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ABSTRACT. We discuss contraction operators 7" in the class C.oNA with de-
fect index dr < oo, where A is the class of absolutely continuous contractions
for which the Sz.-Nagy-Foiag functional calculus is an isometry. We show that
these form particularly nice representatives of the classes An n, since their
membership is completely determined by the multiplicity of either the shift
piece of their Jordan model or the unitary piece of their minimal coisometric
extension.
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1. INTRODUCTION AND PRELIMINARIES

Let H be a separable, infinite dimensional, complex Hilbert space and let £(H) be
the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of
L(M) that contains 14 and is closed in the ultraweak operator topology on L(#).
Note that the ultraweak operator topology coincides with the weak* topology on
L(H) (see [12]). This notion of dual algebras was introduced by S. Brown in (8],
where he proved that every subnormal operator has a nontrivial invariant subspace.
The theory of dual algebras has been applied to the study of invariant subspaces,
dilation theory, and reflexivity (see [5]). H. Bercovici, B. Chevreau, C. Foiag, and
C. Pearcy have studied the problem of solving systems of simultaneous equations
in the predual of a dual algebra (see [1], [2], {4], [5] and [11]). Central to this study
have been the classes A,, , (to be defined below) defined by Bercovici-Foiag-Pearcy
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in [4]. In particular, I. Jung ([17]) proved that the classes A,,, are distinct one
from another by studying Jordan models of operators in the classes A, 1 NC. In
another sequence of papers Chevreau-Exner-Pearcy ([10]) and Exner-Jung ([14])
géve some characterizations of the class Ay n,. By improving some results in [17]
the present paper makes connection between Jordan models and this latter work
on Aj x,. We show that for an operator T € C.¢N A with dp < co, membership in
Ap 8, \Ap+1,1 coincides with multiplicity n of either the shift part of the Jordan
model of T" or the unitary part of the minimal coisometric extension of T

The notation and terminology employed herein agree with those in [3], [5],
[7] and [22]. Let C;(H) be the Banach space of trace class operators on X equipped
with the trace norm. If A is a dual algebra, then it follows from [5] that A can be
identified with the dual space of Q4 = C1(H)/1.A, where + A is the preannihilator
in C1(H) of A, under the pairing (T, [L]4) = trace(T'L), T € A, [L]4 € Q4. The
Banach space Q4 is called a predual of A. We write [L] for [L]4 when there is no
possibility of confusion. For z and y in H, we define z® y by (z @ ¥)(u) = (u, y)z,
for all u € H. The cosets [z ® y]4 have been essential in dual algebra work.

Suppose m and n are cardinal numbers such that 1 € m,n € Rg. A dual al-
gebra A will be said to have property (A, ») if every mxn system of simultaneous
equations of the form

(1.1) [z:®yjl = [Lij], 0<i<m, 0<j<n,

where {[L;;]} oSicm is an arbitrary mxn array from Q 4, has a solution {z;}ogi<m,
{yj }o<j<n consisting of a pair of sequences of vectors from H.

We write D for the open unit disc in the complex plane C and T for the
boundary of D. The spaces L? = LP(T), 1 < p < oo, are the usual Lebesgue
function spaces relative to normalized Lebesgue measure m on T. The spaces
HP = H?P(T), 1 < p < o0, are the usual Hardy spaces. It is well-known (cf.
[213]) that the space H™ is the dual space of L!/H}, where H} = {f € L! :

k.4

[ f(e*)ei"tdt = 0, for n = 0,1,2,..} and the duality is given by the pairing
0 .
(£.l9]) = [ fgdm, for f € H*, [g] € L'/ H}.

T

We denote by Ap the dual algebra generated by T in L(H) and by QOr
the predual space Q4, of A7. A contraction operator T € L(H) is absolutely
coniinuous if in the canonical decomposition T' = T1@®T,, where T} is a unitary
operator and 73 is a completely nonunitary contraction, T; is either absolutely
continuous or acts on the space (0). The following is essentially ([5], Theorem 4.1).
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THEOREM 1.1. Let T be an absoluiely continuous coniraction in L(M). Then
there exists a functional caleulus ®p : H®——Ar defined by ®r(f) = f(T) for
every f in H®. The mapping @1 is a norm-decreasing, weak* continuous, algebra
homomorphism, and the range of ®p is weak* dense in Ap. Furthermore, there
exists a bounded, linear, one-to-one map o of Qr into L' /H} such that ®p = ok

DEFINITION 1.2. ([5]) We denote by A = A(H) the class of all absolutely
continuous contractions T" in L{H) for which the functional calculus 7 : H® —Ap
is an isometry. Furthermore, if m and n are any cardinal numbers such that
1 < m,n < Ng, we let A n = Ap o (H) be the set of all T in A(H) such that the
singly generated dual algebra Ar has property (Am,a).

Let H be a Hilbert space and let T' € L(H). We let Lat(T") denote the lattice
of subspaces invariant for 7. For a subspace M € Lat(T'), we write T'|M for the
restriction to M. :

Throughout this paper, N is the set of all natural numbers. For any operator
T and n € N, we let T(") denote the operator T(*) = T @ ---@ T (the n-fold

(»)
ampliation of T). Let S denote the unilateral shift operator of multiplicity one.
We recall that the operator S(6) defined by S(8) = (S*|(H?©6H?))*, for an inner
function 8, is called a Jordan block. Any operator of the form S(6;)® S(62)®--- @
S(6x) & S where 8;,8a, - -, 0 are nonconstant (scalar valued) inner functions,
each of which is a divisor of its predecessor, and 0 < k < 00, 0 € 1 < o0, is called
a Jordan operalor.

Let M and H' be Hilbert spaces. An operator X € L{H,H') is called an
injection if it is one-to-one. A family {X,} of injections in L(H,H’) is called
complete if \ XoH = H'. Suppose T' € L(H) and T’ € L(H'). The operator

T is sald toabe injecled into T” if there is an injection X : H—M' such that
T'X = XT, and we write T" »* T (or T' < 7). The operator T is said to be
completely injected into T if there exists a complete family {X,} of injections
in L(H,H') such that 7'X, = X,T for each «, and we write 7 =% T (or
T <% T'). The operator T is said to be a quasi-affine transform of T" if there
exists a quasi-affinity X : H — M’ (i.e., X is one-to-one and has a dense range)
such that 77X = XT, and we write 7 > T (or T' < T"). Recall (e.g., from
[22]) that the class Cyp. consists of those operators 7' such that {[T"z|] — 0 for all
z € H, and Cq = (Cy.)*. (Also, Ci. is the class those of T" such that ||T"z|| — 0
only for z = 0, and €'y = (C1.)*.) Sz.-Nagy ([21]) showed that for T € C.o(H)
with defect index dp < oo, (i.e.. dp = dim{(J — T*T)3H} < o), there exists
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a uniquely determined Jordan operator Jr = S(8;)® - -- & S(8) ® S such that
Jr <% T < Jp. The operator Jp is called the Jordan model of T.

We will have occasion to use another model for an absolutely continuous
contraction T', namely the minimal coisometric extension of T. We say that an
operator T is an exztension of T if there exists a subspace M invariant for 7" so
that 7'|M is unitarily equivalent to 7. Let Py denote as usual the orthogonal
projection onto a subspace X. We say that T” is a dilation of T (or T is a com-
pression of T”) if there exist subspaces M and N each invariant for 7' and with
N C M so that PpgyT/|M 6 N is unitarily equivalent to T,

With this notation in hand, recall from [22] that an absclutely continuous
contraction 7" has a minimal isometric dilation U7, where minimality is defined
in a natural way. Via the Wold decomposition one has

(12) Uf = Sr® Ry,

where St acting on 87 is a (forward) unilateral shift of some multiplicity and R},
acting on Ry is a unitary operator (of course, either may be absent). One has
easily that (Uf)* = S; ® Rr is a minimal coisometric extension of T*. In the
sequel, we will usually have use for the minimal coisometric extension of 7" and
the minimal isometric dilation of T*; we denote this minimal coisometric extension
Br (so Br = (U£.)*).

The next lemma recalls some familiar facts about the two models, Jr and
By, available for an C.4 (hence absolutely continuous) contraction with dp < co.
The first conclusion below is from [21], and while although the second is surely
not new we include a proof for the convenience of the reader. We denote by B the
bilateral shift of multiplicity 1 throughout the paper.

LEMMA 1.3. Let T be a Cy contraction with dp < 00. Let n = dp. — dp,
where we allow the possibility n = Rg. Then

(i) Jr =S(61)® - - ® S(8:) & S™) with 0 < k < dr, and

(i) Br = Sy @ B,

Proof. To prove (ii) it is convenient to use the machinery of the minimal
isometric and unitary dilations of 7*. Recall from [22] (and in its notation, where
we omit the subscripts T to ease that notation) that 7* has a minimal unitary
dilation U acting on a space K, and a restriction of U, Ut (= B}) acting on a
space K*, is a minimal isometric dilation of 7*. Recall also that K = M(L.)® R
and K* = M4 (L.) ®@ R, where £, is some subspace wandering for U and U+
. respectively.
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There is also a subspace £ with

(1.3) dim(L) = dp»,

and it is known that

(1.4) dim(L.) = dp.

Now from ([22], page 59), since T* € Cy. we have K = M(L) and U a bilateral
shift of multiplicity d7.. Therefore,

(1.5) M(L) = K = M(£,) ®R.

Then note first that U|R must be a bilateral shift, and then from (1.3), (1.4),
and (1.5) that the multiplicity of U|R must be dp+ —~ dr. Since U|K7T yields the
minimal isometric dilation of T, and X+ = M4 (£.)®7R, the result then follows. 8

2. JORDAN MODELS AND MULTIPLICITY

We embark upon a sequence of lemmas needed for the main theorem concerning
C.o operators and Jordan models.

LEMMA 2.1. If T is a coniraction in C.o(M) with dr < oo such that Jp =
S(), then dim(Ker(T*)) = n.

Proof. Since Jr = S, by ([23], Lemma 2.7), we have T € C)o. According
to ([18], Lemma 8), dim(Ker(T™)) = dp+ —dr =n. 1

LEMMA 2.2. LelT be a contraction on H and T € C.p withdp < co. Suppose
that

(2.1) T= (; %)

relative to a decomposition M1 @ Ho such that Jp = SU) and J; = S, Then
rZ>n.

Proof. By (2.1) it is obvious that

(2.2) T = (I 23)

relative to the decomposition H; @ Hz. Lemma 2.1 and (2.2) imply that r =
dim(Ker(7T™*)) > dim(Ker(T*)) = n. Therefore the proof is complete. 1
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LEMMA 2.3. Let T be a C.¢ coniraclion on ‘H. Suppose that

(2.3) T= <€’ ;2)

relative to a decomposition Hy @ Hy such that T; € Cro, 1 = 1,2. Then T € Cyg.

Proof. To show T in C,. it suffices to show that |[T"z|| — 0 implies z = 0,
so suppose there is some z for which this holds. Let z = a® b € H; ®Hy. It
follows from (2.3) that for n € N,

(2.4) T":(T;ln %’;)

Therefore ||T"z||? = ||TPa + D,b||> + ||T2b||? for any n € N. By assumption we
have ||T"z|| — 0. This implies that ||T7'a + Dpb|| — 0 and ||T3b|| — 0. Since
T: € Cho, 1 = 1,2, it is obvious that 6 =0 = ¢ and = = 0, and we are done. 1

The following theorem has as its central ingredient an improvement of {[17],
Theorem 4.5).

THEOREM 2.4. Suppose T € C.oNA salisfies dp < oo, and lel n be a posilive
tnleger. Then the following are equivalent:
()T € Anxo\Any11 5
(i) T € Ani\Anti,1;
(iii) Jr = S(61) @ S(82)® - - @ S(6:) ® S™, with 0 < k < dp ;
(lV) ch — dT =n;
(v) Br =5 & B() -

Proof. It is immediate from the definitions that (i) = (ii), and the equiva-
lence of (iii), (iv), and (v) is Lemma 1.3. (Remark that, in fact, in the presence of
these T is automatically in A in light of (v) and [2]). That {v) = (i) is from the
following result of [20] (see also [19]): let T be in A with R the unitary piece of
its minimal coisometric extension. Suppose L is a Borel subset of the circle such
that m|X is a scalar spectral measure for R (where m denotes Lebesgue measure
on the circle), and R has multiplicity at least non £. If £ = T then T is in A, x,.

A little reflection shows that it is then enough to prove that if T € A, 1(H)
for some positive integer n then there exists a positive integer r with n < r and
some k so that

(2.5) Jr=2500:)® & S5(6:) & 5,
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in the sense that if k = 0, then Jp = §("). Observe that in light of (iii) & (iv) we
may assume that dp. < oc.

Since T' € Co with dp < oo, there exist nonnegative integers  and k with
ng‘ng,T'=dT~—dT, and
(2.6) Jr=S6) @ & S(6) &S,
To simplify notation, we let A = S(™). Then A has an n-cyclic set and A* has a

cyclic vector (cf. [16], page 281). Since da+ < oo, by ([17], Proposition 4.4), there
exist M, N € Lat(T) with M D A such that

(2.7) Jz=Ja=5", where T=Tg, and K=MoON.

Hence by ([23], Lemma 2.7) and (2.7), we have T € Cio. Furthermore, we can
write

* * *
(2.8) T = (o T *)
0 0 =«
relative to a decomposition N @ K @& M*. Put
A %
. T = = ~
(2.9) 1 =T|(N @ K) ( 0 T)

relative to the decomposition A & K. Then it is easy to show that 77 <* T It
follows from ({21], Theorem 4) that

(2.10) Jr, =S(8) & - S(#.) & ST,
where 0 S k' <k, 0 r <r. Let
Al *
2.11 A=
@11) ( 0 Az)
. . . Coo *
be its unique triangular form of type 0o C ) Then we have
10
Al x %
0o o0 7
relative to some decomposition. Let
~ Ag *
2.13 ' = ~ ).
(2.13) 7= 3)
By Lemma 2.3, T € Cyo. According to ([23], Lemma 2.7) and (2.10),
(2.14) Ja, =S(0)® @ S(04) and Jz, = S,

By Lemma 2.2, (2.7), (2.10), (2.13) and (2.14), we have n < v’ < . The proof is
complete. (Note that via the theorem as a whole in fact r = n.) &
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There is also a theorem corresponding, with necessary modifications, to the
case n = Ng in the one above. Its proof is easy from that above and the well known

(e
fact that Ax, n, = [) An,n (see [5], Theorem 6.3), so we omit it.
n=1

THEOREM 2.5. Suppose T € CoyN A salisfies dy < co. Then the following
are equivalent:
(i) T € Axgnos
(i) T € Ay, 15
(iii) Jr = S(8;) ® S(62) ® - - @ S(6r) ® S®’), with 0 € k < dp;
(iv) dp+ is infinile;
(v) By = Sy @ B(Ra),

We should remark that the result (ii) < (iii) in Theorem 2.4, in which in-
formation about multiplicity is deduced from information about membership in
some Am n, is of a type fairly rare in dual algebra theory. There are a number of
results of the general form “T has (some sort of) multiplicity k implies T € A
where k' and &' are related to k in some way” (see, for example, [15], [20], and
[19]). Other than the results in this paper, we know of similar results in the reverse
direction only in the context of normal operators (cf. [15]).

3. CONSEQUENCES

The following corollary captures the fact that operators in A NC.g are completely
well behaved with respect to ampliation, direct sum, and “factoring out” as regards
their class membership. The results follow easily from Theorem 2.4.

COROLLARY 3.1. Suppose T and T’ are operators in AN Cg with dp < co
and dp: < co, and suppose m,n € N. Then
(1) T € Amro\Ams1,1 implies T € Ay vy \Anma1,1,
(i) T € Amxo\Ams1y and T' € Anx\Ang11 implies T T’ €
Amin o \Amint1,1, and
(i) T € Ampo\Ams11 and TB T € Apin o \Amtnt1,y implies T €
An v \Angr.

It turns out as well that class membership is nicely behaved with respect to
formation of an upper triangular operator with .y operators of finite defect on
the diagonals. Recall that for a contraction T we denote by Ry the unitary piece
of the minimal coisometric extension of 7. We begin with Lemma 1.4 from [6].
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LEMMA 3.2. Let T be a completely non-unitary contraction on H and let
Hy be a subspace invariant for T. Write T in its two by two decomposition with
respect to H = H1 @ Hi,

(3.1) T:(? %).

Then Ry is unitarily equivalent io R, & Rr,.

We also have need for some tools from [9]. For 7' an absolutely continuous
contraction that paper defines a set X7 C T which captures that portion of the
unit circle on which T “wants” to be in Ay, x, (so, for example, X7 = T if and only
if T € Ax,,n,)- Denote the class of operators T"in Cg with dp < co by C9. In this
language, it makes sense to ask about Xp for T in (C4 N AN\ Ay, »,. As one might
expect from a little work with Theorem 2.4 and Corollary 3.1 (and Corollary 3.5
below), it turns out that X7 = 0. To see this, it is elementary from [9] that if T is
a compression of 77 then X7 C X7. Recall next that every absolutely continuous
contraction with both defect indices finite is the comnpression of a bilateral shift of
multiplicity dr + dp+ (see [22], Theorem 7.4). Finally, such a bilateral shift is not
in Ay, n, from, for example, [15], and a little work with Mobius transforms shows
that in fact its X set must be empty.

For convenience of notation, let Ag ; denote the class of absolutely continuous
contractions for any k. Also, as usual we abbreviate Ay, n, to Ag,. Note that the
following improves (ii) and (iii) of Corollary 3.1.

COROLLARY 3.3. Suppose T is an absolulely continuous coniraction in C.g
satisfying dp < oo, and suppose T' has some upper triangular decomposition

(3.2) T:(ﬁ g).

Then T' € Ay, if and only if ) € Ay, or Ty € Ax,. If noi, then for any non-
negalive integers m and n we have: ‘
(i) Suppose Ty € Ann\Ang1,1- Then T € Appn 0o \Amint1,1 if and only
if Ty € Apmng\Ama1,1, and
(11) Suppose Ty € Ay v \Amt1,1- Then T € Apyn x\Amtn+1,1 if and only
if 7€ An o\ Anti-

Proof. An easy computation shows that if 7" has the triangularization above
then 77 and Ty are indeed in the class C.5. Assume first that 7' € Ay,. From
([22], Proposition 3.6), we have dy, < dr, and thus either 73 € Ay, or dr; is
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finite using Theorems 2.4 and 2.5. If dT; is finite we noted above that Xp, = §;
it then follows from a result in [9] (using 73 € C.g in the triangular factorization)
that X7, = X7 must be the whole circle, and thereby that 75 € Ax,. Of course,
if either of T or T3 is in Ay, it is well known that T must be also.

If none of T, T}, and T are in Ayg, we have immediately that dp« is finite;
it then follows from ([22], Proposition 3.6), that dr,, dr,, dry, and dr; are all
finite. The lemma above and Theorems 2.4 and 2.5 then give the result in the
finite cases. #

With the aid of a proposition we see that class membership is well behaved
uander powers as well. The next result, and its proof, are from [9].

PROPOSITION 3.4. Lel T be an absolulely continuous contraction in L(H),
and let j be a positive integer. Let By = S; ® Rr acting on K = S R denote as
usual the minimal co-isomelric exlension of T, and denote similarly the minimal
co-isomelric extension of T?. Then Rpsy is unitarily equivalent to (RrY.

Proof. We give the proof for the case j = 2, leaving other cases to the
reader. Since it is clear that B2 = (S})?® (Rr)? acting on K is some co-isometric
extension of T2, we may assume that there exists Ky C K, reducing for BZ, such
that B2|K is the minimal co-isometric extension of T2 (see [11]). It suffices to
show that R C K, or equivalently that Ki+ C 8. Since Br is a co-isometry, this is
in turn equivalent to

(3.3) Kic D Ker(B2").

n=l

To prove (3.3) we recall some facts about the minimal coisometric extension
(again from [22)). From the minimality of By, we may deduce that V (B7)"H =

n20
K. Further, there is a subspace £ of K defined by

(3.4) C={(By-THYh:heH}
such that
(3.5) K=HoLodBrLd  -®(Br)"LB -

Note that since Ky is reducing for B%, we have

(3.6) (Br=)" = ((BR)IK1)" = (BF)'IKy) = (B7)*[Ks
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Let £2 be the space analogous to £, but for By:, defined by
(3.7) Lo ={(By— (THYa:heH} .
Then it is clear from (3.6) that

(3.8) Ly={((B})?=Th:heMN) .

And again using (3.6) we have the decomposition

(3.9) Ki=H&Ly®(By)L2® & (B L2® -

One may then compute easily that £, C £ & B L and that for any v and v in £
such that Byu®v L L2, we have Bru@uv € Ker(B%). It is easy to perform similar
computations to yield ((B5)2L & (B3)°L) © (B3)?L, C Ker(B4), and so on. The
result (3.3) then follows from the decompositions given by (3.5) and (3.9).

A general analysis in [9] shows that if T € Ay x, then T" € A, n,. With the
aid of the proposition above, and in our special situation, we can do better.

COROLLARY 3.5. Suppose T € AN,y satisfies dy < co, and let m,n € N.
Then

() T € Ani\Ans1, tmpliesT™ € Amon1\Am.nt1,1, and

(ii) T € Aoyt implies T € Apyy .

Proof. 1t suffices to use Proposition 3.4 and count multiplicities.

We may gain some information about Jordan models as well; the following
is immediate if we use the proof from ([17], Lemma 5.1), along with Theorem 2.4.

COROLLARY 3.6. Suppose T'€ A, 1 N Co(H) and dp < co. Then T € Cyp
if and only if there ezists r € N with v 2 n such that Jr = S0,

A completely nonunitary contraction T € L(H) is said to be of class Cy
if there exists a non-zero function v € H®(T) such that the functional calculus
u(T) = 0 (cf. [3]). Recall that if C € Cy with dg- < oo, then Jo = 5(61) ®
@ 5(f) for some 0 € k < oo (cf. [3]). Recall also that for such a C, we have
dce = dc. The following is then immediate.

THEOREM 3.7, Let C € Co with de+ < co and lei T € C.o(H) with dp < 0.
IfTe®Ce A, 1, for somen EN, then dr« —dp 2 n.

We also recapture the following theorem from [17]; recall that .S denotes the
unilateral shift of multiplicity 1.

COROLLARY 3.8. If C € Cy with dg+ < oo, then S™M @ C € Anuny \ At
for any n € N, :
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4. REMARKS AND QUESTIONS

Observe that since (Co)* = Co. and A}, , = A, m the results above have impli-
cations for a theory of operators in the class Cy. with some defect index finite; we
leave these corollaries to the interested reader. Recall that we denote the class of
operators T in C.o with dr < co by C9. Similarly straightforward is the following:
one way to view Theorem 2.4 is as the assertion that one has, for any n,

(41) CC:) n An,1 = Cc:] N An,m - Cd[] N Aﬂ.Nu) me N.
This generalizes in a special case the result in [14] that
CoNA;j1=CoNAm=CoNAjyg, mEN,

and leads to the obvious question as to whether (4.1) generalizes to arbitrary
elements of Cg.

A similar natural question is whether (or to what extent) the classes A, x,
are determined by multiplicity of the unitary part of the minimal coisometric
extension (the Jordan model no longer available). Since it is easy to construct a
normal operator in Cgg M Ay, n,, Whose minimal coisometric extension therefore
has no unitary part, the question must necessarily be sharpened. It is well known
that for 7" in A, x, one may produce a restriction of T to an invariant subspace
or a compression of T to a semi-invariant subspace in Co N Ay x, (see [14] or
{10]). Since the restriction or compression of an operator in Cog is again in Coo,
the normal operator example above shows that there is no hope of capturing the
class in the multiplicity of the unitary piece of some restriction or compression.
Can one do business at least in the case T' & Ay, x,, Or under some other special
assumption? )

Finally, we remark on the annoying fact that while for 7 in C% N A we are
well able to factor out powers of the unilateral shift as summands (Corollary 3.1),
for bilateral shift summands we are unable to improve on an old result of [15]
that, for any absolutely continuous contraction T, if T @ B(™) ¢ Antin41 then
Tisin A = A, ;. We make here the obvious conjecture that for 7 in C% N A,
T@ B ¢ A tmntm implies T in Ay, .
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