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ABSTRACT. Here we show that we can extend the properties (Ap,, ) from a
given weak*-closed subspace to a larger one in some cases. Our technique
yields examples of weak*-closed subspaces A having the property (Ay,) with-
out having any of the properties X -, in contrast to the case where A is the
dual algebra generated by a contraction in the class A (for which it is well
known that the two properties are equivalent).
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1. INTRODUCTION

Let H be a separable, infinite dimensional, complex Hilbert space, and let £(H)
denote the algebra of all bounded linear operators on H. If 7' € £L(H), then Arp
denotes the smallest subalgebra of £(*) that contains T and [ and is closed
in the weak*-topology. Let Qr denote the quotient space C'(H)/tAr, where
C'(H) is the trace-class ideal in £() under the trace norm, and * A7 denotes the
preannihilator of Az in C'(H). One knows that Ar is the dual space of Qr and
the duality is given by '

(A, [L]) = tr(AL), A€Ar, [L]€@r,

where [L] is the image in Qr of the operator L in C1{¥). If z and y are vectors in
‘H, we write, as usual, # ® y for the rank-one operator in C!(#) defined by

(z®y)(uv) = (v, y)z, u€eH.
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Then, of course, [z ® y] € Qr, and it is easy to see that
(A [z®yl) = tr(A(z @ y)) = (Az,y).

Suppose now that m and n are any cardinal numbers less than or equal to Ng,
and let A be a weak*-closed subspace of £L(#). We say that A has the property
(Am,n) if for every doubly indexed family ([L;: ;])ogi<m, 0<j<n 0 Qu4, there exist
sequences (Z;)ogi<m and (y;)ogj<n in M such that:

(11) [L.-,-]:[z,-@yj] for 0€7i<m and 0<j<n>

Furthermore, if for every s>p (p fixed) we can solve (1.1) and also the inequalities:

llz:]l < (5 > II[Linf) , 0<i<m,

0gji<n

3

lly; 1l < (8 > ”[Lij]”) , 0<j<n,
0<i<m

then A is said to have property (Amn(p)). The class A = A(H) is defined to

be the set of all absolutely continuous contractions for which the Sz.-Nagy-Foias

functional calculus is an isometry (cf [6], Chapter 3).

We also define the classes Am, = {T € A | Ap has the property (Am )},
Anmn(p) = {T € A | Ap has the property (Amn(p))}. The class A, , is also
denoted by A,,.

Let 0 € @ < 1. Then the following subsets of the predual of A were defined
in [1] and [4] : X(A) denotes the set of all [L] € Q4 such that there exist (Z,)neN
and (yYn)nen in (H), (the closed unit ball of H) which converge weakly to 0 and
satisfy (1.2), (1.3) and (1.4):

(1.2) limsup |[[L] — [zn @ wll| < &;
(1.3) YweH  lim ||z, @ w]l| = 0;
(1.4) VweH lim [|fw®wll=0

E5(A) is the set of all [L] € Q.4 such that there exist (Zn)nen and (yn)nen in (H),
which converge weakly to 0 and satisfy (1.2) and (1.3). We define also £;(.A) by
symmetry on the second condition.

Note that Xy(A) is closed and absolutely convex; on the other hand the
convexity of the sets £5(A) and E]J(A) is an open question (cf. [7] for partial
results).
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DEFINITION 1.1. ([1]) Let A be a weak*-closed subspace of L(H); A is said
to have the property Xg., 0 <8 < v < 1 if X5(A) D (Qu)y (the closed ball in
Q. centered at 0 with radius 7).

DeFINITION 1.2. ([4]) Let A be a weak*-ciosed subspace of L(H); A is said
to have the property Ej , (0 < 0 < v < 1) (respectively E} ) if a6(£5(A)), the
closed absolutely convex hull of the set £](A), (vespectively aco(£}(A)) contains
(Qa)y-

The following theorem is established in [3], Chapter 3.

THEOREM 1.3. Let A be a dual subalgebra of L(H). If A has the property
Xoy, (0< 8 <y <1), then A has the property (I\y,).

This theorem is still true when A is a weak™-closed subspace of £{H).
In the case of a dual subalgebra of £(?) generated by an operator in the
class A, we have the following result ([5], Theorer1 6.2):

THEOREM 1.4. Assume T € A = A(H). Then T € Ayn, (respectively
T € Ax,,1) if and only if there exists v (0 < 4 < 1) such that Ay has the property
E§ .y (respectively Ef ).

This result is similar to one of the characteriations of the class Ay, given in
(1], Chapter 4.

THEOREM 1.5. Assume T € A = A(H). Then T € Ay, if and only if there
exisls v, (0 <y < 1) such that Arp has the propety Xg .

We are interested here in the extension of tlie properties (A In [2] we
obtained a definite result when we “add” a finite yank operator R to A, where A
is a weak*-closed subspace of £(H) with the propurty Xo4 (0 < v < 1). If R(H)

denotes the set of all finite rank operators on % the main result is:

m,n)‘

THEOREM 1.6. ([2]) Let A be a weak*-closed subspace of L(H) with the
property XoH (0 <y < 1), and R € R(H) \ {0} such that rank(R) = n. Then
A+ CR has the properties A1(1 + 2/7) and (A, 2,) N Ay, n) \ (Rng1) withoud
having any property Eg , or E[')’p .

This result implies that Theorem 1.4 fails in the general case. The purpose
of this paper is to give a similar result with any compact operator K.
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2. PRELIMINARIES

The following result is proved in [1], Proposition 3.1.

PRrOPOSITION 2.1. Let A be a weak*-closed subspace of L(H) with the prop-
erty Xoy (0 < ¥ € 1); then Mn(A) has the property Xo y/n2, for every n > 1,
where M, (A) = {(Aij)1<ijgn | Aij € A} which is naturaly identified with a sub-
space of H(™) and QM. (q) is identified with M,(Qa)-

We have the following result, given in [3], Chapter 1.

PROPOSITION 2.2. Let A be a weak*-closed subspace of L(H) with the prop-
erty Xo (0 < v < 1). Suppose that we are given [L] € Qa, vectorsa € H, be X,
(we)r1gkgn in H, a finite codimensional subspace £ of H and 6, > 0 such that
L] - [a®B)ll < & ; then there ezisi z and y in H such that :

[L]:[:E@y], (Z—G)E;C, (y—b)Eﬁ,

8
sup([lz — al, |ly — &l}) < \E

lwe@ (=)l <e and |l -a)@ull<e, I<k<n

3. EXTENSION OF THE PROPERTIES (F\m,n)

Let K(7) denote the set of all compact operators on H. We have the following
result.

THEOREM 3.1. Let A be a weak*-closed subspace of L(H) with the properly
Xo, (0 <y < 1), and K € K(H)\ {0}. Then A = A+ CK has the property
(A (1 +2/7))-

Proof. We may suppose that ||K{|| = 1.

Let X = 3 Aiei ® e; be the canonical writing of K, where (e;:):, (&:): are
i21
orthonormal systems and {); ); a nonincreasing sequence of positive numbers. Then

A1 =1 and A\, 0, if K is not of finite rank. Let 5 > 0 and take

pr—1
Ry = Z Xigi®e, k21,

i=1
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where p; satisfies

=

Y On)? < -—‘/1%_—1-(1+3)_%-

k21 7

We have Ry — K in L(H) and, if ry = [|R} — Re—1lf = Ape_,, £ 22,

2\ 7 s JITG-1

k22

Let ¥ € Q4. Thus 9 is well defined by it: action on A and on CK; then
we write ¢ = ([L],d) where [L] = ¥|A4 and ¢(.X) = d. We may suppose that
max([Z]} ) < 1. _

Let us denote a = e; and b = de;. We have (Ria,b) = d and

L} = [ @ Bl < [ILLIII + [lall o)
LN+ 1d|
<2.

Proposition 2.2 provides vectors z1, y; € H such that

[L)=le1®@wn], sup(llz1 - all?, | —blf*) <

=M

and
(z1 —a), (31 —b) € (RyHU R N {a,b}*.

It follows from this that (Ri2;,31) = d and (z4,e ) = 1.
Suppose now that we can find (z;)agr<n and (Y )2grgn € M such that

(L] = [zx ® w], (Rizk,ue) =d, (2x,e1) =1,

5
1 3 2\ % .
“zk_xk_1||2< _(_41)2_ (1_- _) rk,
v 7
3 3
2 1 ? 2\ &
llzll* < (1+—) +£+_77) (1+—) er,
7 ¥ Y s
2\* 2\2 A 1
llyell < <1+;> +(1+m7) (1+:}:) Z‘r‘]?.
i=2

We will have occasion to use max(||z¢||’, |lu:|l®) < (1 + n) (1 + %) which
may be deduced from the induction hypothesis. :
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Note that
(Ra412n,¥n) = d + ((Rngs ~ RBa)zn, 9n).
Let up = —((Rn41 — Ra)Zn,yn)er. Since (zn,e1) = 1 we have (Rpy1Zn,¥n +
up) = d.
By using (3.1) and the fact that || us ||< rag1 || Zn || || ¥ || we have
L] = [2n @ (yn + un)lll < flzall fluall

< llzall lyallrass

3
7

<(1+4n)? (1 + %) Fatl.
Thus there exist, by Proposition 2.2, ,,4; and y,41 € X such that
(L] = [zn+1 ® Ynt1],
3 )
max (“xn+1 = 2l llynt1 ~ (g + un)flz) < E’Yﬂl (1 + %) 2T'n-n,
and

((Zn41 = 2n), (Unt1 — (Yo + ) € (RapHU Ry, H)' U {2}t
From this we deduce that (Rnt1%n41,Yn41) = d, (Zng1, €1} =1,

2 2 2
|I£n+1“ = “zn+1 - In” + ”x““

3 3 3 3
(1+n)7< 2)5 (1+n)5( 2)5 - ( 2)
< (142 rpp 14 2 re4 (142
y) ™ y ¥ Z’ v

Y =2
3 3
2, (L+mif,  2\*E
<(1+—)+(—i(1+—) > o,
7 v 1) o
and
llns1ll < lgns1 = (¥n +w)ll + ynll + [luall
3 3
SR (3) e (142)
< —= (142} r3 +(1+2) +
Nz y) ™t Yy
2V - 2
+ (141 1+ S ori+(1+9) 14 2 Jrans

=2

= 5 n

2\ 7 2\? . 2\7 <~
< 1+; +(1+n) 1+~7 ram +{1+1) 1+; r]

=2
9\ ¥ 9 2n+4l _
<(1+—) +(1+n)(1+—) > o2
g 1 o
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It is easy to see that (z,), and (ys ), are Cauchy sequences and thus converge. If
z and y are their respective limits we have

el < 1+ 20) (142,
[L} = lim [z, ® gu] = [ ® 9],
d= lim (Rnzn,yn) = (Kz,y).
It follows that
¥= @ md [olllll < (1+20) (1+2)
and the proof is complete. 1

Here, we establish a result similar to the finite rank case.

THEOREM 3.2. Let A be a weak*-closed subspace of L(H) with the property
Xoy (0<y< 1) and K € K(H)\ R(H). Then A+ CK has the property (Ry,)

Proof. As before let K = y A\e; ® e; be the canonical writing of K and
i21
|K|| = 1. Then A; =1 and A; \, 0. Take:
Pn f]
R, = Z Aigi®@e;, R =R, — R,y and r, = “Rn” =X, for n>x2
i=1
The conditions on the choice of the sequence (pn), will be given later, now
we only assume that p, > 2n+ 1. Since the proof is fairly technical we first give a
general outline: given a doubly infinite matrix (¥;:);»1, ;21 of elements in Q4 we
want to find sequences of vectors (2;);»; and (y;);>1 in H such that

Vi =z ®y;] 4,721

It is well known (and easy to prove by standard scaling argument) that we may
assume ||t || < 6;8; where (8, ), is a given seque 1ce of strictly positive numbers
(to be chosen later). As in the previous theorem we “split” 4;; into its actions
[Li](= :;]A) on A and d;;(= +4;(K)) on CK. For any & > 1, [I] will denote
the k£ x k matrix with entries [L;;] in @4 (which as usual, we identify with an
element in the predual @a,(4) of the weak*-closed subspace M (A) in L(H(*)),

The idea of the proof is to build by induction on k vectors X* = (XF, ..., XF),
YE=(vF,...,Y¥) in H* such that

(3.2) L], = [x* o Y*],



10 CHAFIQ BENHIDA

and

(3.3) (ReXf,Yf) =dij 1<4,5 <k,

(34) sup (| X* ~ (K41 0) |, [* = (FL,0)) < gy (k22

Suppose this has been done; then clearly (3.2) becomes
(3”5) [Li.‘i] = [Xuk ® ij]a k2 max(i:j))

and the sequences

(Xak)k:;; 4 (Yik)kai
are Cauchy sequences for each i. Denoting by X; , Y; their respective limits we
have, by going to the limits in (3.2) and (3.3),

{ [Lij] = [Xi ® Y]]
(KXi,Y;) = dij,
that is the desired conclusion.

The main difficulty in implementing the induction procedure (that s, assum-
ing X*,Y* are defined up to k = n, define X"*+! and Y™*!) is to obtain condition

(3.3). We proceed in two steps:
(a) First, find vectors U™ € M, V™ € H{"+1} such that the vectors

X' =(x™U"), Y =(@"0+V"
satisfy

(Rn+17?,7?) :d;j, I1<5,ij€<n+1,
with “reasonable” bounds

IU”MI(= X" = (X", 0)ll) and [IV"].

(b) Then, Proposition 2.1 allows us to apply a matricial version of Propo-
sition 2.2 to conclude the induction step. (Note that, to facilitate step (a), some
additional technicalities have been included in the induction hypothesis.}

Let (an)n>1 be a decreasing non negative sequence such that oy = 1:

1 ¥ 1
n+l o4 1)2 22(n¥1)+1°
(1 + a3 ) H#(n+1)

n2l,

(3.6) Oan41 < Azntl
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, def 1 ¥ 1
(37) A2 < Cp = 3 T 34(71 n 1)2 CYCESIY n = 0.
1+ )
( don41

Let (4i;)i1,521 C Qatck. As before vy = ([Li;], dij} when [Li;] = ;|4
and di; = ¥;;(K); we may suppose that

lis; Il < 6:6;
where (6, )n>1 is a sequence satisfying
(3.8) bnt1 < ¢y, n20.
Put a = ey and b = dy161 + ases. We have (Rie,b) = di1 and

NL11] = [a @ Bll| < &7 + il 18]

<841/ +ad

<7.
Proposition 2.2 provides a vector X! and Y! € H such that
[Lu])=[X'® Y],
ma’x(”X] - a”: “y1 - b“) <1,
(X' —a), (Y! —b) € (RyH U RIH)* Nspan{a,b}*.
This implies (R1 X', Y") = di1 and max(||X|, [|Y]}) < 2.

Suppose now that we can find (X*),»; and (Y*)z»1 when X* Y* are in
H®) such that (3.2), (3.3) and (3.4) hold, and

ok oy [esi =4

(3.9) (’\23-1Xz 162]"1) - {0 if § < i;
‘ oy ifi=j

3.1 YRy =0 T

(3.10) (e20,37) {0 ifi<j.

Suppose that the vectors (X*)1<rgn and (Y¥)1grgn have been found for n > 1.
Let

(L4 = ([Li))igiign+1,

XU = (XU, Y= (0 VRV,

n n n
€2n41 €2k n,J
U™ = piat1 3 + E ;ﬂkA—, Vit = E Bileansr, Vg = W + E SkE2k—1,
ndl Ty Tk k=0 k=1
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where
n
1 n n
Pn+1l = Oont1, HE = ——— Z piea, Yi') + pngi(€ongr, Yi') | for 1<k <m,
2k I=k+41
ﬁn‘j — @
Xon41 '
and,for 0<k<nand1<j<n,
. 1 n
= 4
B = - (Ra41 X000, V) + Z (R"“X;:‘H”B? 162'“) ’
A2k 41 I=k+1
an+1,n+1 = 1 n
Wn = ————¢€on41 + 0204262042, 5n = (dnnst = (Rop1 Xg, Wh)),
®2n 41 don-1

1 n
Sp = P (dk,n+1 — (Rn+1X?, Wn) - Z (R,-,.{.lXE,SJEz!_])) for 1 < k < n.
- I=k+1

We shall verify that

We start to establish that
(Rar XD, Y] + V1) = (R X2, YP) + (Ran X7, V) = dij.

For this let us calculate

bt}

(R X2, V]) =) (Rn+1X?,l3£’j€2k+1)
k=

= z (R,,_‘_lX,-”,ﬁg’jEzk-y—l)

k=i—1

n
= o1 + z (Rn+1X:'1aﬁ:'j52k+l)

k=i

S o

= _(T?’YH-IXFt Y]n)
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which run down by the definition of ﬁ?_’jl. Thus
(Rn_‘_]X?,Yjﬂ + V:’n) = ((Rn+1 _Rn+1) i 7Y )
= (R XD, Y]) = dij;

(Rat1XP,Vitg) = (Rupn XP, W) + D (Rt X7, skek-1)
k=1

n
= (Rop1 X7 W) + Z (Bnt1 X7, sk€ak~1) + @2i-15;
k=i+1

= (Rnp1 X7 W) — 0in15 + di a
— (Rap1 X[, Wa) + i 15
= dint1-
We have also
(Ratr U™ Y + V) = (Rupa UM, Y]) + (Rusa U™, V)

= fin41 €2n+1, + Zﬂk €ak, Y, + dnt1,j

n

= pnt1(€2n41, V) + Z p €2k, V') + oajpty + dng
k=j+1
= cgjpty — ojpy + dnyj = dngy g
and

(Rop1U™ Vity) = (RastU™, Wa) = dngings-

We remark from the induction hypothesis that max{||X*{|,||Y*|{) < 3. Now, we
seek upper bounds for [|[U"]], [V;?|| and V.2 ||. Tt easy to check that

I,Un+1| < M2n41, .
3 \""
|uk|<3°‘—2'lﬂ(1+~—) , 1<k <,
(6% [0

'2n 2n
‘,Bn '7| < n+1l5
a’2n+1 (
) 3 3 —(k+1) 6§ 5.
[ﬂ,’c"]|< t(1+ ) U<k -1, wheret=3rn+1+L1’,
2n+1 Aon 41 O2n41

; 3 \"*
fsef < azl (1 + = ) 1< k< n, where h = 8,41 + 3||Wy||.
n+1 2n+41

1 3\
0l < (14 2

Aantt on

Then
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and .
.= ) 3 n
nl < J n,? < B
<ot Xl < o1+ o)
¥l < e+ S lse < g (14 2
P 3 O2n41
Put V* = (V;*, V). Thus we have
Vel < el + veal
j=1
(1 + ) (3111‘,;.}.1 + 'én+1 ) + lh (1 + 3 )
012n+1 on 41 3 @32n4]
n4l
(1 + ) (3nrny1 + bny1 + 02n42)
X¥2n41
Hence
1 3 \"
o< 2 (14 22 ) e,
(311) 2n41 Qon

3 n+l
V™Il < (1 + cx ) (3nrnqr + bnt1 + @2n42)-

2n+1

B - [0 7] < S il + 3 s 1
i=1 =1

XV DI+ 10 HV
< Snpr + 3010+ IVED + WU (V-

The above considerations ({3.6), (3.7), (3.8) and (3.11)) and the condition r,4; <
n (see the definition in (3.7)) give us

¥ 1

3(n+ 1) AT
¥ I

(3.12) o=l < 9(n + 1)2 22(n+1)+1°

n Y 1
V"Il < g y? T

6n+] <

From (3.12) we have

—n —n Y A
"[I]n+l - [X Y ”’ < “‘(n"+""1)2 SAmF)
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Proposition 2.2 provides a vector X"*! and Y™+ € H(*+D) such that
[Llnt1 = X" @Y™,

p— n 1
max(|| X"+ = XL Yy - Y7 <

gn+1’
(X=X and (Y™ =77 € (RantHU R 10)4)"

This implies
(Rap XYL, Y ) = diy for 1<4,5 < n+1,

(X,l“ 52]’—1) _ {azi—l if j =1,
D O 0 ifj <1,
Cifi=g
.’Yfl+1 = @2 1 !
(620, ;") {0 if i < 3.

Furthermore
‘ 1 1 1
1 n n Evall n
Xt = xm o < X =X 410 < s+ gy < 5

and ]
|y"+ — (v, 0)| < TR

Thus the sequences (X['), 5; and (Yj")n?j converge in norm. Let respectively X;
and Y; be their limits. Then we have by going to the limits

[Lij] = [X: ® Y]] Piis

(RX;,Y;) = dy;
Thus 9;; = [X; ® Yj]asck for all 4,7 2> 1, and the proof is complete. 8

We have shown in {2], Proposition 3.3 one consequence of the properties Ef
and E‘(’)’,Y,

PRroPOSITION 3.3. Assume A ¢ is weak*-closed subspace of L(H). If A has
one of the properties Ej ., or Ej (0 <y < 1), then ANK(H) = {0}.

Proof. Without loss of generality, we may suppose that £5(A) or £/(A) con-
tains (Q4) = {[L] € Qa/l|[L]ll < ¥}. Then for every [L] € (Q.4)y, there exist
(Zn)nz1 and (Yn)ap1 in (H); which converge weakly to 0, and lim }|[L] — [z, ®
ynlll = 0.

Let K € ANK(H), then we have

lim (K, [L] = [zn ® yn]) = 0,
nlirgo(Ka:n,yn) =tr(KL)

Since K is compact and (z,),p1 converge weakly to 0, then ||[Kz,| — 0. As
lynll < 1 for n 2 1, {(Kzpn,yn)| € || Kznl] — 0, we have tr(KL) = 0 for every
[L]€(Qa)y. Then K =0.
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It is obvious that the property Xp, implies the properties Ef ., and E’éﬁ
(0 < y £ 1). Thus we obtain the following corollary.

CoOROLLARY 3.4. Suppose A is a weak*-closed subspace of L(H), and K €
K(H)\R(H). Then A+ CK has not the property Xo .

We conclude that for every weak*-closed subspace .A with the property
Xo,y, (0 <y<1)and K € K(H)\R(H), A+ CK has the property (Ay ) without
having any property Xo .; this proves that Theorem 1.5 fails in a general case.
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