ON THE EXTENSION OF THE PROPERTIES $(A_{m,n})$

CHAFIQ BENHIDA

Communicated by Florian-Horia Vasilescu

ABSTRACT. Here we show that we can extend the properties $(A_{m,n})$ from a given weak*-closed subspace to a larger one in some cases. Our technique yields examples of weak*-closed subspaces \mathcal{A} having the property (A_{\aleph_0}) without having any of the properties $X_{0,\gamma}$, in contrast to the case where \mathcal{A} is the dual algebra generated by a contraction in the class \mathcal{A} (for which it is well known that the two properties are equivalent).

KEYWORDS: Dual algebra, weak*-closed subspace, compact operator, property $(A_{m,n})$.

AMS SUBJECT CLASSIFICATION: 47D15, 47D25, 47A55.

1. INTRODUCTION

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . If $T \in \mathcal{L}(\mathcal{H})$, then \mathcal{A}_T denotes the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $I_{\mathcal{H}}$ and is closed in the weak*-topology. Let Q_T denote the quotient space $\mathcal{C}^1(\mathcal{H})/^{\perp}\mathcal{A}_T$, where $\mathcal{C}^1(\mathcal{H})$ is the trace-class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and $^{\perp}\mathcal{A}_T$ denotes the preannihilator of \mathcal{A}_T in $\mathcal{C}^1(\mathcal{H})$. One knows that \mathcal{A}_T is the dual space of Q_T and the duality is given by

$$\langle A, [L] \rangle = \operatorname{tr}(AL), \quad A \in \mathcal{A}_T, \quad [L] \in Q_T,$$

where [L] is the image in Q_T of the operator L in $\mathcal{C}^1(\mathcal{H})$. If x and y are vectors in \mathcal{H} , we write, as usual, $x \otimes y$ for the rank-one operator in $\mathcal{C}^1(\mathcal{H})$ defined by

$$(x \otimes y)(u) = (u, y)x, \quad u \in \mathcal{H}.$$

Then, of course, $[x \otimes y] \in Q_T$, and it is easy to see that

$$\langle A, [x \otimes y] \rangle = \operatorname{tr}(A(x \otimes y)) = (Ax, y).$$

Suppose now that m and n are any cardinal numbers less than or equal to \aleph_0 , and let \mathcal{A} be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$. We say that \mathcal{A} has the property $(A_{m,n})$ if for every doubly indexed family $([L_{i,j}])_{0 \leq i < m, 0 \leq j < n}$ in Q_A , there exist sequences $(x_i)_{0 \le i < m}$ and $(y_j)_{0 \le j < n}$ in \mathcal{H} such that:

$$(1.1) [L_{ij}] = [x_i \otimes y_j] for 0 \leq i < m and 0 \leq j < n.$$

Furthermore, if for every $s > \rho$ (ρ fixed) we can solve (1.1) and also the inequalities:

$$||x_i|| < \left(s \sum_{0 \leq j < n} ||[L_{ij}]|| \right)^{\frac{1}{2}}, \quad 0 \leq i < m,$$

$$||y_j|| < \left(s \sum_{0 \le i < m} ||[L_{ij}]|| \right)^{\frac{1}{2}}, \quad 0 \le j < n,$$

then A is said to have property $(A_{m,n}(\rho))$. The class $A = A(\mathcal{H})$ is defined to be the set of all absolutely continuous contractions for which the Sz.-Nagy-Foias functional calculus is an isometry (cf [6], Chapter 3).

We also define the classes $A_{m,n} = \{T \in A \mid A_T \text{ has the property } (A_{m,n})\}$, $A_{m,n}(\rho) = \{T \in A \mid A_T \text{ has the property } (A_{m,n}(\rho))\}.$ The class $A_{n,n}$ is also denoted by A_n .

Let $0 \le \theta < 1$. Then the following subsets of the predual of A were defined in [1] and [4]: $\mathcal{X}_{\theta}(\mathcal{A})$ denotes the set of all $[L] \in Q_{\mathcal{A}}$ such that there exist $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ in $(\mathcal{H})_1$ (the closed unit ball of \mathcal{H}) which converge weakly to 0 and satisfy (1.2), (1.3) and (1.4):

(1.2)
$$\limsup ||[L] - [x_n \otimes y_n]|| \leq \theta;$$

$$(1.3) \forall w \in \mathcal{H} \quad \lim_{n \to \infty} ||[x_n \otimes w]|| = 0;$$

(1.2)
$$\limsup_{n \to \infty} ||[L] - [x_n \otimes y_n]|| \leq \theta;$$
(1.3)
$$\forall w \in \mathcal{H} \quad \lim_{n \to \infty} ||[x_n \otimes w]|| = 0;$$
(1.4)
$$\forall w \in \mathcal{H} \quad \lim_{n \to \infty} ||[w \otimes y_n]|| = 0.$$

 $\mathcal{E}^r_{\theta}(\mathcal{A})$ is the set of all $[L] \in Q_{\mathcal{A}}$ such that there exist $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in $(\mathcal{H})_1$ which converge weakly to 0 and satisfy (1.2) and (1.3). We define also $\mathcal{E}^l_{\theta}(\mathcal{A})$ by symmetry on the second condition.

Note that $\mathcal{X}_{\theta}(A)$ is closed and absolutely convex; on the other hand the convexity of the sets $\mathcal{E}_{\theta}^{r}(\mathcal{A})$ and $\mathcal{E}_{\theta}^{l}(\mathcal{A})$ is an open question (cf. [7] for partial results).

DEFINITION 1.1. ([1]) Let \mathcal{A} be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$; \mathcal{A} is said to have the property $X_{\theta,\gamma}$, $0 \leq \theta < \gamma \leq 1$ if $\mathcal{X}_{\theta}(\mathcal{A}) \supset (Q_{\mathcal{A}})_{\gamma}$ (the closed ball in $Q_{\mathcal{A}}$ centered at 0 with radius γ).

DEFINITION 1.2. ([4]) Let \mathcal{A} be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$; \mathcal{A} is said to have the property $E^r_{\theta,\gamma}$, $(0 \leq \theta < \gamma \leq 1)$ (respectively $E^l_{\theta,\gamma}$) if $\overline{aco}(\mathcal{E}^l_{\theta}(\mathcal{A}))$, the closed absolutely convex hull of the set $\mathcal{E}^r_{\theta}(\mathcal{A})$, (respectively $\overline{aco}(\mathcal{E}^l_{\theta}(\mathcal{A}))$ contains $(Q_{\mathcal{A}})_{\gamma}$.

The following theorem is established in [3], Chapter 3.

THEOREM 1.3. Let \mathcal{A} be a dual subalgebra of $\mathcal{L}(\mathcal{H})$. If \mathcal{A} has the property $X_{\theta,\gamma}$, $(0 \leq \theta < \gamma \leq 1)$, then \mathcal{A} has the property (A_{\aleph_0}) .

This theorem is still true when A is a weak"-closed subspace of $\mathcal{L}(\mathcal{H})$.

In the case of a dual subalgebra of $\mathcal{L}(\mathcal{H})$ generated by an operator in the class A, we have the following result ([5], Theorem 6.2):

THEOREM 1.4. Assume $T \in A = A(\mathcal{H})$. Then $T \in A_{1,\aleph_0}$ (respectively $T \in A_{\aleph_0,1}$) if and only if there exists $\gamma (0 < \gamma \le 1)$ such that A_T has the property $E_{0,\gamma}^r$ (respectively $E_{0,\gamma}^l$).

This result is similar to one of the characterizations of the class A_{\aleph_o} given in [1], Chapter 4.

THEOREM 1.5. Assume $T \in A = A(\mathcal{H})$. Then $T \in A_{\aleph_0}$ if and only if there exists γ , $(0 < \gamma \le 1)$ such that A_T has the property $X_{0,\gamma}$.

We are interested here in the extension of the properties $(A_{m,n})$. In [2] we obtained a definite result when we "add" a finite rank operator R to \mathcal{A} , where \mathcal{A} is a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ (0 < $\gamma \leq 1$). If $\mathcal{R}(\mathcal{H})$ denotes the set of all finite rank operators on \mathcal{H} the main result is:

THEOREM 1.6. ([2]) Let A be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ (0 < $\gamma \leq 1$), and $R \in \mathcal{R}(\mathcal{H}) \setminus \{0\}$ such that $\operatorname{rank}(R) = n$. Then $A + \mathbb{C}R$ has the properties $A_1(1+2/\gamma)$ and $(A_{n, \mathfrak{d}_0}) \cap (A_{\aleph_0, n}) \setminus (A_{n+1})$ without having any property $E_{0,\rho}^r$ or $E_{0,\rho}^l$.

This result implies that Theorem 1.4 fails in the general case. The purpose of this paper is to give a similar result with any compact operator K.

2. PRELIMINARIES

The following result is proved in [1], Proposition 3.1.

PROPOSITION 2.1. Let A be a weak*-closed subspace of $L(\mathcal{H})$ with the property $X_{0,\gamma}$ (0 < $\gamma \leq 1$); then $M_n(A)$ has the property $X_{0,\gamma/n^2}$, for every $n \geq 1$, where $M_n(A) = \{(A_{ij})_{1 \leq i,j \leq n} \mid A_{ij} \in A\}$ which is naturally identified with a subspace of $\mathcal{H}^{(n)}$ and $Q_{M_n(Q_A)}$ is identified with $M_n(Q_A)$.

We have the following result, given in [3], Chapter 1.

PROPOSITION 2.2. Let A be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ $(0 < \gamma \le 1)$. Suppose that we are given $[L] \in Q_A$, vectors $a \in \mathcal{H}$, $b \in \mathcal{H}$, $(w_k)_{1 \le k \le n}$ in \mathcal{H} , a finite codimensional subspace \mathcal{L} of \mathcal{H} and $\delta, \varepsilon > 0$ such that $||[L] - [a \otimes b]|| < \delta$; then there exist x and y in \mathcal{H} such that:

$$\begin{split} [L] &= [x \otimes y], \ (x-a) \in \mathcal{L}, \ (y-b) \in \mathcal{L}, \\ \sup(\|x-a\|, \|y-b\|) &< \sqrt{\frac{\delta}{\gamma}}, \\ \|[w_k \otimes (y-b)]\| &< \varepsilon \quad and \quad \|[(x-a) \otimes w_k]\| < \varepsilon, \ 1 \leqslant k \leqslant n. \end{split}$$

3. EXTENSION OF THE PROPERTIES $(A_{m,n})$

Let $\mathcal{K}(\mathcal{H})$ denote the set of all compact operators on \mathcal{H} . We have the following result.

THEOREM 3.1. Let A be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ (0 < $\gamma \leq 1$), and $K \in \mathcal{K}(\mathcal{H}) \setminus \{0\}$. Then $\tilde{A} = A + \mathbb{C}K$ has the property $(A_1(1+2/\gamma))$.

Proof. We may suppose that ||K|| = 1.

Let $K = \sum_{i \ge 1} \lambda_i \varepsilon_i \otimes e_i$ be the canonical writing of K, where $(e_i)_i$, $(\varepsilon_i)_i$ are orthonormal systems and $(\lambda_i)_i$ a nonincreasing sequence of positive numbers. Then $\lambda_1 = 1$ and $\lambda_i \searrow 0$, if K is not of finite rank. Let $\eta > 0$ and take

$$R_k = \sum_{i=1}^{p_k-1} \lambda_i \varepsilon_i \otimes e_i, \quad k \geqslant 1,$$

where p_k satisfies

$$\sum_{k \ge 1} (\lambda_{p_k})^{\frac{1}{2}} < \frac{\sqrt{1+\eta} - 1}{1+\eta} \left(1 + \frac{2}{\gamma}\right)^{-\frac{3}{2}}.$$

We have $R_k \to K$ in $\mathcal{L}(\mathcal{H})$ and, if $r_k = ||R_k - R_{k-1}|| = \lambda_{p_{k-1}}, k \ge 2$,

(3.1)
$$\left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}} \sum_{k \ge 2} r_k^{\frac{1}{2}} < \frac{\sqrt{1 + \eta} - 1}{1 + \eta}.$$

Let $\psi \in Q_{\tilde{\mathcal{A}}}$. Thus ψ is well defined by its action on \mathcal{A} and on $\mathbb{C}K$; then we write $\psi = ([L], d)$ where $[L] = \psi | \mathcal{A}$ and $\psi(\mathcal{K}) = d$. We may suppose that $\max(||[L]||, |d|) < 1$.

Let us denote $a = e_1$ and $b = \overline{d}\varepsilon_1$. We have $(R_1a, b) = d$ and

$$||[L] - [a \otimes b]|| \le ||[L]|| + ||a|| ||b||$$

 $\le ||[L]|| + |d|$
 $< 2.$

Proposition 2.2 provides vectors $x_1, y_1 \in \mathcal{H}$ such that

$$[L] = [x_1 \otimes y_1], \quad \sup(||x_1 - a||^2, |y_1 - b||^2) < \frac{2}{\gamma}$$

and

$$(x_1-a), (y_1-b) \in (R_1\mathcal{H} \cup R_1^*\mathcal{H})^{\perp} \cap \{a,b\}^{\perp}.$$

It follows from this that $(R_1x_1, y_1) = d$ and $(x_1, e) = 1$.

Suppose now that we can find $(x_k)_{1 \le k \le n}$ and $(y_k)_{2 \le k \le n} \in \mathcal{H}$ such that

$$\begin{split} [L] &= [x_k \otimes y_k], \ (R_k x_k, y_k) = d, \quad (x_k, e_1) = 1, \\ ||x_k - x_{k-1}||^2 &< \left(\frac{(1+\eta)^{\frac{3}{2}}}{\gamma}\right) \left(1 - \frac{2}{\gamma}\right)^{\frac{3}{2}} r_k, \\ ||x_k||^2 &< \left(1 + \frac{2}{\gamma}\right) + \frac{(1+\eta)^{\frac{3}{2}}}{\gamma} \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}} \sum_{j=2}^n r_j, \\ ||y_k|| &< \left(1 + \frac{2}{\gamma}\right)^{\frac{1}{2}} + (1+\eta) \left(1 + \frac{2}{\gamma}\right)^2 \sum_{j=2}^n r_j^{\frac{1}{2}}. \end{split}$$

We will have occasion to use $\max(\|x_k\|^2, \|y_k\|^2) < (1+\eta)\left(1+\frac{2}{\gamma}\right)$ which may be deduced from the induction hypothesis.

8 Chafiq Benhida

Note that

$$(R_{n+1}x_n, y_n) = d + ((R_{n+1} - R_n)x_n, y_n).$$

Let $u_n = -\overline{((R_{n+1} - R_n)x_n, y_n)}\varepsilon_1$. Since $(x_n, e_1) = 1$ we have $(R_{n+1}x_n, y_n + u_n) = d$.

By using (3.1) and the fact that $||u_n|| \leqslant r_{n+1} ||x_n|| ||y_n||$ we have

$$||[L] - [x_n \otimes (y_n + u_n)]|| \le ||x_n|| ||u_n||$$

$$\le ||x_n||^2 ||y_n|| r_{n+1}$$

$$< (1 + \eta)^{\frac{3}{2}} \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}} r_{n+1}.$$

Thus there exist, by Proposition 2.2, x_{n+1} and $y_{n+1} \in \mathcal{H}$ such that

$$[L] = [x_{n+1} \otimes y_{n+1}],$$

$$\max\left(\left\|x_{n+1}-x_{n}\right\|^{2},\left\|y_{n+1}-(y_{n}+u_{n})\right\|^{2}\right)<\frac{\left(1+\eta\right)^{\frac{3}{2}}}{\gamma}\left(1+\frac{2}{\gamma}\right)^{\frac{3}{2}}r_{n+1},$$

and

$$((x_{n+1}-x_n),(y_{n+1}-(Y_n+u_n))\in (R_{n+1}\mathcal{H}\cup R_{n+1}^*\mathcal{H})^{\perp}\cup \{x_n\}^{\perp}.$$

From this we deduce that $(R_{n+1}x_{n+1}, y_{n+1}) = d$, $(x_{n+1}, e_1) = 1$,

$$||x_{n+1}||^{2} = ||x_{n+1} - x_{n}||^{2} + ||x_{n}||^{2}$$

$$< \frac{(1+\eta)^{\frac{3}{2}}}{\gamma} \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}} r_{n+1} + \frac{(1+\eta)^{\frac{3}{2}}}{\gamma} \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}} \sum_{j=2}^{n} r_{j} + \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}}$$

$$< \left(1 + \frac{2}{\gamma}\right) + \frac{(1+\eta)^{\frac{3}{2}}}{\gamma} \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{2}} \sum_{j=2}^{n+1} r_{j},$$

and

$$||y_{n+1}|| < ||y_{n+1} - (y_n + u_n)|| + ||y_n|| + ||u_n||$$

$$< \frac{(1+\eta)^{\frac{3}{4}}}{\sqrt{\gamma}} \left(1 + \frac{2}{\gamma}\right)^{\frac{3}{4}} r_{n+1}^{\frac{7}{2}} + \left(1 + \frac{2}{\gamma}\right)^{\frac{7}{2}} +$$

$$+ (1+\eta) \left(1 + \frac{2}{\gamma}\right)^2 \sum_{j=2}^n r_j^{\frac{7}{2}} + (1+\eta) \left(1 + \frac{2}{\gamma}\right) r_{n+1}$$

$$< \left(1 + \frac{2}{\gamma}\right)^{\frac{7}{2}} + (1+\eta) \left(1 + \frac{2}{\gamma}\right)^2 r_{n+1}^{\frac{7}{2}} + (1+\eta) \left(1 + \frac{2}{\gamma}\right)^{\frac{7}{2}} \sum_{j=2}^n r_j^{\frac{7}{2}}$$

$$< \left(1 + \frac{2}{\gamma}\right)^{\frac{7}{2}} + (1+\eta) \left(1 + \frac{2}{\gamma}\right)^2 \sum_{j=2}^{n+1} r_j^{\frac{7}{2}}.$$

It is easy to see that $(x_n)_n$ and $(y_n)_n$ are Cauchy sequences and thus converge. If x and y are their respective limits we have

$$||x|| ||y|| < (1+2\eta) \left(1 + \frac{2}{\gamma}\right),$$

$$[L] = \lim_{n \to \infty} [x_n \otimes y_n] = [x \otimes y],$$

$$d = \lim_{n \to \infty} (R_n x_n, y_n) = (Kx, y).$$

It follows that

$$\psi = [x \otimes y]_{\mathcal{A} + \mathbb{C}K}$$
 and $||x|| \, ||y|| < (1 + 2\eta) \left(1 + \frac{2}{\gamma}\right)$

and the proof is complete.

Here, we establish a result similar to the finite rank case.

THEOREM 3.2. Let \mathcal{A} be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ $(0 < \gamma \leq 1)$ and $K \in \mathcal{K}(\mathcal{H}) \setminus \mathcal{R}(\mathcal{H})$. Then $\mathcal{A} + \mathbb{C}K$ has the property (A_{\aleph_0}) .

Proof. As before let $K = \sum_{i \ge 1} \lambda_i \varepsilon_i \otimes e_i$ be the canonical writing of K and ||K|| = 1. Then $\lambda_1 = 1$ and $\lambda_i \setminus 0$. Take:

$$R_n = \sum_{i=1}^{p_n-1} \lambda_i \varepsilon_i \otimes e_i, \ \overline{R}_n = R_n - R_{n-1} \quad \text{and} \quad r_n = \left\| \overline{R}_n \right\| = \lambda_{p_{n-1}} \quad \text{for} \quad n \geqslant 2.$$

The conditions on the choice of the sequence $(p_n)_n$ will be given later, now we only assume that $p_n > 2n+1$. Since the proof is fairly technical we first give a general outline: given a doubly infinite matrix $(\psi_{i:})_{i\geqslant 1,j\geqslant 1}$ of elements in $Q_{\tilde{A}}$ we want to find sequences of vectors $(x_i)_{i\geqslant 1}$ and $(y_j)_{j\geqslant 1}$ in \mathcal{H} such that

$$\psi_{ij} = [x_i \otimes y_j] \quad i, j \geqslant 1.$$

It is well known (and easy to prove by standard scaling argument) that we may assume $||\psi_{ij}|| < \delta_i \delta_j$ where $(\delta_n)_{n \ge 1}$ is a given sequence of strictly positive numbers (to be chosen later). As in the previous theorem we "split" ψ_{ij} into its actions $[L_{ij}](=\psi_{ij}|A)$ on A and $d_{ij}(=\psi_{ij}(K))$ on $\mathbb{C}K$. For any $k \ge 1$, $[\overline{L}]_k$ will denote the $k \times k$ matrix with entries $[L_{ij}]$ in Q_A (which as usual, we identify with an element in the predual $Q_{\mathcal{M}_k(A)}$ of the weak*-closed subspace $\mathcal{M}_k(A)$ in $\mathcal{L}(\mathcal{H}^{(k)})$.

The idea of the proof is to build by induction on k vectors $X^k = (X_1^k, \ldots, X_k^k)$, $Y^k = (Y_1^k, \ldots, Y_k^k)$ in \mathcal{H}^k such that

$$(3.2) [\overline{L}]_k = [X^k \otimes Y^k],$$

and

$$(3.3) (R_k X_i^k, Y_i^k) = d_{ij} 1 \leqslant i, j \leqslant k,$$

$$(3.4) \qquad \sup \left(\|X^k - (X^{k-1}, 0)\|, \|Y^k - (Y^{k-1}, 0)\| \right) < \frac{1}{2^{k-1}} \quad (k \ge 2).$$

Suppose this has been done; then clearly (3.2) becomes

$$[L_{ij}] = [X_i^k \otimes Y_i^k], \quad k \geqslant \max(i, j),$$

and the sequences

$$(X_i^k)_{k \geqslant i}$$
, $(Y_i^k)_{k \geqslant i}$

are Cauchy sequences for each i. Denoting by X_i , Y_i their respective limits we have, by going to the limits in (3.2) and (3.3),

$$\begin{cases} [L_{ij}] = [X_i \otimes Y_j] \\ (KX_i, Y_j) = d_{ij}, \end{cases} \quad i, j \geqslant 1,$$

that is the desired conclusion.

The main difficulty in implementing the induction procedure (that is, assuming X^k , Y^k are defined up to k = n, define X^{n+1} and Y^{n+1}) is to obtain condition (3.3). We proceed in two steps:

(a) First, find vectors $U^n \in \mathcal{H}, V^n \in \mathcal{H}^{(n+1)}$ such that the vectors

$$\overline{X}^n = (X^n, U^n), \quad \overline{Y}^n = (Y^n, 0) + V^n$$

satisfy

$$\left(R_{n+1}\overline{X}_i^n, \overline{Y}_j^n\right) = d_{ij}, \quad 1 \leqslant i, j \leqslant n+1,$$

with "reasonable" bounds

$$||U^n|| (= ||\overline{X}^n - (X^n, 0)||)$$
 and $||V^n||$.

(b) Then, Proposition 2.1 allows us to apply a matricial version of Proposition 2.2 to conclude the induction step. (Note that, to facilitate step (a), some additional technicalities have been included in the induction hypothesis.)

Let $(\alpha_n)_{n\geqslant 1}$ be a decreasing non negative sequence such that $\alpha_1=1$:

(3.6)
$$\alpha_{2n+1} < \lambda_{2n+1} \frac{1}{\left(1 + \frac{3}{\alpha_{2n}}\right)^{n+1}} \frac{\gamma}{3^4 (n+1)^2} \frac{1}{2^{2(n+1)+1}}, \quad n \geqslant 1,$$

On the extension of the properties $(A_{m,n})$

(3.7)
$$\alpha_{2n+2} < c_n \stackrel{\text{def}}{=} \frac{1}{\left(1 + \frac{3}{\alpha_{2n+1}}\right)^{n+1}} \frac{\gamma}{3^4 (n+1)^2} \frac{1}{2^{2(n+1)+1}}, \quad n \geqslant 0.$$

Let $(\psi_{ij})_{i\geqslant 1,j\geqslant 1}\subset Q_{\mathcal{A}+\mathbb{C}K}$. As before $\psi_{ij}=([L_{ij}],d_{ij})$ when $[L_{ij}]=\psi_{ij}|\mathcal{A}$ and $d_{ij}=\psi_{ij}(K)$; we may suppose that

$$||\psi_{ij}|| < \delta_i \delta_j$$

where $(\delta_n)_{n\geqslant 1}$ is a sequence satisfying

$$\delta_{n+1} < c_n, \quad n \geqslant 0.$$

Put $a = e_1$ and $b = \overline{d}_{11}\varepsilon_1 + \alpha_2\varepsilon_2$. We have $(R_1a, b) = d_{11}$ and

$$||[L_{11}] - [a \otimes b]|| < \delta_1^2 + ||a|| ||b||$$

$$< \delta_1^2 + \sqrt{\delta_1^2 + \alpha_2^2}$$

$$< \gamma.$$

Proposition 2.2 provides a vector X^1 and $Y^1 \in \mathcal{H}$ such that

$$\begin{split} [L_{11}] &= [X^1 \otimes Y^1], \\ \max(\|X^1 - a\|, \|Y^1 - b\|) &< 1, \\ (X^1 - a), \ (Y^1 - b) &\in (R_1 \mathcal{H} \cup R_1^* \mathcal{H})^{\perp} \cap \operatorname{span}\{a, b\}^{\perp}. \end{split}$$

This implies $(R_1X^1, Y^1) = d_{11}$ and $\max(||X^1||, ||Y^1||) < 2$.

Suppose now that we can find $(X^k)_{k\geqslant 1}$ and $(Y^k)_{k\geqslant 1}$ when X^k,Y^k are in $\mathcal{H}^{(k)}$ such that (3.2), (3.3) and (3.4) hold, and

(3.9)
$$(\lambda_{2j-1}X_i^k, e_{2j-1}) = \begin{cases} \alpha_{2j-1} & \text{if } j = i, \\ 0 & \text{if } j < i; \end{cases}$$

(3.10)
$$(\varepsilon_{2i}, Y_j^k) = \begin{cases} \alpha_{2j} & \text{if } i = j, \\ 0 & \text{if } i < j. \end{cases}$$

Suppose that the vectors $(X^k)_{1 \leq k \leq n}$ and $(Y^k)_{1 \leq k \leq n}$ have been found for $n \geq 1$. Let

$$[\overline{L}]_{n+1} = ([L_{ij}])_{1 \leq i,j \leq n+1},$$

$$\overline{X}^n = (X^n, U^n), \quad \overline{Y}^n = (Y_j^n + V_j^n, V_{n+1}^n),$$

$$U^n = \mu_{n+1} \frac{e_{2n+1}}{\lambda_{2n+1}} + \sum_{k=1}^n \mu_k \frac{e_{2k}}{\lambda_{2k}}, \quad V_j^n = \sum_{k=0}^n \beta_k^{n,j} \varepsilon_{2k+1}, \quad V_{n+1}^n = W_n + \sum_{k=1}^n s_k \varepsilon_{2k-1},$$

where

$$\mu_{n+1} = \alpha_{2n+1}, \ \mu_k = -\frac{1}{\alpha_{2k}} \left(\sum_{l=k+1}^n \mu_l(\varepsilon_{2l}, Y_k^n) + \mu_{n+1}(\varepsilon_{2n+1}, Y_k^n) \right) \text{ for } 1 \leqslant k \leqslant n,$$

$$\beta_n^{n,j} = \frac{\overline{d}_{n+1,j}}{\alpha_{n+1,j}},$$

and, for $0 \leqslant k \leqslant n$ and $1 \leqslant j \leqslant n$,

$$\begin{split} \overline{\beta}_{k}^{n,j} &= -\frac{1}{\alpha_{2k+1}} \Bigg(\left(\overline{R}_{n+1} X_{k+1}^{n}, Y_{j}^{n} \right) + \sum_{l=k+1}^{n} \Big(R_{n+1} X_{k+1}^{n}, \beta_{l}^{n,j} \varepsilon_{2l+1} \Big) \Bigg), \\ W_{n} &= \frac{\overline{d}_{n+1,n+1}}{\alpha_{2n+1}} \varepsilon_{2n+1} + \alpha_{2n+2} \varepsilon_{2n+2}, \ \overline{s}_{n} = \frac{1}{\alpha_{2n-1}} \Big(d_{n,n+1} - (R_{n+1} X_{n}^{n}, W_{n}) \Big), \\ \overline{s}_{k} &= \frac{1}{\alpha_{2k-1}} \Bigg(d_{k,n+1} - (R_{n+1} X_{k}^{n}, W_{n}) - \sum_{l=k+1}^{n} \left(R_{n+1} X_{k}^{n}, s_{l} \varepsilon_{2l-1} \right) \Bigg) \text{ for } 1 \leqslant k \leqslant n. \end{split}$$

We shall verify that

$$\left(R_{n+1}\overline{X}_i^n, \overline{Y}_j^n\right) = d_{ij}$$
 for all $1 \le i, j \le n$.

We start to establish that

$$(R_{n+1}X_i^n, Y_j^n + V_j^n) = (R_{n+1}X_i^n, Y_j^n) + (R_{n+1}X_i^n, V_j^n) = d_{ij}.$$

For this let us calculate

$$(R_{n+1}X_{i}^{n}, V_{j}^{n}) = \sum_{k=0}^{n} (R_{n+1}X_{i}^{n}, \beta_{k}^{n,j} \varepsilon_{2k+1})$$

$$= \sum_{k=i-1}^{n} (R_{n+1}X_{i}^{n}, \beta_{k}^{n,j} \varepsilon_{2k+1})$$

$$= \alpha_{2i-1}\overline{\beta_{i-1}^{n,j}} + \sum_{k=i}^{n} (R_{n+1}X_{i}^{n}, \beta_{k}^{n,j} \varepsilon_{2k+1})$$

$$= -(\overline{R}_{n+1}X_{i}^{n}, Y_{j}^{n})$$

which run down by the definition of $\beta_{i-1}^{n,j}$. Thus

$$(R_{n+1}X_{i}^{n}, Y_{j}^{n} + V_{j}^{n}) = ((R_{n+1} - \overline{R}_{n+1})X_{i}^{n}, Y_{j}^{n})$$

$$= (R_{n}X_{i}^{n}, Y_{j}^{n}) = d_{ij};$$

$$(R_{n+1}X_{i}^{n}, V_{n+1}^{n}) = (R_{n+1}X_{i}^{n}, W_{n}) + \sum_{k=1}^{n} (R_{n+1}X_{i}^{n}, s_{k}\varepsilon_{2k-1})$$

$$= (R_{n+1}X_{i}^{n}, W_{n}) + \sum_{k=i+1}^{n} (R_{n+1}X_{i}^{n}, s_{k}\varepsilon_{2k+1}) + \alpha_{2i-1}\overline{s}_{i}$$

$$= (R_{n+1}X_{i}^{n}, W_{n}) - \alpha_{2i-1}\overline{s}_{i} + d_{i,n+1}$$

$$- (R_{n+1}X_{i}^{n}, W_{n}) + \alpha_{2i-1}\overline{s}_{i}$$

$$= d_{i,n+1}.$$

We have also

$$\begin{split} \left(R_{n+1}U^{n}, Y_{j}^{n} + V_{j}^{n}\right) &= \left(R_{n+1}U^{n}, Y_{j}^{n}\right) + \left(R_{n+1}U^{n}, V_{j}^{n}\right) \\ &= \mu_{n+1}\left(\varepsilon_{2n+1}, Y_{j}^{n}\right) + \sum_{k=1}^{n} \mu_{k}\left(\varepsilon_{2k}, Y_{j}^{n}\right) + d_{n+1,j} \\ &= \mu_{n+1}\left(\varepsilon_{2n+1}, Y_{j}^{n}\right) + \sum_{k=j+1}^{n} \mu_{k}\left(\varepsilon_{2k}, Y_{j}^{n}\right) + \alpha_{2j}\mu_{j} + d_{n+1,j} \\ &= \alpha_{2j}\mu_{j} - \alpha_{2j}\mu_{j} + d_{n+1,j} = d_{n+1,j} \end{split}$$

and

$$(R_{n+1}U^n, V_{n+1}^n) = (R_{n+1}U^n, W_n) = d_{n+1,n+1}.$$

We remark from the induction hypothesis that $\max(\|X^k\|, \|Y^k\|) < 3$. Now, we seek upper bounds for $\|U^n\|, \|V_j^n\|$ and $\|V_{n+1}^n\|$. It easy to check that

$$\begin{cases} |\mu_{n+1}| \leqslant \alpha_{2n+1}, \\ |\mu_{k}| \leqslant 3 \frac{\alpha_{2n+1}}{\alpha_{2n}} \left(1 + \frac{3}{\alpha_{2n}}\right)^{n-k}, & 1 \leqslant k \leqslant n, \end{cases}$$

$$\begin{cases} |\beta_{n}^{n,j}| \leqslant \frac{\delta_{n+1}\delta_{j}}{\alpha_{2n+1}}, \\ |\beta_{k}^{n,j}| \leqslant \frac{3}{\alpha_{2n+1}} t \left(1 + \frac{3}{\alpha_{2n+1}}\right)^{n-(k+1)}, & 1 \leqslant k \leqslant n-1, \text{ where } t = 3r_{n+1} + \frac{\delta_{n+1}\delta_{j}}{\alpha_{2n+1}}, \\ |s_{k}| \leqslant \frac{h}{\alpha_{2n+1}} \left(1 + \frac{3}{\alpha_{2n+1}}\right)^{n-k}, & 1 \leqslant k \leqslant n, \text{ where } h = \delta_{n+1} + 3||W_{n}||. \end{cases}$$

Then

$$||U^n|| \le \frac{1}{\lambda_{2n+1}} \left(1 + \frac{3}{\alpha_{2n}}\right)^n \alpha_{2n+1}$$

14 Chafiq Benhida

and

$$||V_j^n|| \le |\beta_n^{n,j}| + \sum_{k=0}^{n-1} |\beta_k^{n,j}| \le t \left(1 + \frac{3}{\alpha_{2n+1}}\right)^n,$$

$$||V_{n+1}^n|| \le ||W_n|| + \sum_{k=1}^n |s_k| \le \frac{1}{3} h \left(1 + \frac{3}{\alpha_{2n+1}}\right)^n.$$

Put $V^n = (V_i^n, V_{n+1}^n)$. Thus we have

$$||V^{n}|| \leq \sum_{j=1}^{n} ||V_{j}^{n}|| + ||V_{n+1}^{n}||$$

$$\leq \left(1 + \frac{3}{\alpha_{2n+1}}\right)^{n} \left(3nr_{n+1} + \frac{\delta_{n+1}}{\alpha_{2n+1}}\right) + \frac{1}{3}h\left(1 + \frac{3}{\alpha_{2n+1}}\right)^{n}$$

$$\leq \left(1 + \frac{3}{\alpha_{2n+1}}\right)^{n+1} (3nr_{n+1} + \delta_{n+1} + \alpha_{2n+2}).$$

Hence

$$||U^{n}|| \leq \frac{1}{\lambda_{2n+1}} \left(1 + \frac{3}{\alpha_{2n}} \right)^{n} \alpha_{2n+1},$$

$$||V^{n}|| \leq \left(1 + \frac{3}{\alpha_{2n+1}} \right)^{n+1} (3nr_{n+1} + \delta_{n+1} + \alpha_{2n+2}).$$

$$||[\overline{L}]_{n+1} - [\overline{X}^{n} \otimes \overline{Y}^{n}]|| \leq \sum_{i=1}^{n+1} ||[L_{i,n+1}]|| + \sum_{j=1}^{n} ||[L_{n+1,j}]|| + ||X^{n}|| ||V^{n}|| + ||U^{n}|| ||Y^{n}|| + ||U^{n}|| ||V^{n}|| \leq \delta_{n+1} + 3(||U^{n}|| + ||V^{n}||) + ||U^{n}|| ||V^{n}||.$$

The above considerations ((3.6), (3.7), (3.8) and (3.11)) and the condition $r_{n+1} < \frac{c_n}{n}$ (see the definition in (3.7)) give us

(3.12)
$$\delta_{n+1} < \frac{\gamma}{3(n+1)^2} \frac{1}{2^{2(n+1)}},$$

$$\|U^n\| < \frac{\gamma}{9(n+1)^2} \frac{1}{2^{2(n+1)+1}},$$

$$\|V^n\| < \frac{\gamma}{9(n+1)^2} \frac{1}{2^{2(n+1)+1}}.$$

From (3.12) we have

$$\left\| \left[\overline{L} \right]_{n+1} - \left[\overline{X}^n \otimes \overline{Y}^n \right] \right\| < \frac{\gamma}{(n+1)^2} \frac{1}{2^{2(n+1)}}.$$

Proposition 2.2 provides a vector X^{n+1} and $Y^{n+1} \in \mathcal{H}^{(n+1)}$ such that

$$\begin{split} &[\overline{L}]_{n+1} = [X^{n+1} \otimes Y^{n+1}], \\ &\max(||X^{n+1} - \overline{X}^n||, ||Y^{n+1} - \overline{Y}^n||) < \frac{1}{2^{n+1}}, \\ &(X^{n+1} - \overline{X}^n) \quad \text{and} \quad (Y^{n+1} - \overline{Y}^n) \in \left((R_{n+1}\mathcal{H} \cup R_{n+1}^*\mathcal{H})^{\perp} \right)^{n+1}. \end{split}$$

This implies

$$(R_{n+1}X_i^{n+1}, Y_j^{n+1}) = d_{ij} \text{ for } 1 \leqslant i, j \leqslant n+1,$$

$$\left(X_i^{n+1}, \frac{e_{2j-1}}{\lambda_{2j-1}}\right) = \begin{cases} \alpha_{2i-1} & \text{if } j=i, \\ 0 & \text{if } j < i, \end{cases}$$

$$(\varepsilon_{2i}, Y_j^{n+1}) = \begin{cases} \alpha_{2j} & \text{if } i=j, \\ 0 & \text{if } i < j. \end{cases}$$

Furthermore

$$||X^{n+1} - (X^n, 0)|| \le ||X^{n+1} - \overline{X}^n|| + ||U^n|| < \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} < \frac{1}{2^n}$$

and

$$||Y^{n+1} - (Y^n, 0)|| < \frac{1}{2^n}.$$

Thus the sequences $(X_i^n)_{n\geqslant i}$ and $(Y_j^n)_{n\geqslant j}$ converge in norm. Let respectively X_i and Y_j be their limits. Then we have by going to the limits

$$\begin{cases} [L_{ij}] = [X_i \otimes Y_j] \\ (RX_i, Y_j) = d_{ij} \end{cases} \quad i, j \geqslant 1.$$

Thus $\psi_{ij} = [X_i \otimes Y_j]_{\mathcal{A} + \mathbb{C}K}$ for all $i, j \ge 1$, and the proof is complete.

We have shown in [2], Proposition 3.3 one consequence of the properties $E_{0,\gamma}^r$ and $E_{0,\gamma}^l$.

PROPOSITION 3.3. Assume \mathcal{A} a is weak*-closed subspace of $\mathcal{L}(\mathcal{H})$. If \mathcal{A} has one of the properties $E_{0,\gamma}^r$ or $E_{0,\gamma}^l(0<\gamma\leqslant 1)$, then $\mathcal{A}\cap\mathcal{K}(\mathcal{H})=\{0\}$.

Proof. Without loss of generality, we may suppose that $\mathcal{E}_0^r(\mathcal{A})$ or $\mathcal{E}_0^l(\mathcal{A})$ contains $(Q_{\mathcal{A}})_{\gamma} = \{[L] \in Q_{\mathcal{A}}/||[L]|| < \gamma\}$. Then for every $[L] \in (Q_{\mathcal{A}})_{\gamma}$, there exist $(x_n)_{n\geqslant 1}$ and $(y_n)_{n\geqslant 1}$ in $(\mathcal{H})_1$ which converge weakly to 0, and $\lim_{n\to\infty} ||[L] - [x_n \otimes y_n]|| = 0$.

Let $K \in \mathcal{A} \cap \mathcal{K}(\mathcal{H})$, then we have

$$\lim_{n \to \infty} \langle K, [L] - [x_n \otimes y_n] \rangle = 0,$$

$$\lim_{n \to \infty} (Kx_n, y_n) = \operatorname{tr}(KL).$$

Since K is compact and $(x_n)_{n\geqslant 1}$ converge weakly to 0, then $||Kx_n|| \to 0$. As $||y_n|| \le 1$ for $n \ge 1$, $|(Kx_n, y_n)| \le ||Kx_n|| \to 0$, we have $\operatorname{tr}(KL) = 0$ for every $[L] \in (Q_A)_{\gamma}$. Then K = 0.

It is obvious that the property $X_{0,\gamma}$ implies the properties $E_{0,\gamma}^r$ and $E_{0,\gamma}^l$ $(0 < \gamma \le 1)$. Thus we obtain the following corollary.

COROLLARY 3.4. Suppose A is a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$, and $K \in \mathcal{K}(\mathcal{H}) \setminus \mathcal{R}(\mathcal{H})$. Then A + CK has not the property $X_{0,\gamma}$.

We conclude that for every weak*-closed subspace \mathcal{A} with the property $X_{0,\gamma}$, $(0 < \gamma \le 1)$ and $K \in \mathcal{K}(\mathcal{H}) \setminus \mathcal{R}(\mathcal{H})$, $\mathcal{A} + \mathbb{C}K$ has the property (A_{\aleph_0}) without having any property $X_{0,\tau}$; this proves that Theorem 1.5 fails in a general case.

REFERENCES

- H. BERCOVICI, C. FOIAŞ, C. PEARCY, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS Regional Conf. Ser. in Math., vol. 56, Amer. Math. Soc, Providence, R.I, 1985.
- 2. C. BENHIDA, Espaces duaux et propriétés $(A_{m,n})$, Acta. Sci. Math. (Szeged) 58(1993), 431-441.
- 3. B. CHEVREAU, Thèse d'état, Bordeaux I, 1987.
- B. CHEVREAU, C. PEARCY, On the structure of contraction operators I, J. Funct. Anal. 76(1988), 1-29.
- 5. B. CHEVREAU, G. EXNER, C. PEARCY, On the structure of contraction operators III, Michigan Math. J. 36(1989), 29-61.
- B.Sz.-NAGY, C. FOIAŞ, Harmonic Analysis of Operators on Hilbert Space, North Holland, Amsterdam 1970.
- 7. M. OUANNASSER, Sur la convexité de certains ensembles dans le prédual d'une contraction de la classe A, to appear.

CHAFIQ BENHIDA
UFR de Mathématiques et Informatique
Université Bordeaux I
351, Cours de la Libération
33405 Talence Cedex
FRANCE

Current address:

Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées 59655 Villeneuve d'Ascq Cedex FRANCE

Received July 8, 1993; revised June 20, 1994 and July 20, 1995.