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ABSTRACT. We prove a linear extension theorem for continucus finite mea-
sures on preduals of von Neumann algebras. Making use of it, we de-
termine the structure of surjective positive linear isometries between non-
commutative LP-spaces associated with arbitrary von Neumann algebras.
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0. INTRODUCTION

In this paper we determine the structure of surjective positive linear isometries
between non-commutative LP-spaces associated with arbitrary von Neumann al-
gebras, where 1 < p < co and p # 2.

In the classical monograph [3], Banach states a result characterizing surjec-
tive linear isometries on ## and LP{0,1), which can be considered as LP-spaces
associated with von Neumann algebras £° and L*°(0, 1}, respectively.

Lamperti ([18]) completed the commutative cases. Several authors had de-
veloped the theory, Broise ([4]), Russo ([20]), Arazy ([2]), Katavolos ([13], [14],
[15]), Tam ([23]), and there is a complete description of isometries for the case of
semifinite von Neumann algebras in Yeadon ([28]).

On the other hand, after the development of the modular theory, one can con-
struct non-commutative LP-spaces associated with von Neumann algebras which
are not necessarily semifinite. Although there are different methods of construc-
tion, those are by Haagerup [10] (see also [24]), Araki-Masuda ([1]}, Hilsum ([11]),
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Kosaki ([17]), Terp ([25]) etc., it is known that for a fixed von Neumann algebra
those LP-spaces are canonically isometrically isomorphic each other.

Some difficulties to deal with non-commutative L”-spaces associated with
arbitrary von Neumann algebras come from the following facts. Though one
can embed the original von Neumann algebra into its LP-spaces, no one knows
which embedding is most canonical. In other words, there appear highly non-
commutative obstructions such as Radon-Nikodym derivatives, which turn to be
central elements in the semifinite cases. So it does not seem easy to obtain a
common area between the LP-spaces and the original von Neumann algebra, and
it seems that many techniques used in semifinite case are no more available.

We work on Haagerup’s LP-spaces, since those elements are (unbounded) op-
erators, and their polar decompositions give us informations related to the original
von Neumann algebra.

As shown in [26), if there exists a surjective *-preserving linear LP-isometry,
then those von Neumann algebras are Jordan #-isomorphic. In Section 3, we will
obtain the implementation for positive L?-isometries in terms of the above Jordan
*-isomorphism and canonical *-isomorphism arised from the change of states. This
is an affirmative answer to [26], Remark 4.2.

The main step is to show the additivity of the map § which is defined as a
transformation of Radon-Nikodym derivative. Qur tocl is a dual version of the
linear extension theorem for probability measures on projections. This simple
device will be shown in Section 2, and might be interesting itself.

1. PRELIMINARIES

We begin with some basic definitions concerning Haagerup’s non-commutative
LP-spaces associated with arbitrary von Neumann algebras. For details and proofs
we refer to [10] and [24]. Let ¢g be a fixed faithful normal semifinite weight on M
acting on a Hilbert space H. Let {0°}:er be the modular automorphism group
with respect to ¢g. We denote by A the crossed product Mxg«oR, which is a
von Neumann algebra generated by #(z),z € M and A,,s € R, defined by

(7"(’:)‘5)(‘) = Ufg(’f)f(‘!)’ € Lz(R,H), teR,
(A:E)) =€t —5), E€Ll*RH), teR

The dual actions, f,,s € R, naturally extend to automarphisms on /(/'+, which is
the extended positive part of A (cf. [8], Section 1). For each normal weight ¢ on
M, we denote by ¢ the dual weight of p on A. It is well-known that there exists
a unique faithful normal semifinite trace 7 on A characterized by the Connes’
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cocycle (D@g : D7)y = At € R, and 7 satisfies 708, = e™*7, s € R (cf. [9],
Lemma 5.2).

Haagerup’s L”-spaces are realized as subspaces consisting of measurable op-
erators with respect to this trace 7. A densely defined closed operator a affiliated
with A, with its domain D(a), is said to be r-measurable if there is, for each § > 0,
a projection e € N such that eL?(R,H) C D(a) and 7(1 — ) € §. We denote
by N the set of all 7-measurable operators, which becomes a complete Hausdorff
topological *-algebra under the strong operations in the measure topology. For
any subset S of A, the set of all selfadjoint (resp. positive selfadjoint) operators
in § shall be denoted by Ssa (resp. Sy).

Now the dual actions &, s € R, are extended to continuous *-automorphisms
of N. For 0 < p < oo, the Haagerup’s LP-space is defined by

LP(M;p0) = {a eN; 8,(a) = e % a,5 € R},

and simply denoted by L? (M) whenever it is not necessary to indicate the weight
@o. For each normal weight ¢ on M, we simply denote by

de

hy, = ==

¥ dr
the non-commutative Radon-Nikodym derivative of ¢ with respect to 7. It is well-
known that ¢ € M. 4, which is the set of all normal positive linear functional on
M, if and only if h, is T-measurable. The mapping ¢ — h,, is extended to a linear

order isomorphism from M, onto L!'(M), and so the positive linear functional tr
on L(M) is defined by

tr(hy) = 9(1), @ € M.

For 0 < p < oo, the (quasi-)norm of LP{AM) is defined by ||a|l, = tr(|a|P)!/?,a €
LP(M). When 1 < p < oo, LP(M) is a Banach space, and its dual Banach space
is LI(M) with 1/p+ 1/q = 1 by the following duality:

{a,b) = tr(ab) = tr(ba), a.€ LP(M), be LI(M).

Note that for any a = u|af € L? (M) with its polar decomposition, u belongs to
M and |a| belongs to LP(M);. Also for any @ = ay — a_ € LP(M)s, with its
Jordan decomposition, one has a4, a- € LP(M),.

We have already shown the following theorem by making use of the equality
condition for the Clarkson’s inequality.



374 KE11cHI WATANABE

THEOREM 1. ([26], Theorem 3.6) Let 1 < p < oo and p # 2. Let My and
M, be o-finite von Neumann algebras. Let g (resp. o) be a fized faithful normal
state on M, (resp. M3). Let T be a *-preserving linear isometry from LP(M;; o)
onto LP(Mz; o). Then there ezists a Jordan *-isomorphism from M onlo M,
satisfying J(s(a)) = s(T(a)), a € LP?(M; po)sa, where s(a) denoles the support
projection of a.

Now there are two faithful normal states on Mg, 1y and pgoJ~!. We denote
the crossed product with respect to ¥ (resp. wooJ ™) by Ny, = MaX e, R (resp.
N2 = M2X ;-1 R). For each normal weight on 1) on M3, we denote by P~vo
(resp. ¥~2) the dual weight on Ay, (resp. A2). Let 7y, (resp. 72) be the canonical
trace on Ny, (resp. AN3). Let Ny, (resp. M) be the set of all Ty, -measurable
(resp. T5-measurable) operators on L*(R, ).

Define a unitary operator u on L%(R;H) by
(u€)(t) = (D (poo J=1); Dipo) _,£(t), £€L*R,H), teR.

Put x(a) = uau*,a € Ny. Then x is the canonical *-isomorphism from Ny, onto

N, which is related to change of states from 1 to g o J~. Moreover, k extends

to a x-isomorphism & from /V% onto 2\7'2, and the restriction of & is a positive linear

isometry from LP(Ma; ) to LP (Ma; pooJ 1) (cf. [26], Lemma 2.1, Lemma 2.2).
On the other hand, since

-1 _
U‘PMJ =Jog® o] 1

by the uniqueness of the modular automorphism group, the two W*-dynamical
systems (M, R,o%°) and (M2, R, 0¥o°’ _!) are covariantly Jordan #-isomorphic.
So there exists a unique Jordan *-isomorphism J from N, to N extending J, where
N7 = M ,90R. Moreover, we can extend J to a Jordan *-isomorphism from ,)\71
onto Nz, which is 2 homeomorphism with respect to their measure topologies, and
the restriction of J to LP(M;;po) is a canonical positive linear isometry from
LP{M7; o) onto LP(Ma;pq 0 J=1) (cf. [26], Section 4).

Thus we have a canonical positive linear isometry &~ ! o J from L? {(M1; o)
onto LP(My; ). Our main problem turns to be the implementation T' = &% o J.
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2. CONTINUOUS FINITE MEASURES ON THE PREDUALS
OF VON NEUMANN ALGEBRAS

In this section, we consider linear extension of continuous finite measures on pre-
duals, which is a simple tool for the next section.

DEFINITION 2. Suppose that M is a von Neumann algebra. A map p from
M, 4 to [0,00) is said to be a continuous finite measure on the predual if the
following conditions are satisfied:

(1) plap) = ap(p), @ 20, p € My 4; _

(1) p(3"wn) = 3 p(pn), whenever {@,} is a countable family in M, 4
whose supports are orthogonal each other and the sum " ¢, exists in M, 4;

(i) p(p) < llell, ¢ € Mu 4

(iv) p(r) — p(), whenever {p,} is a family in M, 4 and | — ¢|| — 0.

Recall that a finitely additive probability measure on projections is a non-
negative real-valued function y, defined on P(M) the set of all projections in a
von Neumann algebra M, that satisfies u(e + f) = pu(e) + u(f) when e, f € P(M)
with ef = 0 and p(1) = 1.

THEOREM 3. (Christensen (5], Yeadon {29]) Let M be a von Neumann alge-
bra with no type Iy summand. Let p be a finitely additive probability measure on
P(M). Then there exists a state ¢ on M whose restriction to P(M) is .

The next result yields from the preceding theorem, which is also a dual
version of it.

THEOREM 4. Let p be a continuous finile measure on the predual of a von
Neumann algebra M. Then there exists a unigue element z € My such that

p(e) = p(z), 0 € My

Proof. Step 1: In the case that M is a factor of type I,,, where n # 2 is
a natural number. Let 7 be the canonical trace on M such that (1) = 1. For
p € P(M), we define

to(p) = p(r(p))-

If pp(1) = 0, then we have p,(p)+p,(1—p) = 0. It follows that g, = 0, identically.
Taking z = 0, the assertion holds. So we may assume yx,(1) # 0. Obviously,
(1/1,(1))p2p is a finitely additive probability measure on P(AM). By virtue of the
theorem of Christensen-Yeadon, there exists a positive linear functional ¢, on M
such that

1 1
wp(p) = mw(p) = mp("'(?'))m p EP(M).
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Then we can take a positive element a, € M satisfying p, = 7(a,-). Fix an arbi-
trary positive element b € M. Then b can be expressed in the form 3 «,p,, where
{pn} is a finite family of orthogonal projections in M and @, > 0. Hence we have
r(aph) = T ant(apn) = T on(L/mp(1)p(r(pa ) = (1/up(1))p(r(b-)). This im-
plies that p = u,(1)a,. Moreover, note that [|a,|| = sup{p(a,); ¢ € M. 4, || €
1} < 1/pp(1).

Step 2: In the case that M = B(H), where H is an arbitrary infinite
dimensional Hilbert space. Let Tr be the canonical trace on M. Put A = {p €
P(M); Tr(p) < oo}. Then A is an increasing net, by the parallelogram law. For
p € A, we define p, as the restriction of p to (My). 4, where M, is the reduced
von Neumann algebra. Note that each element in (M), ). is naturally considered as
an element in M., so that the restrictions make sense. It is easy to see that p, is a
continuous finite measure on (M,). ;. For each p € A, set 7, = (1/Tx(p))Tx(p ).
Applying the result in Step 1 to (M,, 7,) and the map (1/p(7p))pp, We can take
a unique element a, € (Mp)4 such that (1/p(mp))pp(p) = w(ap), ¥ € (Mp)a +.
Now put 2z, = p(7p)ap. If p1,p2 € A and p; < py, then, for any ¢ € (Mp,)a 4,

we have w(p12p,p1) = ppa(Prep1) = p(Pr19P1) = ppi{Pr9P1) = (Preep1)(2p,) =
@(zp,). This implies that pyz,,p1 = zp,. For each vector £ € |J pH, define a
PEA
function s by s(§) = (zp€[€), € € pH. If £ € p'H by another p’ € A, we have
(zp€l€) = ((p A D )zpr(p A P')EIE) = (2papr€l€) = (p€|€), so that s is well-defined.
Moreover, we define

o=

3
B(E,n) =7 s +ity), &ne ]
k=0

pPEA

It is straightforward to see that B extends to a sesquilinear form on H xH satisfying
B, )| < |l€]l inll, €&,m7 € H. Hence there exists a unique element z € B(M) such
that (z€|n) = B(£,n), £, 7 € H. It follows from (zp€|n) = (2€(n), £,n € pH that
prp = zp, p € A. Since A increases to.1 in the strong operator topology, pzp — z,
weakly. In particular, =z > 0.

Now we claim that p(p) = ¢(z)}, ¢ € M. 4. Fix an arbitrary element
@ € M, 4. Note that ppp — ¢ in the e(M,, M)-topology. Since norm closure and
weak closure coincide for a convex set in a normed space, ¢ can be approximated
in the norm topology by a family of finite convex combinations 3 cxpipr, where
P € Ajcr 2 0 and 3 ¢ = 1. It follows from p(3 ckpriepr) = (3 ckprepe)(z)
and the continuity of p that p(¢) = ¢(z). Thus the claim is shown.

Step 3: In the general case. Let H be an infinite dimensional Hilbert space
which M is acting on. Define g{p) = p(p|M), ¢ € B(H)« +, where p|M is
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the restriction of ¢ to M. Then 5 is a continuous finite measure on B(H). 4.
Applying the result in Step 2, there exists a positive element z € B(H) such that
pp) = p(z), ¢ € B(H)s,+. Moreover, for any unitary u in the commutant of M,
we have p(u*zu) = plupu*) = p((upu*)IM) = p(eIM) = o(z), ¢ € B(H)e+.
This implies that z € M and p(y) = (p) = ¢(z), ¢ € M. 4. This completes the
proof. 8

3. THE STRUCTURE OF SURJECTIVE POSITIVE LINEAR LP-ISOMETRY

In this section, we shall prove the implementation of surjective positive linear
LP-isometries.

THEOREM 5. Let 1 < p < 00 and p # 2. Let My and My be o-finite von
Neumann algebras. Let @o (resp. v)o) be a fized faithful normal siate on M, (resp.
Mz). LetT be a positive linear isometry from LP (My; o) onto LP(Ma; ). Let J
be the Jordan *- isomorphism from My onio My induced by T' due to Theorem 1.
Let & be the canonical isomorphism associated with the change of states o and
wooJt. Then T equals to the restriction of K~ o J to LP(My; ¢o).

Proof. As in the proof of {26], Theorem 4.1, we define a map 8 from (M) 4+
onto (Ma)« + by the formula T(hwl/”) = hﬂ(g,)l/”. More precisely,

, 1 L
dg\? dB(p)~ve\?
T —_ ={—"1 .
dr d'r%
Then S satisfies the following conditions (cf. {16], Theorem 4.2):
i) Blaw) = aBlp), @ >0, p € (Mi)er;
(ii) B ¢n) = 3. B(pn), whenever {p,} is a countable family in (M). 4+
whose supports are orthogonal each other and the sum 3 ¢y, exists in (M)e 4;
(i) 1B = llell, € (M) ss
(iv) B(es) — B(p), whenever {pa} is a family in (M;)s,4+ and |jor —¢|| — 0.
We shall prove that 3 is also additive. For an arbitrary fixed element y €
(M2)4+ such that [jy|] € 1, we put py(p) = B(e)(y), ¥ € (M1)«,+. Then obviously
py is a continuous finite measure on (Mj)s 4. Therefore, by Theorem 4, there
exists a unique element ¢ = z,, € M, such that py () = ¢(z), p € (M1)s 4. Now
for each pair @, ¥ € (M) +, we have B(p + ¥)(y) = py(p +¥) = (p+ ¥)(z) =

e(z) + (z) = py(p) + py() = Ble)w) + BW)(Y) = (Bly) + B(¥))(y). Since
y € (M2)4,|lyl] €1 is arbitrary, this shows the desired formula

Blo +v) = Blp) + B(h), .9 € M)y
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Then the map B extends to a surjective positive linear isometry from (Mj). to
(Mz2)«. The transposed map ‘B of B is a surjective positive linear isometry from
My to My. It follows from [12], Theorem 7, that *8(y) = *8(1)Jo(y), ¥y € Mo,
where *f(1) is a unitary and Jy is a Jordan #-isomorphism from M, onto M.
Since *B(1) 2 0, we have ‘(1) = 1. Thus ‘3 itself is a Jordan *-isomorphism, so
that

J(s(p)) = s(B(p)) = s(po“B) = (*B) ' (s(¥)), ¥ € (M1)4.

Since s(¢), ¢ € (M}). 4 runs over the whole P(M,), this implies that J = (*8)~".

Finally, for any ¢ € (M1), +, we compute the Radon-Nikodym derivative:

1\ P ~
(Y o[ () _ @™ _ dpo Tty
¢ dr - d7y, - dry,

—1y~2 - 2 -
=g"! (M) =&"1oJ (i—f) =& OJ(h‘P)'

d‘l’2

This implies T = &1 o J on L?P(My; o). This completes the proof. &
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