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ABSTRACT. We consider maps induced on the space of bounded operator
matrices via left Schur multiplication by a fixed Schur multiplier matrix.
The main goal is to give a complete characterization of those multipliers that
induce continuous maps when initial and final topologies are chosen from
among the weak, the strong and the norm topologies.

In the process we are also able to demonstrate that multipliers inducing
compact Schur multiplication maps are exactly those with an approximation
property similar to one for compact operator matrices. As well we prove that
diagonal truncation is not strong to weak continuous.

We work in general with matrices whose entries are bounded operators
and we use a non-commutative extention of the usual Schur product, called
“Schur block-product”.
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INTRODUCTION

We consider maps induced on the space of bounded operator matrices via left -
Schur multiplication by a fixed Schur multiplier matrix. The main goal is to give a
complete characterization of those multipliers that induce continuous maps when
initial and final topologies are chosen from among the weak, the strong and the
norm topologies.

In the process we are also able to demonstrate that multipliers inducing com-
pact Schur multiplication maps are exactly those with an approximation property
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similar to one for compact operator matrices. As well we observe that the opera-
tion of diagonal truncation is not strong to weak continuous.

We work in general with matrices whose entries are bounded operators and
we use an extention of the usual Schur product to such matrices, introduced in
(4], [5] and [7] and termed “Schur block-product”. Schur block-product is a non-
commutative generalization of the regular Schur product which retains many of
its properties. Some distinctions, on the other hand, can be seen in the continuity
properties. Block products seem to provide valuable insight into the behaviour of
the original product as well as of some of its extentions.

NOTATION AND CONVENTIONS

Consider the set M,y of a X b complex matrices, where a and b are positive
integers or countable infinity (denoted by “co”). (If @ = b we write M, for Myxs.)
Some of these matrices can be regarded as bounded operators from a Banach
space £ to a Banach space £7, where £, with the usual norm || - ||, (|| -||2 is simply
written as ||-{}), is identified as either a subspace of M. or of M.y, depending on
convenience (g, ¢ are either positive integers or 00}. The set of elements of Mgy,
representing bounded linear operators from E;‘,’ to ZZ shall be denoted by BM ;.
BMgxs is itself a Banach space and, in the case a = b, a C*-algebra under the

o .»

usual operator norm || - ||, matrix multiplication “o” and conjugate-transposition
“¢”. A matrix A € M,y represents a bounded operator from £} to £2 exactly
when all of its columns are in #2 and the supremum of their £2-norms is finite.
This supremum gives the norm of A in B(£},£2) and is called the column norm of
A. Similarly, A represents a bounded operator from £ to £2° exactly when all of
its rows are in £? and the supremum of their £2-norms is finite. This supremum
gives the norm of A in B(£Z,£5°) and is called the row norm of A.

The i — j-th entry of A € Myx, is denoted by A[i, j], with the understanding
that if @ = 1 then A[l, j] can be substituted by A[j] (and similarly if & = 1). M1
shall be simply identified with C.

Recall that the Schur product AO B of two matrices A and B in M.y, is
their entrywise product, i.e. (AQ B)[1,j] = A[¢, §]B[i, 5]. (For basic information
on finite and infinite dimensional Schur multiplication see [1], [3], [11], [12] and
(13])

A more general set than M,y is the set Maxs(Mexa) of a x b matrices
with entries from M,y 4. We shall refer to such matrices as “block-matrices”. If ¢
and d are finite then M,y (M xq4) can be naturally identified with { “partitioned”)

Measxas. If a and b are finite then Mayp(Mexq) can be readily identified with the
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tensor product Mowa @ Maxy. Maxs(Myx1) and Miyy;(Maxs) are identified with
Maxb-

If A€ Muxp(Mexq) then A[Z, 5] (€ Mcxa) stands for the i — j-th block-eniry
of A and (A[i, j])(k, m] (€ C) indicates the k — m-th entry of A[Z, j]. The notation
is simplified (as mentioned before) whenever one or more of a,b, ¢ and d are 1.

We shall be mostly concerned with the subspace Maxs(BM.xa) of
Maxs(Mcxaq). Some block-matrices in that subspace can be regarded as bounded
operators from the Iilbert space Gba 2 to the Hilbert space é £2, in the usual way,

j=1 i=1

with “@” indicating the £2-direct sum. (Here @ 2, with the usual £2-norm, is

identified as either a subspace of erl(Bmel) or of Mixr{BMixm), depending
on convenience.) The subspace of all such matrices in Mays(BM,xq) is denoted
by BMaxs(Mcxa) and is, in the case a = b, a C*-algebra under the usual operator
norm, the usual block-matrix multiplication and conjugate-transposition {all de-
noted by the same symbols as before; note that conjugate transposition is defined
on all of Muxy(BMcxa) by: A*[i, 5] = (A[7,4])*).

To simplify notation it is convenient to make further use of the tensor product
symbol “®”. If A € M.xq and B € M.y, then A ® B shall stand for the element
of Myxs(Mexa) specified by: (A ® B)[7,5] = B[i,j] - A. In particular, if g €
BMs (= £2,) and h € BMysr (= £2) then g ® h € BMyo: (Mpnxt) (= kéal 2).

The Schur block-product A O B of two block-mnatrices A and B in My (BM)
1s a form of entrywise product, with block-entries multiplied together as matrices,
i.e. AOB € M,xs(BM) and (A Q B)[4, j] = A[¢, j]e B[z, 5]. This non-commutative
extention of the well-known Schur product was introduced in [4], [5] and [7], and
seems to provide a natural and useful tool for further analysis.

ProPOSITION A. Suppose A in Mywo(BM) is such that ACT €
BMaxy(Mesq) whenever T € Moy (Mcoxa). Then the lincar map
A\I/ : BMaxb(Mcxd) — BMaXb(MCXd)
defined by: A ¥(C) = A0C, is bounded.

Proof. This map is clearly closed. The rest is the Closed Graph Theorem. 8

A matrix A satisfying the hypothesis of Proposition A is called a lefi Schur
block-multiplier on BMaxs(Mexa). The set of all such matrices in Maxs(BMexc)
is denoted by SMoxp(Mecxa). Even in the familiar commutative case b=1, ¢ = o0
there is no known workable set of necessary and sufficient conditions making it
possible to decide which matrices belong to SMxs(Mexa). If A € SMaxs{Mexa)
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then necessarily sup [|A{z, j]|| < [|a¥|| < oco. This condition is not sufficient. The

i\
following is a sufficient condition which is not necessary (For the proof see [6]):

PROPOSITION B. Suppose that A in Myxs(BM,) is such that all block-
rows of A are in BM,y;(M.) and the supremum of their norms is finile. Then
A € SMaxs(Mexa) and ||a¥|| is no larger than this supremum. In particular,
BMaxs(M.) C SMaxs(Mexa) and, for every C in BMgyxs(M.), [|c ¥ < ||C]}-

The following recent material deals with the basic properties of Schur block-
products in finite and infinite dimensional cases: [4], [5], [6], [7].

ADDITIONAL NOTATION AND CONVENTIONS

(1) weak, sir, norm indicate the usual weak operator, strong operator and
operator norm topologies on BMaxp(M.xq)}. In view of previous identification
weak and norm can also indicate topologies on £2.

If no specific topology is indicated the norm topology is assumed.

(2) f T € BMy(M,) then Ly : BMaxp(Mexd) — BMaxs(Mcxa) is the
bounded linear map defined by: Lr(A) = T o A. Right multiplication by T map
Rp is defined similarly.

A 0 0
. Lo 0 B 0
(3) Block-diag {A, B,C,...} indicates 00 C
(4) # indicates the Banach dual {space).
(5) trn stands for the transpose.
(6) If z = (a,b,¢,d,...) in C* then % stands for (@,b,¢, d,...).
(7) A vector z in a set S is said to be a separating vector for the family G of
functions on S if for any two distinct functions in G their values at z are distinct.
(8) If z and y are vectors in a Hilbert space H then z[® |y denotes the rank
one operator T in B(H) specified by: T(2) = {z, y)=.
(9) We shall use the following convention throughout this paper:
Epi will stand for the m — k-th standard matrix unit in My;
Fi will stand for the m — £-th standard matrix unit in M,;
em will stand for the m-th standard basis element of £2, no matter
what ¢ is;
fm will stand for the m-th standard basis element of eg, no matter
what ¢ is.
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1. SEQUENTIAL CONTINUITY AND COMPACTNESS

This first lemma is common knowledge and it is stated here for completeness.

LEmMA 1.1. For a sequence {An}S%, in BMy(M,)

(i) the following are cquivalent to each other:
(a) weak hmAn =0

(b) sup “A || is finite and weak llmA (7,71 = 0 for all <, 5,

(¢) sup 1Anl| is finite and ’hm (A (G, 7Dk, = 0 for all ¢, 5, k1,
(ii) as well, the following are equivalent to each other:

(d) str—lim Ap=0;

(e) sup “A | is finite and str-} hmA o(ly ®e;) =0 for each i,

() sup [|An]l is finite and 11m A o{f; ®ei) =0 for eachi,j.

THEOREM 1.2. Suppose A is in SM,{M,). Then:
(i) a¥ : (BMo(My), weak) — (BMy(M,), weak) is sequentially continuous;
(i) AW : (BMo(My),str) — (BMg(My),str) is sequentially continuous.

Proof. It is enough to demonstrate the stated continuity properties of 4 ¥
at 0.

(i) Suppose {B,}., is a sequence in BM,(M,) such that str—léom B, = 0.
n—r
Then str-lim By, o (I, ® e;} = 0, for every j, by Lemma L.1.
n—0

AlLj] 0 o 0
0 A4 0 0
A\Il(Bn)o(IbQEZEj): 0 0 A[3,]] 0 ano(h,@ej)
0 0 0

and therefore str- hmA\Il( Jo{ly ®e;) =0, for every j. So str—hmA\Il(B ) =10
— 00
by Lemma 1.1, Since sup||A‘I’(Bn IESIFRAE sup||Bn|| < oo.

(i1} Suppose {,8ﬂ >, Is & sequence in BM (My) such that weak-lim B,, = 0.
=00
Then

weak-lim(4 ¥(B,))[i, 7] = weak-lim A[z, j] o B, [z, 7]
=00 - O
= Alt, j] o (weak-lim B, (4, j]) = 0, for every 1, j.

Since sup [|a¥(By,)|| € |a¥] - sup ||Ba|| < oo, it follows, by Lemma 1.1, that
213 n
weﬂak-limA\Il(Bn) =0. 8
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Lemmas 1.3, 1.5 and 1.6 are hardly new. We present them here because they
are crucial to the rest of the theorems in this section.

LemMA 1.3. Suppose Hy and Hy are Hilbert spaces of non-zero dimensions
and T € B(H3). Then T ts compact if and only if Ly : (B(H), Hy), weak) —
(B(H1, Hy),str) is sequentially continuous.

Proof. Suppose Ly : (B(H1, Ha), weak) — (B(Hy, H3),str) is sequentially
continuous.

Let {z,}2%, be a sequence in H; such that weak-limz, = 0. If y is any unit
vector in H; then w%aﬁiim zn[® |y =0, and consegue;ftly s&l:}ci’om Lr(z.[®]y) =
str-im(T(z,) @ |y) = 0.

In particular: lim (T(z,)[ ® [¥)(y) = lim T(z,) = 0. This shows that T
is compact. e e

Conversely, suppose T is compact. Let {B,}5%, be a sequence in B(H,, H>)
such that wglal(;.{im, B, =0. Then 0 = T(wenak;‘.l@im Bn(z)) = nli.rr;o(il“o B, )(x), for
every z in H;.

In other words: str-lim7T o B, = 0. So Ly : (B(H;, Hz), weak) — (B(H,

n-—co
H,),str) is sequentially continuous. &

THEOREM 1.4. For A in SM,(M;),
AV (BMg(My), weak) — (BM,(My), str)

15 sequentially continuous if end only if Afi, j] is compact, for alli, j, and moreover
lim A[z,j] =0, for all j, whenever a = co.
=00

Proof. Suppose 24U : (BMg(M;), weak) — (BM,(M;),str) is sequentially
continuous. We shall show that

All,5) 0 0 0
0 A2,5 o 0
0 0 A3 o
0 0 0 ]

is compact, for every j; this is equivalent to the required conclusion.

By Lemma 1.3 it is enough to establish “weak-to-strong” sequential conti-
nuity of Lblock—diag{A[l,j],A[Z,j],A[a,j],,.,} t BMaxi(My) — Bﬁ{faxl(Mb) at 0 (and
therefore everywhere). Fix j. Suppose {D,}5, is a sequence in BM,x;(M,) such
that weak-lim D,, = 0.

n—00
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Let {B,}2, be the sequence in BM,(M,) such that, for each &,

D, k=3
Buolh®er)= { 0 l otherwjise

N = 00

Then weak-lim B, = 0 and consequently str-lim 4 ¥(B,)} = 0. Thus

0 =str-lim 4 ¥(Bp) o (I} ® ;)

AlLjl 0 0 0
0 A[2,j] 0

= Skl:léom 0 0 A[3,j] o le° B, o(Ib®e,-)
0 0 0
= str-lim L

iyt block-diag{A[l,j],A[z,j],A[S,j],...}(Dn)’ as required.

All, 4] 0 0 (]
0 A[2,7] 0 ]

Conversely, suppose 0 0 A3,7] © is compact, for every j.
0 0 0 .

Let {Bn}5%; be a sequence in BMy(M;) such that weak-lim B, = 0. Then
f-—Cca

str-lim 4 ¥(By) o (I ® ;)
n—0

AL 0 0 07
o oazg o
:S};r——}één 0 0 A3,4] O o B, o (Iy ® ej)
0 0 0

= sﬁr_',lg“Lblock-diagm[l,j],A[z,j],A[a,j],...}(Bﬂ) =0

for every j, by Lemma 1.3. So str-lim4W¥(B,) = 0 by Lemma 1.1, since
Nn—oo

sup [|a¥(Bn ) € ||a¥]] - sup || Bal| < co.

This demonstrates the stated continuity of 4W at 0 and therefore every-
where. 8

LEMMA 1.5. Suppose Hy and Hy are Hilbert spaces end T is non-zero in
B(Hj). Then Ly : (B(H,y, Hz),str) — (B(Hy, Ha),norm) is sequentially conlinu-
ous if and only of Hy is finile-dimensional.

Proof. Suppose Ly : (B(H:, Ha),str) — (B(H1, Hz),norm)} is sequentially
continuous while H is infinite-dimensional.
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Let z be a non-zero element of Hy and let {y, |n € N} be an orthonormal
set in Hy. Then str-limz[® |y, = 0 and therefore lim Lr(z[®|yn) = lim T(z)-
n—oQ i n—od n—00
[® Jyn = 0. So T(z) = 0 since [ T(z)]| = [(T(=)[ @ [ )ya)l} < [T (2)[ ® Junll-
Thus T must be the zero operator, which is a contradiction. The converse is
trivial. ®

Let S be a 0-1 matrix in M, defined by S[i, 7] = & ;.

LEMMA 1.6. If {T,}3%, is a sequence in BM,(My) such that sup ||T|| s
finite, then "

(i) str-lim T, o (1, @ (5°)°) = 0;

(i) wiag‘{;.[im(h ®S") o T, =0.

Proof. (i) Clear, because sj:‘tl‘i)om(Ib ® (5*)") = 0 and sup [| 7% is finite.

(it) wenak;[im((lb ® S™) o T,)[i,7] = O for each 1,7, because (I ® S") o
T:)li, 4] = 0 whenever n > i. So weaﬁ-lim(!b ® 5%) o Tp = 0 by Lemma 1.1, since
(7 @ $") o Toll < sup ITafl < 0. W

THEOREM 1.7. Suppose A is a non-zero element of SMy(M3). Then 4V :
(BM,(M,),str) — (BMy(M,),norm) is sequentially continuous if and only if b
is finite, and lim , . W =0, whenever a = 0o; where An € SMo (M) s specified

by: Apli, j] =
y (4, 4] {0 otherwise.

(Note that lim , : ¥ =0and lim ; ¥ = 4¥ are equivalent.)
n—00 " n—o0 TN

Proof. Suppose 2V : (BMy(Ms),str) — (BMy(M,;), norm) is sequentially
continuous.

Let {B,}32; be a sequence in BM,x1(M;) such that sgilgom B, = 0. Let ko
be any index such that A o (I; ® eg,) is non-zero. Let {D,}3, be a sequence in
BM,(M,) specified by:

B, ifj=k

Dpoo(l ) =)
o(l; ®ej) {0 otherwise.

Then str-lim Dy, = 0 and consequently lim 4%(D,) = 0. So
T~ 00

n—00
Allk) 0 0 0
‘ 0  ARk] 0 0
dm | 0 ARk o [°B=0

0 0 0
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since
0 A[Q’kO] 0
0 0 ABk) 0 |°Bn=a¥(Dn)o(l®ex,).
0 0 0

This shows that LblOCk—diag{A[l,ko],A[2,ko},A;[3,kg],...] t (BMaxi (M), str) —
(BMay1(My),norm) is sequentially continuous at 0 and therefore everywhere.
Therefore b 1s finite by Lemma 1.5. If a is also finite then there is nothing left to

prove in the “forward” implication.

Suppose now a = oo. The first n block-columns of A— A, are zero. So, there

exists a sequence {Qn}5%, in BM,(M;) such that ||@n]| = 1 and

n=1

as, ¥(Qn 0 058 (DI > (ILa-g, ¥ = 2) 100 (5 & (I

1
=i ¥ - - for every n.
" 7

Then nlirlgo A¥Y(Qn o (I @ (5*)")) = 0, since str-lim@Q, o (I, ® (§*)") = 0 by
Lemma 1.6. '

Yet a¥(Quo(Ly®(S™)")) = 44, ¥(@no(H&(ST)™)). Thus lim || ,_ 45 Vli—
L=0,ie lim|,_; ¥|=0.

This completes the proof of the implication in the “forward” direction.

Conversely: if a and b are both finite then str-lim7, =T and lim T,, =T
11— GO n—co
are equivalent, for any sequence {1, }32, in BM,(M;). In this case the sequential

continuity of 4 W : (BM,(M;),str) — (BMy(My), norm) follows from Theorem 1.2.

Suppose now a = oo (b is finite) and lim ,_; ¥ = 0. Let {Tn}3%, be a
sequence in BM,(M;) such that sgrjgnTn :Bo Then sup ||7,{| is finite by the
uniform boundedness principle. By Lemma 1.1, str—lianno (Iy ®ej) =0, for each
j. Thus lim Th o (Jy ® ¢;) = 0, for cach 7, since b is finite and T o (I ® ¢;) €
BMaxl(X/I:)o.o Let € > 0 be any. There exists an index ng such that || ,_ 5 ¥|| <,
whenever n 2z ng. There also exists an index n; such that ||T, o (I @ e;)]| < &, for

i = 1,2,...,ng, whenever n = nj.
3 &y ) 140, 1
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Let m be the larger of ng and ny. If n > m then
AR = Loz, ¥(T) + 4, W(T)|

Tig
<elTall + D Mx,, W(Tn) o (B @ &)

=1

<ellTall + ZO(S;I? AT, A1) - 1T o (Te @ )l

2

e -(sup||TLl) + 4% ' no-£=c¢,
n

where c is a constant independent of n and €.
This shows that lim A¥(7,)=0. So 4¥ : (BMa(My),str) — (BM,,(Mb),

norm) is sequentially continuous at 0, and therefore everywhere. 1

In [11] and [13] Q. Stout described those bounded operators on a separable
Hilbert space H for which no matter what basis was chosen the matrix repre-
senting the operator in the basis induced a compact Schur multiplication map on
B(H). These turned out to be exactly the compact operators on H. Stout also
demonstrated that the larger class of those operators for which there is at least
one such basis is the class of operators whose essential numerical range contains
0. The task of deciding whether a given Schur multiplier induces a compact Schur
multiplication map is often not an easy one. In the remainder of this section we
observe that for a Schur block-multiplication map the property of being compact
is equivalent to the weak-to-norm sequentially continuity of the map. This imme-
diately shows that compact Schur block-multiplication maps can be approximated
nicely by Schur block-multiplication maps of finite rank.

LEMMA 1.8. For all A in SM,(M,), the image, under 4, of the closed unit
ball of BM,(My) is weakly compact and therefore weakly closed.

Proof. The restriction of 4¥ to the closed unit ball of BM,(M,) is “weak-
to-weak” continuous by Theorem 1.2. 1

THEOREM 1.9. (Schauder [2}, V1.5.2) Suppese X and Y are Banach spaces
and T € B(X,Y). Then T is compact if and only if the Banach adjoint of T is
compact.

THEOREM 1.10. ([2], V1.5.6) Suppose X and Y are Benach spaces and T €
B(X.,Y). Then T is compact if and only if the Banach adjoint of T sends bounded
nets that converge in the weak* topology on Y# {to nels that converge in norm on
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X#, (equivalently: a resiriction of the Banach adjoint of T to a norm-bounded

subsel of Y# is “weak*-to-norm” continuous).

Suppose X and Y are Banach spaces and T € B(X). If X is isomorphic to
Y#, in such a way that T is isomorphic, under the induced isomorphism between
B(X) and B(Y#), to a Banach adjoint of an element of B(Y'), then T is compact
if and only if a restriction of T to any norm-bounded subset of X is “weak*-to-

norm” continuous (here the weak* topology is induced on X as on a dual space
of Y).

THEOREM 1.11. Suppose A is an element of SM,(My). Then the following
are equivalent:
(1) a¥ : (BM.(M,), weak) — (BM,(M,;), norm) is sequentially continuous;
(ii) A restriction of 4V to a norm-bounded subsel of BM,(Mp) 15 “weak-1o-
norm” continuous;
(iii) The image, under o0, of the closed unit ball of BMa(My) is compact;
(iv) a¥ is compact;

(v) aY¥ maps every bounded set {o a precompact set.

Proof. That (a) < (b), (b) = (c) and (¢) = (d) is standard and clear,
whereas “(d) < (e)” is a definition of compactness of 4.

We show that (d) = (b):

In [6] it is shown that 4¥ is isomorphic to a Banach adjoint of a bounded
operator on the Banach space of trace-class elements of BM,{M;). Suppose 4 ¥
is compact. Then the restriction of 4 ¥ to any norm-hounded subset of BM,(M;)
is “ultraweak-to-norm” continuous by Theorem 1.10.

The ultrawcak and the weak topologies coincide on norm-bounded subsets
of BMa(My). Therefore (b) follows.

LeMMmA 1.12. Suppose A is a non-zero element of SMo(My). Then 4V :
(BMq(My), weak) — (BM4(M,), norm) is sequentially continuous if and only if b
is finite and lim 4 W = 2V (equivalently: lim o_a, ¥ = 0), whenever a = oo;

n—oQ n—oa

where A, € SMy(M,) is specified by: Anli, j] = {A[z,]] i1, g_ n
0 otherwise.
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Proof. Let An be as in Theorem 1.7, and let A, € SMa(Mj) be specified, for
each n, by:
. . ) M . " . . g
An[z,]] = {A[‘a.?] Whene\ter 18N
0 otherwise.

First observe that Hm 4_4_ ¥ = 0 if and only if hm 0 A, ¥ = 0 and

n—oo

ﬂ]l»nc;loA i ¥ =0 [Both |j,_,; ¥| and |,_; ¥ are dommated by |la-a,. ¥
This demonstrates the implication in the “forward” direction. The converse follows
froom the relations [|a—a, Y[l = [l4_4, ¥+ 4, _4, W € lla_i Y+ i, 4, ¥l €
a-i, Y0+ llazs, 2l '

Suppose 4 ¥ : (BM.(M;), weak) — { BM,(M;), norm) is sequentially contin-
uous. Then 4V : (BM,(M;),str) — (BM.(M;), norm) is sequentially continuous
and consequently b is finite and lim ,_ A ¥ =0, whenever ¢ = oo, all by Theo-
rem 1.7. To demonstrate the imSlE(:tion in the “forward” direction it remains to

show that if @ = co then lim ,_ A ¥=0.
1—00

The first n block-rows of A— Ay, are zero. So, there exists a sequence {Qn}%%,
in BM,(Mp) such that [|Qn| = 1 and

R TCEESR-ATEY (O A"wn-—) (s ®57) o Qul

1
=44, %0 = o for every n.

Then "l_i_#rgQ AY((Iy®5™)eQ,) = 0, since w??_‘kiim(h@S")oQﬂ = 0 by Lemma 1.6.
Yet a¥((16®S™)oQn) = 4_; Y((Ih®S™)oQy). Thus nl_iliga “A-—A,,‘I'“‘% =0,1e
nlingo la—i, ¥ll = 0. This completes the proof of the implication in the “forward”
direction.

Conversely: If a and b are both finite then wea.k ]1m To=Tand lim T, =T
are equivalent, for any sequence {7}, in BM, (Mb) In this case tl:; sogquentlal
continuity of 4¥ : (BM,(M,), weak) — (BM,(M;),norm) follows from Theo-
rem 1.2.

Suppose now a = oo (b is finite). 4¥ is compact since it is a limit in norm of
a sequence of operators of finite rank. The required continuity of 4 ¥ now follows

from Theorem 1.11. &
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2. FULL CONTINUITY

THEOREM 2.1. Suppose A is a non-zero element of SMy(M,;). Then 4V :
(BM(My), weak) — (BM,(My),norm) is continuous if and only if b is finite and
Al1, §] is non-zero for only finitely many i, j.

Proof. Suppose 4 ¥ : (BM,(M,), weak) — (BM,(M,), norm) is continuous.
That b is finite follows from Theorem 1.8. The pre-image, under 4 ¥, of the
open unit ball of BM,(M;) is weakly open and contains 0. Therefore there exist

a

1,82, ..., Ly and Y1, Yo, ..., Ym IN @Ef and an € > 0 such that [[4¥(T)|| < 1
=1
whenever |(T'(z), yi)| < ¢, for every k.

Let F stand for the set {T' € BMq(My) | {T(zz), yi)| = 0, for every k}.
Then F is a linear space and every element R of F satisfies [|4¥(R)|| < 1. This
can only happen if 4¥(R) = 0, for every element R of F, in other words: if F is a
subset of the kernel of 4¥. Since F is clearly a space of finite linear co-dimension
in BM,(M,), so is the kernel of 4.

The linear co-dimension in BM,(M;) of the kernel of 4 ¥ is at least as large as
the number of non-zero block-entries of A. Therefore A has finitely many non-zero
block-entries.

This completes the proof of the implication in the “forward” direction.

Conversely, suppose b is finite and A{i, j] is non-zero for only finitely many
i,j. Consider any index n such that Afz, j] = 0 whenever i > n or 7 > n. Then

AY = 3 4,;V¥, where A;; in BM,(M,) is the matrix specified by:
ij=1

Ayl ] = {A[i,j] if (k,1) = (4, 7)

0 otherwise.

That each 4,,¥ is “weak-to-norm” continuous is immediate because L Ali ]
(BMy, weak) — (BMy,norm) is continous for each i, j, whenever b is finite. 1

THEOREM 2.2. Suppose A is a non-zero element of SMy(M;). Then
AV o (BMy(My),str) — (BMy(M,),norm) is continuous if and only if b is fi-
nite and A has only finitely-many non-zero block-columns.

Proof. Suppose 4¥ has the stated continuity property. Then b is finite by
Theorem 1.7. If a is finite then there is nothing left to prove; therefore assume
@ = co. The pre-image, under 4 ¥, of the open unit ball of BM(M}) is a strongly
open set containing 0.
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: o0
Therefore there exist 1, %3,..., 2, in @ £ and an € > 0 such that || 2 ¥(7)||

=1
< 1 whenever ||T(2;)|| < e, for every k. In particular, 4¥(7) = 0 whenever
T(zx) = 0, for every k.

CraM: Suppose D and (7 are two permutation matrices in BMy,. Define
D and & by:

D=5L®D, G=1&G, (D G BMs(M)).

- oo . -
Fori=1,2,3,...,nlet y; = D7 (=), (y.- € @Ef) Then Go Ao D is a well-
i=]

defined element of SM(M,).
Moreover:
(1) 1Goaen¥(T)|| < 1 whenever ||T(y:)|| < ¢, fori=1,2,...,n
(2) Gonop¥(T) = 0 whenever T(y;) =0, for i = 1,2,...,n.

Proof of the claim. That G o Ao D is a well-defined element of SMoo (M) is
clear, since (GoAoD)OT = Go(AQ(G oTo D))o D for any T in BM(My).

Suppose now that T is an element of BMu, (M;) and ||T(w)|| < ¢, for i =
L,2,...,n. Then [[(G~'o T o D) &)l = (G~ o T)w)l| = T (x|l < ¢, for
i=1,2,...,n. Consequently |4 ¥(G~'oToD™")|| < 1. Yet || s ¥(GVoToD1)| =
I4B(G oTo D) = |G~ o((GoAoD)DT)o D7 = ((Go Ao D)OT =
[lgonon ¥(T)II, so that (1) is verified. That (2) follows from (1) is apparent. The
proof of the claim is complete.

Let m bhe an integer such that mb > n. Suppose A has infinitely many non-
zero block-columns. Then there exist permutation matrices D and G in B Mo, such
that the element 4,, of BM,, (M) that is the north-west m-by-m block-corner of
(It ® G) o Ao (Iy ® D) has no zero block-columns. We now make use of the claim
to assume, without loss of generality, that D and G are both identity matrices.
That is: we take it that the north-west m-by-m block-corner of A has no zero
block-columns. (We pass to (I, ® G) o A o (I ® D) in place of A, and to z’s in
place of 2;’s. The numbers of non-zero block-columns in (Lh®G)oAo(ly® D) and
in A are the same.) For each i = 1,2,...,n let z; be the cannonical projection of

m fe o)
z; onto the direct sum @ £3, of the first m summands of € £7. For each j we let
i=1 i=1
g; and f; stand for the j-th standard basis elements of 82 and of £} respectively.
Then {f; ® g, ]1 < b, 1 < » < m}isa basis of @ £2 Since the number
of elements in the basis is mb, which is strictly larger than n, there must be an
element of the basis lying outside of the span of 2y, 23, .. ., 2.
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Let fi, ® gr, be such an element. There exists an index go in {1,2,...,m}
such that A[gg, ro] is non-zero.

Let w be a non-zero element of ker* (A[go, 74]) in £7. From basic lincar algebra
there exists a matrix By, in My, (M) such that

Bm(2,)=0, i=1,2,...,n and Bn(fi, ® gr,) = w® gg,-

In particular, then w is in the range of By, [qo, 7o), so that A[go, 70]© Bm[¢0, 7o) # 0.
If B is the matrix in BMy, (M,) specified by:

.. Buli,7] f1€4,5€<m
Bli. ) = {0 otherwise,
then B(z;) =0,fori=1,2,...,n, and 4¥(B) # 0 (since Afgo, 0] © Bgo, 0] # 0).
This is a contradiction.

The proof of the implication in the “forward” direction is complete.

For the converse it is enough to demonstrate that if b is finite and if A has
only one non-zero block-column, which, without loss of generality is its first block-
column, then 4 ¥ : (BMoo(My),str) — (BMe(My), norm) is continuous. Yet; un-
der this hypothesis 4 ¥ = Lblock-diag{A[l,1],A[2,1],A[3,1],...} © Rylock-diag(ls 06,00}
Clearly Rpock-diag(rs,00,05,...3 - (BMoo(Ma), str) = (BMeo(My), norm) is contin-
uous because b is fimite. The result follows since LblOCk-diag{A[l,1],A[2,1],A[3,1],‘..}
is norm-to-norm continuous. N

This next result is certainly common knowledge. It is nevertheless relevant
enough to this paper to be stated with proof.

LEMMA 2.3. Let A be an s-by-s matriz of compler numbers. Then the linear
span of columns of A, taken as elemenis of C*, is finite-dimensional if and only
if the linear span of the rows of A is finile-dimensional. (The two dimensions are
then, in fact, equal )

Proof. Suppose the linear span of columns of A is finite-dimensional and
let {fi,f2,...,fn} be a basis of that span in C*. For each index j there exist
scalars ¢(1,7),¢(2,4),...,¢(n, j) such that the j-th column of A equals c¢(1,5}f1 +
e(2,5)fa++e(n, j) fn. Foreachindex i =1,2,...,n, let B; be the matrix in M;
such that k-th column of B; is c(4, k) f;, for every k. Then A = B, +Ba+-- -+ By
The span of the rows of B; is a subset of span{(c(4, 1), ¢(§,2),...,¢(4,8)) |1 € i <
n} and is therefore one-dimensional. Thus the dimension of the span of the rows
of A is at most n. The converse implication and the equality of the two dimensions
follow when the above argument is applied to the transpose of A. 1
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It is important to observe that Lemma 2.3 can be trivially extended (with
essentially the same proof) to cover the case of block-matrices: If A is a matrix in
M,(My) then span{A(fj®e;}|1 < i<a+1, 1 <j < b+1} is finite-dimensional if
and only if span{A"(f; ®¢;) |1 < i< a+1, 1 € j < b+ 1} is finite-dimensional.
Here A*™ is the transpose of A; that is (A*™[i, j])[k, 1] = (A[j, i])[I, k] for all 4, j, &, L.
(Note that A(f; ® ;) and A"™(f; ® ¢;) are well-defined elements of (C)¢ for all
i,5.)

LEMMA 2.4. Suppose A is an element of SM(M,). Suppose {T,}22, and
{Qn}, are norm-bounded sequences in BM, such that

i 0 0 0 Q@ 0 0 0

0T, 0 0 0 Q, 0 0
0 0T o|™lo o0 Q5 o
0 0 0 - 0 0 0

.are both inverttble in BM,(M,). Let

"G, 0 0 0 T, 0 0 0
B=19 0 @ o[°4°]0 o 7 o
0 0 o0 ‘- 0 0 0

Then B is in SM.(My); moreover, 4 U : (BM,(M,}, weak) — (BM,y(M,), str)
is conlinuous if and only if gV : (BM,(My), weak) — (BM,(M,),str) is continu-
ous.

Proof. That B is in SM,(M;) and ¥ = Lblock—diag{q,,Q,,Q,,_.‘} o a¥ o
Lblock—diag{T, T2, Ts,...} is clear. The rest follows since LD : BMa‘(ﬂ{fb) — BMa(Mb)
is weak-to-weak and strong-to-strong continuous for every D in BMy(M,). &

THEOREM 2.5. Suppose A is an element of SMy(M,). Then
A¥  (BM, (M), weak) — (BMy (M), str)

ts conlinuous if and only if A has finitely many non-zero block-rows and both
span(Ran A[i, j]) and span(Ker* A[#, j]) are finite-dimensional.
£, 1,5

Proof. Suppose 4% has the stated continuity property. Fix an element u in
a
&3] Ef such that (u, f; @ ¢;) # 0 for all  and j. Then there exist z;,z2,x3,...,2n

s=1
a

and y1,y2,¥3,-.., 9. in € €2 and a & > 0 such that [[(4¥(T))(x)|| < 1 for those
i=1

T in BM.(M,) that satisfy (T'(zz), v} < 8, for all k.
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Step 1. [Here we show that A has finitely many non-zero block-rows and
that span(Ker* A[7, §]) is finite-dimensional].
i,

First of all ||(4¥(T))(u)]] < 1 for any T in BM,(M,) such that T*(yx) = 0,
for all k; (since such T satisfies (T'(x), yx) = 0 < 4, for all k). Then (2 ¥(T"))(u) =

0, because the above also holds true for every scalar mu]tiple of such 7.
Let z be any element of {y1,y2,¥3,...,yn} in @ £% and let iy and jo be any

positive integers not exceeding a and b respectively. Denote by Ty the operator in
BM, (M) specified by

if i =igand j = j
To(fi@e)=4 % T '1=0amas=do
o(fj ®ei) {0 otherwise.

Then T5(yr) = 0, for all k, and therefore (4 ¥(70))(u) = 0; that is
> (Ali, m] - To[d, m])(u[m]) = 0, for all 4

Lo, (Ali, o] - Toli, io])(ufio]) = 0, for all &

i.e. AlZ, 10)((ulto])[jo] - 2[2]) = 0, for all ¢;

i.e. Alg, i)(2[7]) = 0, for all 4, (because (u[ig])[jo] # 0);

i.e. z[i] € Ker(A[z, 1)), for all ¢;

1.6. 2 € Ker(Ao (1) ® Eigiy)).

We can therefore conclude that {y1,y2,ys,...,un}> C Ker(A o (I, ® Ej;)),
for all j; that is Ker™(A o (I & Eii)) C span{y1,¥2,¥3,-..,¥yn}, for all j. Thus
{w®ej|w e Ker L A1, 5]} = Ker L(A[i,j] ® Ei;) = Ker (L, ® Ei) o Ao (L, ®
E;i)) C Ker (Ao (1, ® Ej;)) C span{y1,¥2,¥3,--.,Yn}, for all ,j. This shows
that span{w @ e; |w € ker™ A[7, j]} is at most n-dimensional.

éénsequently A has no more than n non-zero block rows and the dimension
of span(Ker * A[7, j]) is at most n.

ij

Step 2. [Here we show that span(A[7, 7])( f;) is finite-dimensional, for every ¢.]
4,5

First of all, (4 W(T))(u) = 0 for any 7" in BMy(Mp), such that T(zi) = 0 for
all k; (because such T satisfies: (T'(xy),yx) = 0 < 8, for all k).

Let w be any element of {#,#2,%3,...,%,}* in é #% and let ig and jo be
any positive integers not exceeding @ and b respectively. z]=)1enote by 77 the operator
in BMq(M,) specified by

0 otherwise.

Tl*(fj@ci):{“) lf’l‘:zo alld]:]()
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Then T1(zi) = 0, for all k, and therefore (4 ¥(T1))(u) = 0; that is
a
Y (AlZ, m} - Ti[i, m])(u[m]) = 0, for all 4;
m=1

ie. mf,:l(A[io. m] - T [i0, m])(x(ic]) = 0;
e mizlm[ao, m])({wlm), @m]) f;,) = 0;
e mi:1<w[m], afm)) - (Alio, m))(fo) = 0;

ie. 3 ((Alio,m])(fi0)[ @ Jalmi)(wlm)) = 0.

Denote by Q the operator in BM) yqo{Ms) specified by Q[7] = (Aldo, 7)) (fio)
[®]u[j], for all 7. (Such @ is bounded because i {lul5]]|2 < co and ||(Alio, 71)(fio)||
< ||Alio, 7} € l4¥]] < c0.) What we hawejsjhlown so far is that Ker (Q) con-
tains w. We can therefore conclude that {Z;, Z3, Z3,...,Za}" C Ker (Q); that is
Ran(Q*) C span{Zi, T3, Z3,...,Zn}; i-e. span(Q*(f.)) C span{Z,, &1, %3,...,Zn}.
Now: Q[j] = as)[ ® ) (Alia, 1) (), 0 that (Q*I)(f:) = {fr, (Alio, 31)(fio))li),

for all j.
Thus
(f"iA[iOw l](f.‘io”‘[b 0 0 0
" 0 (fraA[ioag](ffo))Ib 0 0 _
Q') = 0 0 (e, Alio, NS5 0 |
0 0 0 a
C span{a’:l,iz, E3,..., in},

for all r. From the start v was chosen in such a way that @ is a separating vector
for the set

0 Dy .
o o D, o0]€ BM.(My)| D is diagonal, for all m
0 0 0
So
(fr» Alio, 11(fio)) s 0 0 0
0 (f,-,A[iO, 2](f10)>15 0 0
spran 0 Q (fr,A[iO: 3](f]o)>1b 0

0 0 0
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is finite-dimensional and consequently

A{iO’I](fjn)t fr) 0 0 0

0 (A-[ioagj(fju):fr) 0 0

Spf‘n 0 0 ( [Zo, ](f]o))ff> 0
0 0 0 )

is finite-dimensional.

Let G be the matrix in M,y such that m-th row of G equals (A[io, m](f;, )",
for each m. The last argument has shown that the span of the columns of G is
finite-dimensional and therefore the span of the rows of G is finite-dimensional by
Lemma 2.3. In other words spa.n(A[z'o, m](f;,))*™ is finite-dimensional, or equiva-

lently span Alio, m](fj,) 1s ﬁmte~d1menslonal It now follows that span A[i, m](f;,)

7 m
1s finite- dl]‘l')el'lSIO)flal, since 79 was arbitrary and A has finitely many non-zero block-

rows. Because the choice of jo was arbitrary, it follows that span A[¢, m](f) is
im
finite-dimensional, for every ¢.

Step 3. [Here we show that span(Ran A[f, j]) is finite-dimensional].
i’j

We have established in Step I that span(Ker + A[4, 5]) is finite-dimensional.
)
Therefore there exists a unitary matrix V in BM; and a positive integer mq such

that all non-zero entries of A[7, j] o V lie in first mg columns, for all ¢ and j.
For each i and j the (at most mo-dimensional) span of the first mq columns of
Ali, j]oV coincides with the closed span of the columns of A[7, 5], so that the latter
i1s finite-dimensional and is simply the range of A[i, j]. Write

vV o o0 o0

0V 0 o
D=dcly o v ol

0 0o o .|

Then D € SM,(My) and p¥ : (BM,(M;), weak) — (BM,(M,),str) is continuous
by Lemma 2.4. Thus the conclusions of Steps 1 and 2 apply to D.
In particular, span(D[z JD(ft) is finite-dimensional, for every ¢. This shows

i
that span(D[z J1)(f:) is finite-dimensional, since ( D[z, 5])(f:) = 0 for all 4, 7, when-
ever t > mg. Yet spa.n(R,an Ali, j]) = span(Ran D[i, i) = span(span(D[z INF))

= span(D[¢, 5])(f:)- 90 spa.n(Ran Alz, ]]) is ﬁmte—dlmensnonal
hit i,J
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This is the end of Step 3 and thus of the proof of the implication in the
“forward” direction.

To establish the converse it is enough to demonstrate that if A has only one
non-zero block-row, (which from now on, without loss of generality, we will assume
to be its first block-row), and if both span(RanA[z i1 and span(Ker AlZ, 71) are

i
finite-dimensional then 4¥ has the stated continuity property.
Suppose A satisfies the hypothesis and denote by ko is the larger of the two fi-
nite dimensions: dim(span(Ran A[l, 7])} and dim(span{Ker - A[1, j]}). There exist
i i

unitary matrices Wi and Ws in BM, such that Wy and W, map span(Ker L A[L, j])
J
and span(Ran A[l, 7]), respectively, into the span of {e1,es,...,6x,}. For each j,
i

all non-zero entries of Wy 0 A[1, j] o W, lie within ky-by-ky north-west corner. Be-
cause of Lemma 2.4, it is sufficient to demonstrate that ¥ : (BM,(M,), weak) —
(BM,(My),str) is continuous, where

We 0 0 0] Tw, 0 0 0
0 W, 0 0| 0O W, 0 0|

Q=19 0o w, 0/°%°l0o o w o
0o 0 0 . o 0 0

Therefore we may assume, without loss of generality, that all non-zero entries
of A[l, 7] already lie within kq-by-ko north-west corner, for each j; (that is, treat
Q as a new A).

Consequently, it is sufficient to establish the required converse implication
for every matrix A with the property that the only non-zero block-row of A is its
first block-row, and such that there are two numbers » and s with the property
that for each j the only entry of A[l, j] that is possibly non-zero is (A[1, 5])[r, s].
Without loss of generality we may assume both » and s to be 1. For such an A:

a¥ = Lblock-diag{f‘,,,o,o,...} °Rbloc]{—diag{(ﬂ.[l,l])[l,I]Ib,(A[l,2])[1,1]]3,,(.4[1,3])[1,I]Ib,...}'

Yet
Lblock-diag{i‘..,o,n,...} : (BMa(M,), weak) — (BMa(Mj),str)

and
Rblock-diag((Al1, 1)1, 117, (ALL,2D(11]s,..} © (BMa(Ms), weak) — (BMa(M,),str)

are both continuous.
This clearly demonstrates the required continuity of 4¥. &
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Here we get the first glimpse of the unusual behaviour of diagonal truncation

on BM,,. For
a11 @12 413
az1 a2z a23

the diagonal truncation of A, denoted by diag(A), is

aijl 0 0 0
0 22 0 0
0 0 33 0

0 0 0

diag(A) =

In other words (if A € BM) diag(A) = ;¥(A). From Theorem 1.4 the diagonal
truncation is weak to strong sequentially continuous. Yet according to Theorem 2.5
it is not weak to strong continuous.

We shall improve on this claim after we derive the characterizations of those
multipliers that induce weak to weak, strong to weak and strong to strong Schur
multiplication maps. These are the most dfficult results of the paper and they
require a number of lemmas.

LEMMA 2.6. Suppose A in SM,(M,) is such that oV : (BMg(Ms),str) —
(BMa(My),str) is continuous. Then

(A[E, 1)), ]

(AlZ, 2], k] , _
span (Ali, 3Dl &] |l<z<a+1,1$3,k<b+l

s finite-dimensional.

Proof, Suppose A satisfies the hypotheses. Fix an element u in € Ba”' such

1=1
that (u, fj ® e;) # 0 for all 7 and j. Then there exist x,x2,23,...,2, in @ &

and an £ > 0 such that |[(4¥(7))(w)|} < I for those T in BM,(M}) that s;ilsfy
|T(zm)l| < €, for all m.

Let 7 and j be any integers such that 0 < i < a+1,0 < j < b4 1. Let
v be any element of {Z;,Z3,%3,...,Z,}* and let T be the matrix in BM,(M})
specified by

Ty e = {2 T =G0
- 0 otherwise.
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Then [|[(4¥(T))}(u)]|

LEO LivsHITS

< 1, since T(zym) = 0, for all m.

Thus (4 ¥(T))(u) = 0

because the above also holds true for every scalar multiple of T. That is:

a

0= (Ali, k] o Tfi, K])(ufk]) = D (AL KD((v[k], A[k])(5;))
k=1

i.e., for each r,

a

0= (vlk], #lk]) (AL,

k=1

where,

((A[Z, kD[, 7])(ulk]),

for each r,

k=1

= Z (%], #[E]) (AL, KD £;),

a

= " (s[k], ((AL,

k=1

kDIr, 3] ), (D) =

{v, w,);

a
w, is the element of & £

i=1
for each k. Thus @, € span{z;,z2,23,...

specified by w,[k]

,Zn}, for each 7,

since v € {Z1,%3,%3,...,%n}*. On the other hand:
(Al 1), 511 0 0 0
] 0 (AG2DE D 0 0
@y = 0 0 (AG, 3 in 0 | W
L 0 0 0 .
/AL 0 o 0
0 (A[i, 2)[r, 4] 0 0
=[2® o 0 (AL o ||
\ 0 0 0 ]
Observe that u was chosen in such a way that it is a separating vector for the
subspace
cqc 0 0 O
0 (5] 0 oo
B® o o o o {enence. ) CE D of BMu(M,).
0 0 0
Therefore
(A[i, 1]}{r, j] 0 0
0 (A[i, 2))[r 5] 0
span{ | 1o @ 0 0 (AL, 3Dl
0 0 0
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|O<i<a+LO<Lr<b+1}

is a subspace of span{a;, xy,23,...,&,}, and thus is finite-dimensional,

Consequently
(AL, ), 4] 0 0 0
0 R 0 0
span{]b ® 0 0 {(AlE,3[r,5] O |
0 0 0 ‘

|0<i<a+L0<Lr<b+l}

is finite-dimensional and the claim of the lemma follows immediately. @

LEMMA 2.7. Suppose A is in Maxr(Myxs). Then

(Alz, 1])14, #]

(Al 2])[5, &] _ .
span (A6, 3D, k] [1<i<a+l, 1<j<db+l, ISk<s+]

is finite-dimensional if and only if the span of block-columns of A, taken as ele-
ments of Max1(Myxs), ts finite-dimensional in Mgyx1(Mixs).

Proof. Let {gm | 1< m<r+ 1} and {hy | 1 € k& < s+ 1} be the standard
basis of £2 and £2 respectively.

Let @ be the matrix in My, (Msx1(Myx1)) specified by ((Qz, m])[k])[5] =
(A[z, m])[J, k) for all 4, 7, k, m. In simpler terms: for each i, m, Q[i, m] is the vertical
stack of columns of A[i, m]. Then

(QF, END] (AL, 1) F]
[ «@uwnu | | At 20
QS ® (he®@e) = | (U, NG | = | (AL 3G A

Therefore
(Al 1D, &)

(A[2,2])[5, k] , .
span (ML%U¢]j]<z<a+L1<;<b+L1<k<s+1



40 Leo LivsHiTs

is finite-dimensional if and only if span{Q*™(f; ® (ks ® &;)) [0<i<a+1,0<
k<s+1,0<j<b+1}is finite-dimensional.
By Lemma 2.3 the latter span is finite-dimensional if and only if

Q[1, m]

Qf2, m]
span{Q(gm) | 0 < m < r+1} is finite-dimensional; note that Q(gm) = 03, m]

A minute’s consideration should now convince the reader that span{Q(g,.) I 0 <
m < r + 1} is finite-dimensional if and only if the span of the block-columns of A
i1s finite-dimensional in Moy (Myxs). &

LEMMA 2.8. Suppose A is an element of SM(My). If the span of the block-
columns of A is finite-dimensional in My (My), then both 4 : (BMa(My),str)
— (BMa(My),str) and 4 ¥ : (BMo(My), weak) — (BM,(M,), weak) are continu-

ous.

Proof. For non-triviality assume A is non-zero. Let Gy, Ga,Gs,...,G, be
block-columns of A forming a basis for the span of the block-columns of A; (G; €
Max1(BMy) and sup ||G;[5]|| < [|a¥]| < oo, for each i).

j

There exists another basis Fy, F», F3, ..., F, for the span of the block-columns
of A in Myy(BM,) such that sup||F[]]|| is finite and, for each ¢ = 1,2,...,n,

there exist j;, k; and m; with the property that

ift=1

0 otherwise.

(Rl ks, me] = {

The latter condition simply states that each F; has an indicator eniry which sets it
apart from all other basis elements. (The basis Fy, Fy, Fa, ..., Fy, is obtained from

G1,G2,Gs, ..., Gy by a Gauss-Jordan process.) For each r, let ¢i(r), ca(r), ca(r),
. ¢n(r) be complex numbers such that

(r-th block-column of A) = e1(r)Fy + e2(r)Fa + ca(r)Fa + - -+ ca(r) Fy.

Then .
(AL, P ks, mi] = D eplr)(Fp L) ki, i) = (),
p=1
for each i and r.
Consequently, sup [ei(f)] € sup [JALE Al £ [[2a¥]] < oo.
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Let u in Q) ¢ and € > 0 be any. Then {T € BM.(My) ||| T(u)|| < €} is a
generic subbansm 1rw:lghbourhood of 0 in the strong topology.

We show that the pre-image, under 4%, of this set contains a strongly
open neighbburhood of 0. This is enough to establish the continuity of 4¥ :

(BMa(My),str) — (BMa(M,),str) at 0, and therefore everywhere.
Suppose T is an element of BM,(M,). Then:

2

TN ? = D[S (AL, 31 o T, A1) (ul4])

i=1ll7=1

D22 D e (i) (Fulil o T, 1) (uli])

j=1k=1

2

It

2

-,
=]
—

> D (Fulile T, s1)ex(iuli])

i=1]lj=1k=1

For each k, let x; be the element of GGB 27 specified by: zi[] = ex(§)uly], for all 5.

(Clearly 5% loe(ull” = 5 eGP < Wa¥I? 5 (G017 = vl

< 00.) Then

a

2

a

> (Fe[i] o TL, 1) (cx (5)uls) Zlm[e [i, 1, T(3,2), 716, 3], - Y=

i=1||j=1
< sup || F[4)])? Z (7L, 1), T, 20, T, 3], - ()2
¢ i=1
= (sup || Fe[{]||)){|T(zx)]|* < oo, for each k.
Consequently,

I ¥ (D) (w)II* = Z

=1

S5 Akl 0 7T 5 et

k=1j=1

Z(Fk[i] o T[i, ) ex(5)uls))

ji=1

)2
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n a

=n z

k=1i=1

-1

a

S (Feli) o TEE, ) (ex(i)uls])

i=1

2

Z Fy[1] o T, 7)) (cx (F)uld])

i=1

n

<n 3 up IR

=1

sup ||Fk[1]|lz) D IT ()l

k=1

(In the above calculation we have made use of the following well-known inequality:

n 2 n
(Z dt) < nde, for all real d,ds, ds3,...,dn; 2 €N.
=1

=1
We state the proof for completeness:

n n

n 2
(Zdt) =(di+dytdat - +da)’ =D ) did;
t=1

i=1 §=1

n o n d2+d2 n df 1 n
\ZZ —;(n?'l'ij:ld?)

i=1 j=1

n n
= gZd?-i—gzdf = nzdf. )
i=1 i=1 t=1

It is now clear that the set {T € BM.(My}|[IT(z1)li < €/(n -sup WE:LD, &k =

i,2,. n} which is a basic strongly open neighbourhood of 0, is contained in
the pre-image, under 4¥, of the set {T° € BM,(M,}|[IT(u){| < €}. Thus the
continuity of 4 W : (BMs(My),str) — (BM,(My), str) is established.

Next we consider the question of continuity of 4¥ : (BMa(M,), weak) —
(BMy(My), weak).

Let w,v in @) € and & > 0 be any. Then {T € BMa(Ms) | |(T(w),v] < €}
is a generic subfl);zilc neighbourhood of 0 in the weak topology. We show that the
pre-image under 4 W of this set contains a weakly open neighbourhood of 0. This is
enough to establish the continuity of 4 ¥ : (BMa(Ms), weak) — (BMq(M,), weak)
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at 0 and therefore everywhere. Suppose T is an element of BM,(M;). Then:

(A R(T))(w), v Z<Z(Au]om N(uli)), []>

=1 \j=I

=2 <Z > ce()(Fuld o T, AN)(ul]), v[i]>

11]1k1

= EZZ (i, 1) (e (G)uld)), (Fr[i))" (v[d]))-

i=1j=1k=1

For each k, let 3 and y; be elements of € €2 specified by: z:[j] = cx(s)u[;] and
i=1

wlil = (Felj])*(olj]), for all §. (Clearly ]z llex (G)ulill]? = z e ()Pl <

a
lawli? 21 llul)lI* = 114 ¥(?[lul|* < oo, and
1=

_Z (Pl (DI < Z WFLAIPHREN° < (Sup (1 J]II) [Einlls

j=1

2
= (??“Fk[ﬂn) lIoll* < 0.

Then
O T D e Gyull), (Felil)* (0la)))
i=1j=1
Z (T[i L 2), T, 3], - - ) (=), (Fe[d])" (v [d]))
(T( k), Yk),
for each k. Consequently,
(A U(T))(w),v ZZE (T, ) (ex()uld]), (Feld)" (o)) = D (T(ar), ua).
k=1i=1j3=1 k=1

This shows that the set {7 € BM,(M,) I UT(zr), ye) < e/mk = 1,2,...,n},
which is a basic weakly open neighbourhood of 0, is contained in the pre-image,
under 4 ¥, of the set {T € BMa(M,) | {T(u),v)| < €}. So the continuity of 4¥ :
(BM,(My), weak) — (BMy(M,), weak) is established. 1
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THEOREM 2.9. Suppose A is an element of SMo(M,). Then
A (BMy(My),str} — (BM,(M,),str)

15 continuous if and only if the span of block-columns of A is finile-dimensional in
Muxl(Mb)-

Proof. Combine the results of Lemmas 2.6, 2.7, 2.8. &

LemMMA 2.10. Suppose that A in SM,(My) is such that only finilely many
block-rows of A are non-zero. For eachi,j, let By; be the matriz in Myy, such that,
Jor every k, the k-th column of By; cquals the j-th column of A[i, k], (i.e. Bij(er) =
(A[, E])(f;)). It follows (Bi;)"*™ represents a bounded linear fransformation from
£ {o £

Suppose thal, for every z in €2 and for cach indez i, span{(B;; )™ (z) ]] <
J < b4 1} is finite-dimensional in £°. Then

AY  (BMo(My), weak) — (BMy(My), weak)

1s conlinuous.

Proof. First of all [|Bij(e&)l| = AL, k()1 < G, £ < [l %] < oo, for
each k, and therefore (B;;)*™" does indeed represent a bounded linear transforma-
tion from ﬁf to £3°. (Recall that a matrix represents a bounded operator from
£2 to £2° exactly when all of its rows are in £7 and their norms are uniformly
bounded.) It is enough to establish the result for A that only has one non-zero
block-row. Therefore assume that A is in SM;xa(M,), rather than in SM,(M,).
To this end it is sufficient to prove that if » and v are chosen arbitrarily from

a
@ £Z and ¢ respectively, and if € > 0 is any, then the pre-image, under A ¥, of
i=1

{S € BMixa(My)|[{S(u),v}| < €} contains a weakly open neighbourhood of 0.
Now span B{"?(%) is finite-dimensional in £3°. There exists a basis g1, g2,

j
g3, ..., gn of this span, such that, for each & in {1,2,...,n}, there is an i{; with

the property that
. 1 ifm=k%k
gmlie] = {0 otherwise,

for all m. (This states that each g; has an indicator entry which sets it apart from
all other basis elements.)

Such a basis ¢1,92,93,.-.,9n can be obtained from any given basis by a
Gauss-Jordan process. Let {ck(j)ll < k€< nl 7 < b+ 1} be the set of
complex numbers such that Bi"?(9) = ¢1(j)g + ca(§)g2 + ca(7)ga + -+ - + en(J)gn,

for each j. Then cx(j) = (BiF"(5))[ix] = (Bij(ei ), v) = {(A[l,ik])(f;), v), for
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all j, k. Therefore: Z |ex ()2 Z |(f5, (AL &) (D) = (AL 2)* ()1 <

AL ellPllofl* < [|a %[ ||v{|?, for all k. Therefore sup Z lex (D1 < (a2l
i=1
Let 7' in BMjx.{M;) be any. Then

(A W(T)) (), 0 <Z(A[lmo?[1 m)(ulm]), v)

:@(Aum D (3o, m) ), u[m])f:) v)

o

<,;;“T“ m]) (5, )AL m))(f;), v)
- mz g«m,mlrm(m,m> (AL (), )
_ ; ;:((T[l,m])""(fj%m) (B @)
= Z (T, m))™(5;), ulom]) - (gcqwg[m]))

a

i M°' W

Z (7L, m])'™ (e, (5)4;), 94m] - ulm]).

For each ¢, let w, is the element of £ specified by w,[j] = c,(j) for all j; and let
zg be the element of @ €} specified by z,[m] = g,[m}u[m], for all m. (We have

i=]
b
already demonstrated that sup - [cx(7){? is finite. As well, note that |g,[m]| <
k =1
llgllee < o0, for all m). Then

a

Me-

b
D T, m) ™ (e () ;) gg[m] - ulm]) =

m=1j=1 m

(11, m])tm(wq) zq[m])

1l
A

[
NE

((T[L, m])(zg[m]), wy)
T(z2q), @),

for each ¢. Thus we have obtained: ((.4W(T))(u},v) = 3. {T(2,),,). From here
g=1

it is apparent that the pre-image, under o ¥, of {S € BM;x,(M,) | [(S(u),v)| < e}
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contains {T'" € BMyo(My)|[(T(2,),%,)| < €/n, ¢ = 1,2,...,n}, which is a
weakly open neighbourhood of 0. The proof is now complete. &

LEMMA 2.11. Suppose A in SM,(M,) is such that 4 : (BMa(M,),str) —
(BM,(My), weak) is continuous. Then there exist A, and A, in SMa(Ms) with
that same property satisfying:

(l) Al + A2 = A,'
(i) Ay has finitely many non-zero block-rows;
(iii) For each i, j, let BS) be the matriz in My, consirucled from A; as in
trn
the statement of Lemma 2.10. Then span{(BS)) (z) | I€i<a+l,1€j<
b+ 1} is finite-dimensional in £2°, for each z in €};

(Az[i, 1])“) k]

A4, 2[5, k
(iv) span EAZL-’SB[[;’ k} I l€i<a+ 1,1 €5,k<b+ 1 is finite-di-.

mensional.

Proof. If a is finite, simply take A; = A and A; = 0. Thus from now on we
assume that a = co. Suppose 4 ¥ has the stated continuity property.
(AL 1)(f5), =)
(Al 2D(f5), =)

Step 1. [H how that . { 1s finite-di ional,
ep 1. [Here we show tha s;’_)f;n ((Ali, 3))(f;), z:) | ' finite-dimensiona

for every sequence {z,}39_; of elements of £2.]

It is clearly sufficient to demonstrate the claim for sequences J{zm]»m._1 such
that E [|2m||* < oo. Given such a sequence, let z be the vector in @ £ specified
izl

by z[m] = Zp, for all m.
Let win G} £ be any. Since 4 W : (BMo(M;),str) — (BMg, (My), weak) is
i=1

continuous, there exist z,,zy,z3,...,2, in @fz and a & > 0 such that

[{(a¥(T))(w),z)| < 1 whenever T in BM, (Mb) satisfies ||T(x:}|| < 6, for all
t. If T(z,) = 0, for all ¢, then {(4¥(T))(w), z) = 0 since all complex multiples of
T annihilate 1,%2,23,...,Zn.

Let v be any element of {F;,%2,%3,...,%,}* in @2 and let 75 and jo

be any positive integers, with jo not exceeding b. Denote by T the operator in



CONTINUITY OF SCHUR BLOCK-MULTIPLICATION MAPS 47
BMo. (M) specified by
(v (D) = (o 4
(To)trn(fj ®e) = {'U 1 (11.7). (%0, 7o)
0 otherwise.
It is easily seen that 7T'(2;) = 0, for all ¢. Therefore:

= (4 U(T))(w), 2) = ({3 Alio, m] o Tlio, m] ) (wlem]), =fio] )
= Y {(Alio, m)((v[m], wlm]) f,), 2lio])
= Z (v[m )((A 10, MM )(f]o) [ ])
m=1
= 3" (v[ml, {zlial, (Alio, m)(f;,))w[m] ).
m=1
Let u stand for
‘ (zl'oa( [Zg, D(f.?o)) 0 0 0
0 <Zl'o: (A[i(), 2])(fju))1b 0 0 _
0 0 (2i0, (Alio, ) (fio} s 0 | (P
0 Q 0

Then u is in @Ez and 0 = {(A¥(]))(w),z) = (v, u}, so that u € span{Z;, >,

T3,...,Zn} Therefore :
((A[lo, D(f?o):zlo)lb 0 0 0
0 {(Alio, 21)(F10), 2io) o 0
0 0 (Alio, 3)(fio) zzo)ls 0 | ()
0 0 0 K
is an element of the span{z;, 22, 23,...,2,}. We can now conclude that
(AL S), 2001 0 0 0
0 ((Al5, 2)(f3), z:) s 0 0
" 0 0 (AL 3D, 28 0 | )
0 0 0 "
is a subspace of the span{zi, z2,23,...,2,}, for every win @ #2. Since w can be

i=1
selected to be a separating vector for the set

Dy 0 0 0

60 D, 0 O _ '
0 0 D3 0 |Dm is a diagonal element of B(M;) ¢,

0 0 0
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o
(there are many vectors in €D €2 that separate this set), it must be true that

i=1]
(AL D), 0 0 0
0 (Al 2D)(f5), =) 0 0
shan 0 0 (Al 3])(f3) 220 O
0 0 0 E
is finite-dimensional (of dimension at most n). Thus
(Al 1)(f5), 2) 0 0 0
0 (AL 2 f5), =) 0 0
ke 0 0 (AL D)z 0
0 0 0 B

is finite-dimensional. This clearly provides the desired conclusion.

Step 2. For each ¢, 7, let Cj; be the matrix in Mcoxp such that, for every &,
k-th column of (Cy;)*™ equals the j-th colummn of A[¢, k]. Then [J(Ci;)"™ (ex)ll =
(AL, R < ||AL K]l = [|a¥|] < oo, for cach k, and therefore Cj; represents
a bounded linear transformation from £ to ¢°. If y € € then (Ci;(y))[k] =
((Ci; )™ (er ), ¥) = {(A[E, k])(f;),7), for every k. With this in mind we apply the
result obtained in Step 1 to conclude that if {y:}52, is any sequence of elements

of & then span Cy;(w) is finite-dimensional in £5°.
i
Step 3. [Here we show that there exists a positive integer 7p such that
span(Ran Cj;) is finite-dimensional in £5° ]
t>1p
2

We start by demonstrating that there exists a positive integer oo such that

span(Ran Cy;) is finite-dimensional whenever 7 > 4go.
3
Suppose no such number exists. Then there is an unbounded sequence {7, }{2,

of positive integers such that span(Ran Cj,;) is infinite-dimensional, for every {.
i
Consequently there is a sequence {1;}2, of elements of £ and a sequence

{4e}52, of positive integers such that, for every ¢, Cj_; (y,) does not belong to
span{Ci,j,(yt) | 1 € t < g}; (in other words: {Ci;,{%:) |t € N} is linearly indepen-
dent).

This contradicts conclusions of Step 2 and therefore proves the existence of
the number ig¢ as claimed.

Now we use a “proof by contradiction” once again, to demonstrate the exis-
tence of 1y. Suppose that span(Ran C};) is infinite-dimensional (in £3°) for every

12aq
7
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positive integer 5. Then there exists a sequence {(?J,)}ggl of pairs of pos-
itive integers such that i — oo as t — oo, and, for every gq, Ran(G;?) ¢
q/q

span{Ran(G’;Jf) | 1 <t < g}; (recall that for every ¢ exceeding igo, span(Ran Cj;)
j

is finite-dimenstonal). Therefore, for every g, there exists an element y, of £ such
that C?q'j\q(yq) & span{Ran(G;‘;i) | 1€t <qg}.

Consequently, {G;J((yt) |t € N} is linearly independent and this again con-
tradicts the results of Step 2. Thus the claim in this step is verified.

Step 4. [Here we complete the proof of Lemma 2.11.]

Let A; = (]b (% E,r)) oAand Ay = A~ A,. Then A, has finitely many
r=1]
non-zero block-rows. Also clearly A;, A2 € SMoo(M,) and

Al\I’ =1L ig =] A‘I’.
Im(z E,)
Since

L i 1 (BMo(My), weak) — (BM.(My), weak)
Ib@(z: Ear)

r=1
is clearly continuous, the continuity of 4, ¥ : (BM,(Ms)},str) — (BMy(My), weak)
follows. The continuity of 4,V : (BM,(M,),str) — (BM,(M;), weak) now follows
trivially. (So far we have satisfied all the requirements up to (ii); we now proceed
to (ii1)). Foreachr =1,2and 1 <i<ooand 1 € j < b+1, let Bs) be the matrix
In M s such that, for every &, the k-th column of Bg) equals the j-th column
of A,{i, k]. Then
BE;) _ {(ci,-)"" if 1€ z'.g i
0 otherwise
and
(2) _ (Cij)tm if 39 < 2
B’ = .
0 otherwise.
That the requirement (iii) is now satisfied follows immediately from the result of

Step 2. It remains only to consider the requirement (iv). The span Ran ((Bg))"“)
.

is finite-dimensional by the result of Step 3. Therefore
(A[z, 1)[m, )

A i,? m, j trn
span EA{i, 33%’"»;% = span Cj;(fm) = span (Bz(f)) (fm)

>ig i>ig i,m
7m 5,m
— (2) trn _ (2) trn
= Sli),?n (s;ﬁn (B,'j ) (fm)} = slzjn Ran (Bz.]. )

= finite-dimensional. 1
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LEMMA 2.12. Suppose A is an element of M1.a(BMy). For each j, let B;
be the matriz tn Myyq such that, for each k, the k-th column of B; cquals the j-th
column of A[k]. Then

(i) span{B; |1 € j < b+ 1} is fintle-dimensional in Myy, if and only if
span{(A[m])"(fi} |1 i< b+1, 1 <m < a+1} is finite-dimensional in £2 (that
is the total span of all rows of all block-entries of A is finite-dimensional).

(it) span{(B;)*™(fx) |l Ik < b+ 1} is finite-dimensional in £5° if and
only if span{A[m)] | 1 < m < a4 1} is fintte-dimensional in BM,.

Proof. (i) Let A denote the matrix in Mgy (BMy) specified by A[i) = A1),
for all i. Then clearly span{(A[m])*™(f;) | 1< i,m < b+1} = span{(A[m])"™(f;) I
1 € 4,m < b+ 1} = span{(i-th row of A[m])*™ |1 € i,m < b+ 1} in €. By
Lemma 2.3 the latter span is finite-dimensional if and only if the span of scalar
columns of A is finite-dimensional in € x €2 x €2 x ... (a times); that is, if and only
if span{ A(f;) |1 <4< b+ 1} is finite-dimensional in £2 x £2 x €2 x ... (a times).
It takes a minute’s consideration to sce that the span of scalar columns of A is
finite-dimensional exactly when the span{B; |1 € j < b+ 1} is finite-dimensional.

(ii) It has already been shown in Lemma 2.10 that each (B;)"™ represents a
bounded linear transformation from #Z to £2°.

Let B denote the matrix in Max1(Myxa) speciﬁed by 5[3] By, for all j.
Then span{(B;)*™ (i) | 1<k < b1} = span{(B)"™ (/) |1 € 5,k < b+1) =
span{(k-th row of B[j])™ |1 € j,k < b+1}in £°. By Lemma 2.3 the latter
span is finite-dimensional if and only if the span of scalar columns of B is finite-
dimensional in £ x £ x £ x .. _; that is, if and only if span{B(ex) |1 < k < b+1}
is finite-dimensional in Ef X 82 x €2 x .... It is easy to see that the span of scalar
columns of B is finite-dimensional exactly when the span{A[m] [l < m < a + 1}
is finite-dimensional in BM,. 1§

DEeFINITION. ([8]) Let ¥V and W be a vector space and let L{V, W) stand
for the space of linecar maps from V' to W. We say that a subset S of L(V, W) is
locally finite-dimensional if span{T(2:) | T € S} is finite-dimensional for every z
in V.

THEOREM 2.13. ([8]) Let V and W be Banach spaces. A subsel S of
B(V, W) is locally finite-dimensional if and only if there exisis a finite-dimensional
subspace R of B(V, W), coniaining no operators of finile rank, and a finite-dimen-
stonal subspace N of W, such thali S is contatned in the veclor sum R+ {T €
B(V, W) | Range(T) C N}. Morcover if M is a closed subspace complementary to
N tn W then R can be taken to be a subspace of {T' € B(V,W) I Ran(T) Cc M}.
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LEMMA 2.14. Suppose span{u; |i = 1,2,3,...} is finite-dimensional in £
[e o] o
and Y~ |us[j]|? < oo, for every j. Then Y |lu;l|? < 0.
i=1 i=1 ¢

Proof. Let n be the dimension of the span of {u; ]z =1,2,3,...}. Without
loss of generality we may assume that this span must have a basis {vy,v2,...,v,}

such that
(7] 1 ifi=j
il = .
J 0 otherwise,

{) (%) (2) IORNO) (#)

forl1 €14, 7 € n. Nowu,-:a v + as o4 a5 U, where a7, a3, ... an

stand for the appropriate scalars. Clearly

[es)
Z fuli)? = Z |a(l)|2, so that Zla(‘”? < oo,

i=} i=1

for every j. Yet

luillee < [0 orlfese + |aS + 12| [|vn]lese

for each ¢, and consequently
il < n (JaPlloaliZe + 10§ Plloale + -+ o) Plloale )

for each ¢, by the inequality stated in the proof of Lemma 2.8. Therefore we have

znmmm %mmminwﬁ+wwm§:w° ot S 1a9P?)
i=1

<oo. B

LEMMA 2.15. Let A in My(BM;) be such that only finitely many block-rows
of A are non-zero. [fsup [|A[Z, 73|} is finite and span Alz, 5] is finite-dimensional in

BM;, for every i, then A is in SM.(My).

Proof. 1t is enough to consider the case when only the first block-row of
A is non-zero. Let n be the dimension of span A[1,j]. There exists a basis

J
{1, Ts,... ,Tn} of this span such that for each k = 1,2,...,n there exist 7z and
Jr such that
1 fm=%

0 otherwise.

Thli i) = {
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Afl,j] = a(j)T; + a(j)Tg + -+ ag)Tn, where a(j),a(j) ..,,ag) stand for the
1 2 1,82

appropriate scalars. Then ag) = (A[L, j])ik, ji], for all j, k, so that sup Iag)l €
- 2 J‘ka

sup [|A{L, 7]|| < co. The first block-row of 4 equals §_ ail)Tk agc )T, “5: Ty

j k=1

and it is clear that each of the terms ag)Tk af)Tk af)Tk .. is in SMixa(Ms),

because sup Iag)! < co. Thus it follows that A € SM,(M,). 1
j,k

LEMMA 2.16. For A in SMy(My) the following are cquivalent:
(1) AY : (BMo(My),str) — (BM (M), weak) is continuous.
(1) a¥ : (BM,(M;), weak) — (BM,(My), weak) is continuous.
(iii) There ezist Ay and Ay in SM,(M,) satisfying:
(a) Ay + A2 = A;
(b) The span of the block-columns of Ay is finite-dimensional in
Maxl(Mb);
(c} Az has finitely many non-zero block rows;
(d) For each 1,7, lel BEJ.Z) be the mairiz in Myy, consiructed from Ao
as tn the statement of Lemma 2.10.
trn
Then span{(B,(})) (z) | I€i<a+1,1<j<b+ 1} is finite-
dimensional in £, for each z in £2.
(iv) There ezist Ay and A, in SM,(M,) satisfying:
(a) Ay + Ay = A;
(b) Az has finitely many non-zero block rows;
(c) The span of the block-columns of A, is finite-dimensional in
Maxl(Mb)i
(d) There exist matrices S) and S, in SM,(M,), each with finitely
many non-zero block-rows, and such thai:
(dl) S1 4+ Sy = A,
(d2) The span 517, 5] is finite-dimensional in BM,;
i
(d3) The span(ker® Sy[i, j]) is finite-dimensional in £3;
i
Proof. That (i) implies (i) is trivial. That (i) implies (iii) follows directly
from Lemma 2.11 and Lemma 2.7. Suppose now that condition (iii) holds. Then
A ¥ (BMa(My), weak) — (BMg(M,), weak) is continuous by Lemma 2.8, and
4. ¥ 1 (BMy(My), weak) — (BMy(M;), weak) is continuous by Theorem 2.10.
Thus (ii) holds since 4 ¥ = 4, ¥ + 4,¥. Therefore (ii1) implies (ii). We complete
the proof by showing that (iii) is equivalent to (iv). Suppose (iii) holds. For
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cach i, j, k : [|BE (el = [(Aali, )£l < |l Aali, &]]l < [la,¥]| < co. Therefore

trn
(Bz(f)) represents a bounded linear transformation from to €2 to £3°.

The subset {(Bg))tm |l fi<a+l,l €5 <b4+ 1} of the space of
elements of M,y representing operators in B(ff,fg"), satisfies the hypothesis of
the Theorem 2.13. Thus, there is a finite-dimensional subspace M of £3° and
a finite-dimensional subspace F' of the space of elements of M, representing
operators in B(£Z, £2°), such that {(B,?f})m [I<i<atlI<j<btifc
F+{Q € B({%,£7) | Ran(Q) C M}, where the sum is a vector space sum.

Moreover the ranges of all operators in F can be assumed to lie within a closed
compliment of M in £2°. Therefore exist two families (G5 |1 € i < a+1,1<j <
b+1} and {D( )‘ l€i<a+l,1< 5 <b+1}of matrices in M,y,, all representing
bounded linear transformation from €2 to £5°, such that, for each ¢, 7, (B(Q))tln =

(w(2)+D(2)

i span ('( ) and span D (fk) are both finite-dimensional, and there ex-
ik

trn
ists a constant K such that ma.x(||(‘(2 (2)]]ee ||D (.’L’)“lcc) < K” (Bz(f)) (:r)” )

e

for all z in £ and all 7, 5.

Yet ((ngz))trn (1)) k] = ((Az[z, k])*™(x))[4], from the definition of BEJ?).

thus £ {((82)™ @) ] = 35 1048 B m@)BIF = 40D ) <
Jj=1
A0z, Bl ?[12])% < |)4,9])% 2], for d]l z in £ and all i, k.

b trn 2
Apply Lemma 2.14 to conclude that Z ”(Bi(-g)) (1:)” < oo, for all z in

2
£% and all i. Therefore E] 6(2)(3)” < oc and E H D(z)(:c)u < 0o, for all z in £}

and all 4.

Let .S1 be the matrix in M,(M,) specified by (511, £])(f;) = (ngz))tm (er),
for each ¢,j,k, and Sy be the matrix in M.(M,) specified by (S2[z, k])(f;) =
(Gg?)um (er), for each 7,7, k. Both S; and S5 have finitely many non-zero rows,
since Ay does. It is apparent that S + S5 = Ag, because (ngz))tm =a® + p
for each 4,j. Now ((Sali, k])*™(2))[j] = (GE(z))[k} and ((Si[i, k)™ (2))lj] =
(D(z)(z))[k], for all z in 2 and all 4, j, k. Therefore i} [((Sa2[i, B () [5]1? =

i=
b

> NG (2)( (k]2 < Z “((2) z)||* < oo, and consequently {S3[i, k])*™(z) € £2

i=1
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with ||(Sa[7, &))" (=) € Z ||G'(2)(:r |2 < oo, for all = in £ and all 7,7, k. Thus

(S22, k])'™ € BM,, for all i, k, and, for each 7, {(So[i, K])"™ [I1 < k< a+1}isa
pointwise bounded set of operator matrices (in BM;). The latter set is therefore
uniformly bounded by the uniform: boundedness principle.

Consequently, the set {55[¢, k] | I<k<g€a+1}isalso umformly bounded in
BM,, for every i. The same can be said about the set {5 [z, 4] |l <a+1}.

[t remains to observe that, for each 7, Lenma 2.12, part, (ii), demonstrates,
(with A being the i-th block-row of $; and B; = (D[-‘-"'))Lm) that span (517, £])
(and also span(Si[i, £])} is finite-dimensional in BM,, so that Lemma 2.15 can
be applied tok conclude that 57 € SM,(M,). That Sy is also in SM,(M;) follows

immediately since Sy + S = As. That span(ker® $; [#,5]) is finite-dimensional in
ik

€2 follows easily from Lemma 2.12, part {i}.
We have now demonstrated that (iv) holds true. It is siinple to see that
the proof demnonstrating that (iii) Lmplies (iv) can be traversed in the opposite

direction to show that (iv) implies (iii}. 8

THEOREM 2.1T7. For A in SM(My) the following arc equivalend:
(i) AW - (BMy (M), str) — (BM,(M,), weak) is continuous.
(1) AW : (BMo(My), weak) — (BM,(M;), weak) is continuous.
(i) There exist Ay and Ay in SMo(M,;) satisfying:
(a) A; -+ Ay = A;

b) A has finitely many non-zero block-rows and span(ker™ A, i,7]) is
y many pa
i
finite-dimensional in £3;

(c) A, W : (BMo(My),str) — (BM,(M,),str) is continnous.

Proof. Let A; in the present theoretn stand for the sumn of A, and S of part
(iv) (d) in Lemmma 2.16. Then Theorem: 2.9 and Lemina 2.16 provide the necessary

conclusions. 1§

It is now easy to provide an example of a Schur block-multiplier which in-
duces a map that is weak-to-weak and strong-to-weak but not strong-to-strong

continuous. Indced, let A be the block-matrix in BMq, (M) with one non-zero
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block-row which is:

Lo O D =
o O O o
CR =T e Y e B e )
o O O O
S O = D
O O O O
Lo o o @
Lo O O <
SO = OO
R - R - - o
o o o O
EE e I e B o N e )

By Theorem 2.9 4% : (BMa(M,),str) — (BM,(M;),str} is not continuous since
the span of the block-columns of A is not finite-dimensional. Yet 4 ¥ : (BM, (M),
weak or str) — (BM,(My), weak) is clearly continuous by Theorem 2.17 (with
Ay = A). '

It is apparent that Theorem 2.17 indicates that no such example exists if b is
finite, since in that case 4,V is also strong-to-strong continuous. We restate this
in the case b = 1, i.e. in the case of ordinary Schur product.

COROLLARY 2.18. For A in SM, the following are equivalent:
(1) A\]'! 1 (BM,, weak) — (BM,, weak) is continuous;

(ii) AW : (BM,,str) — (B, weak) is conlinuous;

(i) 4 : (BM,,str) — (BM,,str) is continuous;

(iv)

A is a matriz with of finite column (row) rank.

That the identity matrix in BM., does not induce a Schur multiplication map
that is strong to weak continuous follows immediately from Corollary 2.18. Yet
by Theorem 1.2, ;¥ is strong-to-strong sequentially continuous. In other words,
even though for every sequence {T,,}5%, converging strongly to zero (in BMu),
{diag(Ty)}5%, also converges to zero strongly, there evists ¢ nel {To|o € S}
converging strongly to zero in BMy, such that {diag(Tq) | a € 3} doesn’t even
converge to zero weakly!
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