H? spaces associated with a
strictly pseudoconvex domain in C".
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In Section 3 we show that in the same situation the induced composition
operator maps the Bergman space Af(Q) into the Bergman space A%, _,(Q)
boundedly — a result which recovers the known situation when n = 1. Our
proof uses a version of Hormander’s theorem about Bergman spaces associated
with a strictly pseudoconvex domain in C" (see Section 2) which we believe is of
independent interest; it generalizes a result of Cima and Wogen ([3]) which studied
Carleson measures on the ball.

1. NOTATION AND PREPARATORY LEMMAS

Let & € €™ be a smoothly bounded strictly pseudoconvex domain, given by
defining function p : C* — R. For £ € 9Q, denote by T; the complex tangent
space to O at £. As in [B], we define

Ao, t)={z€Q: if dist(zw)<t} (t>0),

fw—g|<tt/2
we’l‘e

and Bq(é,t) = Aq(¢,t) NI We write simply A(€,t) or B(£,¢) when the context

is clear.

LEMMA 1. ([5]) (i) If ¢ : 0 — Q3 is biholomorphic then the sels Aq, (€,1)
and Aq,(¢(€),t) are comparable, i.c., there are constants ¢y, cy > 0 such that

Aq, (€, c1t) C Aq,((€),t) C An, (&, cat) VE € 8, t > 0 small.

(ii) We have o(B(£,t)) = t*, where do is surface measure on 9.

For o > 0 and dm = dm, = volume measure in C", we write du,(z) =
a(z)dm(z) = (dist (z, 3Q))*dm(z).

LEMMA 2. Fort >0 small, we have po(A{£,1)) = tetn+l v € Q.

Proof. For s > 0, let Q, = {p+s < 0} C . If s is sufficiently small,
the projection II : 9Q, — 8Q along inner normals to 9% is well defined. By
Lemma 1(i), and Narasimhan’s Lemma ([6]}, A(£,t) is comparable to Q(&,¢) =
{z € B,(£,t) : 0 < s < t}, where B,(£,t) = Bq,(II"1(£) N 892, t).

Thus

t t

HalA(E, 1) = 1o Q(E, 1)) = / / d2(2) doq, (z) ds = / 5 / dog, ds

0 B, o B,
1

= /s"‘[(l +0(s))t]"ds by Lemma 1 (ii)

0
=~ tn+a+1
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The constants are independent of £ € Q2. n

Denote by kn the Kobayashi (pseudo-) distance (see [6]) on . For z € Q
and R > 0, let E(2,R) = {w € Q: kq(z,w) < R}. We write £(z) = E(z,1) and
E(z) = UE(w) : B(w) 0 E(z) # 4.

For z € Q near 8Q, denote by P,(ci1da(z), c23/dn(z)) the polydisk centered
at z with radius ¢;dq(#) in the complex normal direction for z, and radii ¢, \/cr(z)
in the complex tangential directions for 2.

LemMa 3. ([7], [11]) For z € @ near 8Q, E(z, R) ts comparable to the poly-
disk P,(c1dqa(2), c2v/da(2)), where c; and c; depend only on R. Thus m(E(z)) =
dati(z).

For p > 0 we define the (weighted) Bergman spaces associated with Q:

42(Q) = {f c H(®) ! AP dpe < +oo}.

2. THE MAIN RESULT

THEOREM 4. Let u be a positive measure on 1. We have

HOAGE, 1)) S el A6, 1) = [ 1P dus [15P dna V5 AO)
n 197

Proof of sufficiency. According to [12] it is sufficient to check the following
conditions:

(i) xE(:)(w) is measurable on Q x €.

(i) m(E*(2)) < m(B(2)).

(iii) d@(u) £ dE(w) whenever u,w € E(z).

(i) If ()P s (m(B(2))~ / |f1P dm.
E(z)

(V) w(E(2)) S pa(E(2)).

Condition (i) holds since kq is continuous on Q x Q. Also, E2(2) = E(z, 3),
and so (ii) holds by Lemma 3. Condition (iii) follows from the triangle inequality
for kq and the following estimate ([1]): Fix zo € Q. There are constants ¢1,c; € R
such that ¢; — % logda(z) < ka(z0,7) € ea— % log dn(z). By the Cauchy formula on
a polydisk, we have [ f(2)|? £ (m(P;))~! [ |f|P dm; then (iv) follows from Lemma 3.

P,
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For condition (v), let z € § near 8. Pick & € 80 so that [§ — z| = da(z).
By Lemma 3, E(z) C A(€,t), where ¢ is proportional to da(z). By hypothesis
we have u(E(z)) < p(A(€,1)) € pa(A(€,1)). Now by Lemma 2 and 3, we have
m(A(€,1)) = t"H = 43 (2) = m(E(z)) and thus pa(A(£,1)) S #1a(E(2)) and we
are done.

We remark that {11] uses Luecking’s Theorem ([12]) in a similar fashion.

Proof of necessity. We first prove the assertion in case €2 is in addition
strongly convex; our proof is motivated by [5]. Fix £ € 8Q. By Lemma 1 and [8],
[9] we may assume that £ = (1,0,0,...,0) and that in a neighborhood U of ¢, Q
is given by z1 > ¢(z2,...,2n) =1 {(z1 = Rez, 22 =Imz,...,2nv = Im z, and
N = 2n), where ¢ is a positive definite quadratic form in z = (22,...,zN), plus
terms which are o(|Z]?). Moreover, we have

(%) f€Qand & =1 £ =(1,0,...,0)

(cf. Lempert’s Theorem 5 in [14}).

For { > 0 the function fi(z) = (1 4+t — 2)~*% is holomorphic on Q; k is a
positive integer to be chosen. We assume that ¢ is small, so that A(£,{) C U. Here
we have A = A(£,t) = {z € @ : |1 — 21| < t}. Therefore

(A, 0) =17 [ dus [1 aus [ 15 dua by hypothesi.
A o

A

Now

/Iftlpd,“asc‘l‘/“-l't—21|—Pkdpa(z)
n

A

i
50+]s°‘/(lxz|+t+ |1 +1|)-kpdan,(z)ds

< x 5)z —po' z)ds
c+oj /(Izl+t+|ﬁ()|) dog,(z)d

<C+] [(t+1ﬁ( )z%)

5C+t""k”/s (1+0(s)) ds
0
SC nkrgett
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where f(s) = 1 +0(s), 7= (z3,...,zn), and 2(kp — 1) > 2n — 2, i.e,, kp > n.
Then by Lemma 2 we have u(A(€,1))$t*T7+!1 = 4,(A(€,t)). The constants
depend continuously on £ € 341.

In case § is merely strictly pseudoconvex, we may still assume (by
Narasimhan’s Lemma) that © has the special form above in a neighborhood U
of a boundary point — except that (+#) may no longer hold. So from here we
proceed as in [5]: we can define functions f; holomorphic on © analogous to those
above, using a solution to the 9 equation on a strictly pseudoconvex domain Qo Q.
The well-known estimate ([6]): u € C'(Q) =

sup ful S [Jul], o + [10ull, o =
op 3 4l 5, + 1B i)

plays an important role. The rest of the argument is the same as in the strongly

convex case. B

3. APPLICATION TO COMPOSITION OPERATORS

Throughout this section @ € C" is smoothly bounded and strongly convex. Fix
zg € Q. For each z € 0 there is a unique extremal map (with respect to kq)
@z : A — 0 such that ¢,(0) = 20, ¢-(1) = z (8], [2]). There is also a map
¥ : Q2 — B (with ¥(z) = 0) called the spherical representation ([10]) which maps
extremal disks ¢,(A) onto slices through the origin. ¥ is a diffeomorphism away
from zg. The spherical representation and the estimate ([8], [1]): da(@(})) = 1—|A|
for any extremal map ¢ : A — Q with ¢(0) = 2 yield the following (cf. [14],
Lemma 1):

LEMMA 5. Let f € LY(Q), with support away from a neighborhood of z.
There is an € > 0 such that

1 2
h/fdﬂa = [Tzn_laé!fo ¢z (re®) d8 de(2)(1 — r)* dr.

Let ¢ : @ — € be holomorphic. The composition operator Cy : H(Q) —
H(Q) induced by ¢ is given by Cyf = fo ¢. Theorem 7 of [14] asserts that
Cs : HP(Q) — AP _,(Q) boundedly. We prove the following companion result.
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THEOREM 6. Cy: AL(S)) — AP

o -

() boundedly.

Proof. The argument is similar to that in [14]; we omit some of the details.
Let ¢(20) = wy, and ¥ = @ + n — 1. By Theorem 4, Lemma 2, and change of
variables, it suffices to show that u., o ¢=1A(£, ) <t*t" T VE € 8Q, t > 0. By
Lemma 5 we have

1 2x
Hyo¢TTA(E D) S /7'2"_1//)(‘_,“) o py(re?)ddda(z)(1 —r)"dr
0

an o

$ [ [ a0 001 = Y dms () doa),

an A

where A is the unit disk in C!. Now by [14], Lemma 6, the sets A(£,t) are
comparable to the sets S(¢,t) = {z € @ : |1 — o7 ! o pe(2)| < t}, where p¢(0) = wo
and pe : @ — Q is the associated holomorphic retraction, i.e., pe o p¢ = pe and
Pe © pe(A) = @e(A) VA € A ([8], [9]). Thus the above integral is nonvanishing if
and only if

$ope(X) €S t) & L~ gt opeodop(N) <t 7(d) € Aa(L,1) = Sa(L 1),

where 7 = (pe_l opeodop,: A — A, 7(0) = 0. Now C; is bounded on AL(A),
from which it follows that pa 0715, (1,t) <¢+2; the constant depending only on
7(0) (see [14], Lemma 3). Thus we have p, 0 ¢~1A(£,t) 72 = to+7+] and we
are done. &
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