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ABSTRACT. Using groupoid theory, we construct a path model for finite type
embeddings of circle algebras that generalizes the path model of Ocneanu and
Sunder for Bratteli diagrams. The Jones-Watatani index is computed using
the maps induced on Ko-theory by the embedding and its dual. The analysis
is based on imprimitivity groupoids associated to the embeddings. Taking
inductive limits, we obtain generalizations of the Bunce-Deddens algebras.
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0. INTRODUCTION

The notion of Bratteli diagram was introduced in [4], and since then, it has played
an important role in the study of AF-algebras. Subsequently, Ocneanu and Sun-
der introduced a path model for inclusions of finite dimensional algebras and used
it to analyze the index theory for subfactors. In this paper, we investigate alge-
bras that arise if one replaces the points in a Bratteli diagram with more general
spaces. More precisely, we use groupoid theory to construct path models for cer-
tain inclusions of circle algebras. We compute the Watatani index for such a pair
of algebras, using the imprimitivity groupoid construction and the transfer map
in K-theory. It turns out that these inclusions are built using two basic homomor-
phisms, the composition with a covering map, and the so called k-times around
embedding, maps which are dual to each other in a certain sense made explicit
using imprimitivity groupoids. We consider inductive limits determined by such
inclusions and we obtain a class of C*-algebras that generalize the Bunce-Deddens
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algebras. However, in general, they are neither simple nor have real rank zero.
These inductive limits are obtained either from a given infinite diagram, or from a
diagram with two levels. In the second case, iterating the imprimitivity groupoid
construction, we get an infinite diagram, in which the consecutive floors are sym-
metric.

Inductive limits of various homogeneous algebras have been studied inten-
sively in recent years by many people, and generalized Bratteli diagrams have
appeared also in [1] and [27]. Our use of groupoids provides a new perspective on
these and highlights the relations among the basic construction, groupoid actions
and imprimitivity groupoids.

1. ACTIONS OF GROUFPOIDS ON SPACES

In this section, we will give some basic definitions and some examples of groupoid
actions that are necessary to develop our theory. The fundamental philosophy to
keep in mind is that groups act on spaces, groupoids act on fibered spaces. More
precisely, let T' be a locally compact Hausdorff groupoid with unit space I'°, and
let 7 and s denote the range and source maps. We say that I' acts {to the left) on
a locally compact space X if there are a continuous, open surjection

p: X —TP°
and a continuous map
F*X_>X) (711")_'7'1“:

where
F*X:«{(“/,I)EFXX |5(7):p(m)}:

that satisfy
(1) oy -z} =p(7), V(v 2} €T+ X;
(i) (11,2) € T X, (72, m1) € I'®) implies (y271,2), (y2,71 - 2) €+ X and

v2-(n-z) = (vam) -z

(iii) p(z) -z =z, Yz € X.
Right actions are defined in a similar way.

We say that the action is free if ¥ - # = z only when ¥ is a unit. The action
is called proper if the map

FsX - XxX, (y,2)—=(y =12
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1s proper. The fibered space X is called a principal [-space if the action is both
free and proper. This case is of particular interest, since one can then define what
is called the imprimitivity groupoid. Start with

X*X={(z,9) € X x X | p(z) = p()},

and let
Xap X =T\ X*xX

be the orbit space under the diagonal action of I' :

vo(zy)=(y-z,7-y).

The elements in X *r X will be denoted by [z,y], and the elements in '\ X by
[x]. Then X *p X has a groupoid structure with multiplication

1

[I7y] ' [y',z] = [$>7h 'Z]y

where we require [y) = [¢/], and 7 is the unique element with ' = v - y. The unit
space is '\ X, and the range and source maps are given by

([, 9) = (<], s((z,4]) = [4].
The groupoid X *p X acts on X to the right via
c: X =T\ X,
the quotient map. If
X+ (Xar X) ={(z.[x,4]) € X x (X #r X) | [2] = [2]},
then the action is given by

z-[z, 9] =7y,
where + is the unique element of I' such that z = v - z. The action is well defined:
if (', 4] = {x,], then there is a unique 8 € I' such that 2 = 8-z and ¢ = 8- y.
It follows that [2] = [2z] when [z] = [z], and y#~' - 2’ = z. Therefore,
-l y)=98" Y =y y=z2-[z,4)
Note that the two actions commute and that X realizes what is called a (T, X #r X)-

equivalence. Moreover, if both T and X #r X have Haar systems, then the C*-
algebras C*(I') and C*(X #r X)) are strongly Morita equivalent (see [16]). It should
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be noted that given I' acting freely and properly on X, there is no reason a priorito
expect that there be a Haar system on X #r X. One needs additional hypotheses;
for example, the assumption that there is a I'-invariant p-system on X in the sense
of Renault ([22]) guaranties that X #r X has a Haar system. Fortunately for the
purposes of the present paper, the existence of a Haar system on X +r- X will
be evident from the contexts considered. Let us mention also that, although all
the groupoids we consider will be Hausdorff, the notions of groupoid action and
equivalence of groupoids make sense also in the non-Hausdorff case (see [22]).
Some of the following examples can be found in [16].

ExampLE 1.1. Let I' = G be a group acting freely and properly on X. Then
X — G\ X is a principal G-bundle and X #g X is a transitive groupoid (it has
only one orbit). Indeed, since G is a group, G® = {e} and X * X = X x X. Given
[2],{¥] € G\ X,[z,y] € G\ (X x X) is well defined and maps [2] onto [y].

To specialize this example, let X be a locally compact space that is connected,
locally arcwise connected and semilocally simply connected. If the fundamental
group G = m (X, zo) acts on X, the universal covering space, in the usual way,
then the imprimitivity groupoid is the fundamental groupoid of X, obtained from
the homotopy classes of paths in X, with the usual structure.

ExAMPLE 1.2. Recall that for any space X we have the trivial and the
cotrivial groupoids X x X and Ax C X x X, respectively, the second being
identified with X. Let X 5 B be a covering map. Then B, viewed as the cotrivial
groupoid, acts on X via the formula

b-z=z if o(x)=0b
The resulting imprimitivity groupoid
Xxp X ={(z,y) € X x X | o(z) = o(¥)}

is an equivalence relation. It carries a Haar system, namely, the counting measures
on the o-fibers, and the associated C*-algebra was first studied by Kumjian in [14].

ExXAMPLE 1.3. Let G be a group with a subgroup H, and let H act on G
by left multiplication. Then G g G ~ (H \ G) x G, where G acts on H \ G by
right multiplication and (H\G) x G is the corresponding transformation group
groupoid. Indeed, in this case G * G = G x G and the map

l9,91 (9], 57 '¢")

is the desired isomorphism.
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EXAMPLE 1.4. (Bi-transformation groups, see [25]) Let G and H be groups
acting freely and properly on a locally compact space X, and assume that the
actions commute. It follows that the orbit spaces X/G and X/H are locally
compact spaces and the commutativity assumption implies that X/G carries an
H action, while X/H carries a G action. The groupoid T = (X/G) x H acts
on X, and the imprimitivity groupoid is isomorphic to (X/H) x G. Indeed, let
p: X — X/G be the canonical map. The action is

(p(z),h) - y=h-y if p(y) = p(=),

and the orbit space I' \ X is homeomorphic to X/H. Then X *r X is isomorphic
to (X/H) x G via the map
[z,9] = (o(z), 9),

where ¢ : X — X/H is the canonical map, and g € G is the unique element such
that y = g - z. Therefore C(X/(G) x H and C(X/H) x G are strongly Morita
equivalent.

ExampPLE 1.5. Let X = I be a groupoid and let T act on itself by left
multiplication. Then T #r I' ~ I by the map [y,7] — 7~ !5 , with inverse v —
[r(7),7]-

2. GENERALIZED BRATTELI DIAGRAMS AND THEIR C*-ALGEBRAS

The notion of Bratteli diagram introduced in [4] has a groupoid approach in the
path model introduced independently by Ocneanu (see [18]) and Sunder (see [26]).
In an attempt to construct a path model for inclusions of C*-algebras other than
the finite dimensional ones, the first step is to replace the discrete spaces of vertices
at each level by more general spaces. Edges, then, become relations between
consecutive pairs of vertex spaces. Problems about Haar systems and continuity
arise and special conditions need to be placed on the spaces of edges. We have
found the situation when the edge spaces are the graphs of covering maps to be the
most tractable. The following construction is inspired by the works of Qcneanu
and Sunder, and will be applied here mainly for inclusions of circle algebras.
Consider a sequence of compact Hausdorff spaces, Lg, L1, ..., Ln, .... These
will be the spaces of vertices on each level. Suppose that Ly is connected, and that
Ly, La,..., Ly, ... each have finitely many components. The assumption on L is
not essential, but is convenient in some cases. Let Ei*! be a compact subset of
L; x N x Liy1; we call the elements of E‘f"’l edges between level L; and level L;4;.
We need to assume several things about Eit!. For v = (z;,m;, i) € Ei*, we
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write s(y) = z; for the source of v and r(y) = z;41 for the range of y. We shall
assume that for each i, r is a surjective local homeomorphism, but we require only
that each s be continuous and onto. However, in our most important applications,
s will also be a local homeomorphism. Since E::‘H Is compact, the cardinality of
r"](-) is finite and constant on each connected component of L;. The number my
in (z;,m;, zi41) should be viewed as indexing a particular edge from z; to Tiy.
The number of distinct m; that occur for a given pair (x¢, Ti41) is the muliiplicity
of the edges with the prescribed vertices. It follows that each multiplicity is finite.
If the multiplicity is one for each pair of vertices, we shall drop reference to my
and N altogether, and simply view E::'H as a subset of L; x Liy1.

By a path from Lo to L, we mean a concatenation of edges

Y=Y,

where y; € E!_, and the equation r(y;) = s(yi41) is satisfied for all i, i = 1,...,
n—~1.Let Xog = Ly and for n > 1, let X,, be the space of paths from Ly to Ly,
with the relative topology from E} x ... x E?_,. It follows that the maps

(2.1)

pn i Xng1 — Xn, Pn('}'l-~~7n+1):71'-~7n1 nzl,
po : X1 — Xo, po(11) = s(m1)

are all continuous.

DEFINITION 2.1. By a generalized Bratteli diagram we mean a sequence of
vertex spaces {L,} and edge spaces {E?*?} together with the spaces of paths
{X,}, satisfying the above properties.

In order to associate a sequence of C*-algebras to such a diagram, consider
the equivalence relations

Rn C Xa X Xn, Ra = {(7,7) | r(7) = 7(¥')}.

Here for ¥y = 71 ...7n, we take r(y) := r(y.). Each R, is endowed with the
relative topology. Since = is a local homeomorphism, counting measures give a
Haar system (see (21]). The range and source maps for the principal r-discrete
groupoids R, are denoted also by r, s:

r(rn Y)Y =7 s(v,¥)=7"

Note that while there is a multiplicity of uses for r and s, it will be clear from the
context which maps we are talking about.
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THEOREM 2.2. With the above notaiion, C*(Rn) is a unital conlinuous trace
C*-algebra, and is associaled to a continuous field of matriz algebras over L.,.

Proof. Since the spaces X, and R,, are compact, the equivalence relation R,
1s proper, and the structure of its C*-algebra is determined in [17]. In particular,
it follows that the spectrum of C*(R,) is the orbit space L, ~ R,\X,. 1

REMARK 2.3. Because C*(R,) is unital and continuous trace, it can be
decomposed into a finite direct sum of homogeneous C*-algebras, where the sum-
mands are indexed by the connected components of L,, denoted Ly ;. From the
above theorem, it follows that the internal structure of the algebras C*(R,,) may
be quite complicated, depending on some cohomology properties of the spaces L,,.
If the Brauer group (the torsion part of H3(L,,Z)) is trivial, then each direct
summand is the C*-algebra of sections of a complex vector bundle over the corre-
sponding component L, ; (see [8], [10]). In particular, if every such vector bundle
is trivial, then

C*(Rn) = B CLn ;) & M 31,
i

where [n, j] is an integer depending on n and j. It is in this particular case that
we are doing concrete computations.

ProprosITION 2.4. Consider the map

d, . c*(Rn) - C*(Rn-H)
given by

otherwise

(@0 f)(7,7) = {(J)’(pn('r),pn(v')) F st = Vo

where f € C(Rn), and p, is defined in (2.1). Then @, is a unital, 1-1, *-hommomor-
phism which takes C(X,,) into C(Xnt1)-

Proof. Note that if yn41 = 4,1, then (pa(7), pu(¥')) € Ban, and f(pa(7),
(")) makes sense. The map is obviously linear. If (®,f)(y,v') = 0 for f €
C*(Rn), then f(pa(7), pn(¥")) = 0 and f = 0 since p, is onta. Note that as spaces
of functions, C(R,) = C*(Rn). This is because I, is compact and amenable (see
(21], Proposition 11.4.2, page 99). To check that it is unital, note that the unit
of C*(R,) is the constant function 1 supported on the diagonal of X,, x X, and
(@ ())(7,7") = 1if paly} = pa(7) and vy1 = 7,4y (le. ¥ = ¥'), and is 0
otherwise. To check that &, is multiplicative, let f,g € C(Ry,,). Then

@ (f )1 7)) = 3 f(pa(1), 0)g(e, pa(Y)), i Yok = Yo,
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and is 0 otherwise. On the other hand,

(@nf) * (®ng)(7,7) = D (@ )y, 1)(@ng)(m,7¥)
n

=Y f(Pn(7), Pa(1))g(n (1), £ (7))

f Ynt1 = Nng1 = Y4, and is 0 otherwise. It follows that

(I’n(f * g) = (‘pnf) * (cbng)a

since o = pp(n) does not depend on v,41. It follows that @, is an embedding of
C*(Ry) into C*(Rn41). Finally, if f € C"(R,) is supported on the diagonal, then
®,, f is also supported on the diagonal. Therefore

®a(C(Xa)) C C(Xnt1). B

We now assume s is a local homeomorphism. This fact will allow us to
consider the imprimitivity groupoid for a groupoid action and moreover, to built
an infinite diagram and a tower of C*-algebras from a diagram with two levels.
The groupoid I' = R, acts to the left on the space X = R,4; in the following
way: observe that

pnor: Ropr — RS,

is open. Thus we may set

Ro* Ry = {((n, 7). 0")) | pa(n) =7},

and define the action via the formula

(LYY (Y s, ) = (Vg1 7)),

see Figure 1. Here Ly is on the top of the diagram, the paths 4 and 4’ are from
level 0 to level n, the path 5’ is from level 0 to level n + 1, and 7,41 is an edge
from level n to level n + 1. The edge #j,41 from level n 4+ 1 to level n + 2 is the
mirror image of 1, 4;.

Mn41
ﬁn+1

Figure 1.
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The action 1s free: if

YY) (Vs ) = (Y g, ),

then v = v/, and (,%') is a unit. The action is proper since all the spaces are
compact. In order to identify R,41 *g, Fnyy , Dote that the orbit space ,\Rnq1
may be identified with X,,4; E“,'{“, where E™t! is the mirror image of E7+1 That
means, each (z,,m,2n41) € ENF! becomes the element (zn41,m,2,) € ENFL.
Therefore a path in X, 4, may be followed by an edge in £*+!. The identification

map is

[yl = 07,
where (Y7,1) € Rp41,7 € E?! | and [y7,7] denotes its class in R,\Rn41. The
map is well defined: if [y7, 7] = [y/r’,%'], then there is (o, 8) € R,, with

(') = (a,8) - (vyr.m),
so that
Y=a =9 v=r1

It follows that R,y *g, Rn.41 may be identified with an equivalence relation on
Xng1 Eptt,

Rat1*R, Ry = {07, 0'7) | s(r) = s(v') }.
Note that the counting measures form a Haar system for R, 1 *g, Rn4+1 when
s E,’f"'1 — L

is a local homeomorphism, since in that case s~1(z) has the same (finite) number
of elements for each connected component of L,,. Moreover, R, 11 acts on Ry, 1%r,
R, 41 to the left by

& m) - (nF,0'7) = (§F.0'7),
where X, 41 EP*! is fibered over X, 41 via #7 — 7. One may continue, consider

(Rn+1 *R, Raot1) ¥Royy (Bnt1 *R, Roy1),

and iterate the previous analysis. Note the analogy with the Jones basic construc-

tion for a pair of 11 factors.
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THEOREM 2.5. The C*-algebra of the imprimiliviiy groupoid Rn41*R, Rnt1
has the same spectrum as C*(R,), and the sel of edges from Loy, to Loys = Ly,
is oblained by reversing the edges in EP+'. Morcover, the map

B, : C*(Rny1) — C*(Rnts 7, Rng1)

defined by the formula

(EI;nf)('Y’;':, ")"‘T") = { f(TlTr) tf = !

0 otherwise
1s an embedding, called the dual of .

Proof. This follows from the above discussion and from a result in [16] assert-
ing that the C”-algebras of two equivalent groupoids are strongly Morita equiv-
alent. In particular, C*(R,) and C*(Hu+1 *#Rr, Rns1) have the same spectrum.
Note that if we reverse once again the edges, we get back EZ+1. 1

REMARK 2.6. In the case C*(R,) and C*{R,41) are direct sums of homo-
geneous C*-algebras of the form C(Y) & My, the structure of the homomorphisms
$,, was studied by Didarlat, Thomsen (see [6], [27]) and others. Using the same
technique, we will consider an irreducible representation w of C*(R,41) and we
will decompose w o ®,, into irreducible representations of C*{R,)}. Recall from {17]
that C*(R,) may be represented on L2(R,, Ay) for u = uy---un € X, by the
formula

. ot —
(Pl = { o [ edele) 3=
0 otherwise,
where f € C*(Rn), ¢ € LY Rn, M), 2(P) 1= A¥(P~1), and {A*} is the Haar
system on R, given by the counting measures. Note that supp(A,) = s~ '(u).
By Lemma 2.4 in [17], 7% is irreducible, and 7r",7r“l are unitarily equivalent iff
[u] = [¢'] € Ly, i.e. iff u, u’ have the same orbit.

PROPOSITION 2.7. Fiz a untl v € X,41, and lel EV be the sel of cdges in
En*l with the same range as v. Then the irreducible representation 7°, when

restricied 1o C*(R,,), decomposes into a direct sum of irreducible representations

B =
ug v
where for cach e € E¥, we choose only one v € X, with r(u) = s(e). Therefore,
to each point [v] € Lny, there corresponds a finite set {[u'], (w3, ..., [v*]} C Ln,
where we count also multiplicities (see Figure 2.
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. oMt [0 )

Ln+1

[v]
Figure 2.

Proof. The finite dimensional Hilbert space L2(Rn41, Ay) has basis

{Eﬁ | 13 € Xn+1)(ﬂ) U) € Rn+1}: Eﬁ(’?:”) = 6,@7)1

therefore dim L?(R,41,A,) is the number of paths ending in r(v). Hence
L*(Rnq1, Ay} decomposes into a direct sum

B LH(Ra, M),

eeEv

where we choose only one u for ecach s(e). For fixed ¢ € E” and u € X, with
r(u) = s(e), L2(Rn,Ay) is the Hilbert space generated by {e4 | @ € [u]}, and
L%(R,, Ay) is embedded as a subspace of LY (Ru41, do) bY €6 — Eqe. Now

(7 0 @) f)p(B,v) = Y (2 f)(B, n)p(n, )
= ﬁjZ(%f)(ﬁaaMaew)
= }ij:ff(pn(ﬂ), a)p(ae, v)
= (gj 1) p(8,v). W

DEFINITION 2.8. For a fixed point [v] € La4s, the set {[u'], [u?],..., [©*]} C

L,, which appears in Proposition 2.7 is called the specirum of @, at [v], denoted
by SP(®,, [v]).

Let’s see now what happens if we remove some levels of the diagram. If
we delete the level L;, we obtain another diagram, where the edges from L;_;
to Liy; are just concatenations of edges in Ei_, and Ei*!. Let’s check that
P, 0®; 1 = <I>::'f11, where q):i'i : C*(R;-1) — C*(Riy1),

(@ AE€) = {f(Pi—IPi£= pim1pi€’) i &iirr = &€y

0 otherwise.
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Indeed,

(®; 0 Bi_ f)(E,€) = { i1 (il pil") i =&y

0 otherwise
_ {f(pf—lpif,m-mié') f&ip1 =&y and & =¢
0 otherwise.

In particular, it follows that the inductive limit
lhm C*(R,)

does not change if we compress (or expand) a diagram. In the sequel, for & < n,
let

Py =peo---opa_y, Of:=®,_10- 0.

REMARK 2.9. In the case we have an infinite diagram, we may consider the
space of infinite paths
X = li_rn(Xna Pn)

with the projective limit topology, the equivalence relations
RY={(y,Y)EXx X |pp =1, Vp2un+1},
with the induced topologies, and

R = Rrm,

with the inductive limit topology. Note that each R™ has a Haar system given by
the counting measures when the maps r : Eft) — L are local homeomorphisms.
Also, note that R™ is open in R"*!, and their Haar systems are compatible. It
follows that R® has a Haar system (see [21], page 122). We have maps

TR:X'—’/YFH 7':&(7172"') =%1 e, 2 l:

ro - X — Xo, ro(7) = s(v),

and R, = r&z)(R"). Therefore C* (R} is isomorphic to
A =limC"(R,).
Consider the conditional expectation

B CH(RT) — C(X), (Ef)(v) = 1(v,7) for f € Ce(R).
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ProrosiTioN 2.10. (i) Let ¢ be a state on A. Then there is a unique prob-
ability measure p defined on the Borel seis of X, identified with the diagonal in
R*, such that

(2.2) wU)z/fﬁmNMﬂ v e C(X).

(i) If 1 is a probability measure defined on the Borel sets of X, then there is
e unique staic @ on A which satisfies (2.2) and p = po E.

Thus there is a bijection belween the probabilily measures on X and the stales
@ that salisfy p = po E.

Proof. (i) Considering ¢ | C'(X,,), it follows that for each n there is a unique
probability measure p, defined on the Borel sets of X, such that

o(f) = /f('r.'r) dun(7), fEC(Xn).
Xn

Since (¢ | C(Xn41)) | C(Xn) = ¢ | C(Xn), the sequence of measures {pn} is
consistent, and there is a unique probability measure & on X such that

p(rn N (F)) = po(F) YV F C X,.

(it) Given g, let

onlf) = [fo M, e

Simply definc ¢ to be woo £. 11

3. EXAMPLES

ExaMPLE 3.1. The usual Bratteli diagrams are obtained when each L; con-
sists of a finite number of points. In this case, the C*(R,) are finite dimensional
and the ®,, are precisely the inclusions of multimatrix algebras given by the dia-
gram, The dual homomorphism ®,, ohtained by the basic construction, induces
the matrix at the level of Kg-theory that is equal to the transpose of the matrix
induced by @, (see [11], Lemma 3.3.1).

EXAMPLE 3.2. In this example we associate a diagram tc a frec action of a
finite group. Let G be such a group, let & = |G|, and suppose G is acting freely on
a connected compact space L. Let Lo = L/G, let L; = L, and let ¢ : L — L/G
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be the corresponding covering map. Consider the space of paths Ny = E} =
{(e(z),z) | z € L}. Then X is homeomorphic to L, and the equivalence relation

Ry may be identified with the diagonal in L x L. The emubedding
C*(Ro) =2 C*(R))
15 just the homomorphism induced by «,
C(L/G)3 f— foo e C(L).

Let’s consider the dual embedding. The Lnprinitivity groupoid K g, 21 may be
identified with

Ro:={(x,z') € L x L|o(z) =a(a")},

which is an r-discrete groupoid, and C*(R3) is associated to a continuous field of

k x k matrices over L/(G. Here
B = {(z,0(e)) | € L}

is the graph of o. In the case C*(Ry) ~ C(L/G)} & M, &g is the homomorphism

compatible with the covering o : L — L/G,

_ f(=)
(®o 0 Po)(f)(2) = | . feCLIG).
(=)

Note that in general C*(Rj) is not a tensor product as above (see the example
before Situation 3 in [25]). Note also that one can obtain an infinite diagram,
by repeating infinitely many times the above diagram. We have been unable to
identify explicitly the corresponding inductive limit C*-algebra, except in some

particular cases.

EXAMPLE 3.3. This is a particular case of the previous example. It is very
important for understanding the building blocks we are considering for the circle
diagrams in the next section. Consider the diagram which, at each level 0,1,2,
has a circle, and in which we join each point z € L; with ¥ € Lo (k#01isan
integer), and also with z* € Ly, using a single edge. That is to say, a point w € Lo

is joined with all its k-roots in L.
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Ly

Ly

Lo

Figure 3.

We have Xp = §1,
X = {(,7) |z €81}

is homeomorphic to §! by the map (2*,2) — z, and
Xy = {(*,2, %) | s € 81}

is also homeomorphic to §' by (z*,z,2%) — 2. The equivalence relation Ry C
Xo x Xy is the diagonal, By C X; x X is also the diagonal, since just one path
ends at each point on L;, and Ry C X3 x X» may be identified with

{(z,w) € §! x §! | w" = 2*),

with the relative topology. Note that exactly & paths end at each point on Lj.
The action of Rg on R, is given, after identifying them with $!, by

z-y=y if y¥ =z

The map
k

po - X1 —)XD, (Zk,z)l—* z
is a covering map and the inclusion
C*(Ro) 2% C*(Ry)

is the homomorphism denoted by o:

or : C(8Y) = C(8Y), (oxf)(2) = F(z5).
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The action of Ry on R; is given by
z-(z,w) = (z,w),
where
pr:Xo = X1, pi(ef, 225 = (8 2)

is the identity map, after identifying X; and X, with §'. The homomorphism
* L *
C"(R1) — C*(R»)
is given by
flz) fz=w
0 otherwise,

(@1)(z10) = {

for f € C(R;). Now C*(Ry) is isomorphic to C(8') @ My (see [14], Example
(iii)), and this isomorphism may be realized in the following way. Endow C*(R,)
with a C*(Rp)-Hilbert module structure via the inner product

{(fil f2)(= lkl > A(w)fa(w

wh=z

An element h € C(Ry) is viewed as a compact operator T on C(R;) = C(S') via
the equation

(Thy)(2) = thv ), g € C(8Y).

Associate to T € K(C(S")) the matrix (Tj;) € C(5') ® Mg, given by the formula
1 .
(=) = (95 | Ta)(=) = 77 D w'™ (Tan)(w),
wk=z

where g;(z) = 227}, j = 1,...,|k}. In particular, a function f supported on the
diagonal of Rz has the matrix

(Tf JI(Z |kl Z wl Jf

Therefore, denoting by u the generator of C*(R;) = C(§'), u(z) = z, ®;u has the
matrix

z j=1,1=k k>0
e ) E i= L= -k k<O
I w . -
Te) = |klw; 1 ifj=l+1
N atherwise
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Hence the embedding
C*(Ry) * C*(Ry)

is the k-times around embedding, denoted by &y,
5r: C(§Y) — C(S")® M.

Note that in this case Ry = Ry #g, R, and the diagram is symmetric with respect
to level 1. In the triple

C(s') = C(s") 25 C(sY) ® My,

the second map is the dual of the first and at the level of K-theory those maps
induce

(3.1) atke, 22727 andatk,, 725278 7.

Indeed, Ko(C(S8')) ~ Z, and is generatcd by the constant function 1, while
Ky (C(8")) ~ Z and is generated by u(z) = z. Also, Ko(C(8?) ® M) =~ Z,
and 1s generated by

0o )

while K1(C(8') ® Mjxj) ~ Z is generated by

z 0 ...
01.,

Now

I 0 0

R 01 ... 0

O'k(l)zl; O'k(].): : - . : )

6 0 1

0 0 0 =z

0 ... 0|

o'k(z)_z o'k(z) 01 ... 0 0 , ifk2>1
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which is equivalent to
z 0 0
I 0
0 ¢ ]
and
00 ... 0 %
0 (]
&L(z):. 0 1 0 0 i ifkgl,
00 1 0
which is equivalent to
20 .0
0 0
0 ¢ ... 1

Note that if we add a new level to this diagram, by reversing the last floor,
we get the bidual embedding

~
-~

C(S") ® Mg 22 C(S") & My, o1 = 0% ®id.

Also, by repeating infinitely many times the above diagram, we obtain a tower of
circle algebras, where the embeddings o ® id and & @ id alternate. Taking into

account the fact that
(Groai)(f)=Ff® 1,
we deduce that the corresponding inductive limit is isomorphic to C($')®
UHF (k).
EXAMPLE 3.4. The Bunce-Deddens algebras fit in our setting. Let L, = S!
forn =0,1,... and let {pn} be a strictly increasing sequence of positive integers

with po = 1, and p,, | pny1 ¥n. Let
B+t = {(z,250) | 2 € L),

where &y := pufpn—1, n 2 1. We get an infinite diagram in which R, may be

identified with
{(z,w) € $' x §' | 2P* = wPn},
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C*(Rn) ~ C(S") ® M,
Gk, . Therefore,

and the maps ®,, are the k,-times around embeddings

n?

A = lim{C*(R,), ®,)
is the Bunce-Deddens algebra BD({pn}).

ExaMmpPLE 3.5. This example illustrates a more complex circle diagram. Let
Lo=8let L; = Li,1 ULy, and let Ly = Ly 1 U Ly where each L; ; is a copy
of §. Let

El = {(z,m,w) € Ly XNxLig|w=2zm=12}U{(z,w) € Lg x L12 | w = z},

and let

Ef = {(Z,'U)) (S Ll,l X LZ’] :l w=2"2orw= Z} U {(Z,’UJ) S L1’1 X L2’2 I w = Z2} ;
U {(Z,’U)) € L1,2 X LZ.I [w = 2_3}
U{(z,mw)€LipsxNxLys|z= w?, m=1,2}.

Here X may be identified with a copy of §!, X; with three copies of §!, and X»

with nine copies of §!, with the usual topology.

Figure 4.

We can see that
C*(Ro) = C(S'), C*(R1) = Ma(C(8")) & C(S"),

and the inclusion
C"(Ro) — C"(Ry)
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is obtained by tensoring the inclusion

A0
C—oMeaC, A— | A,
e (3 o

with C(S!). Therefore

_ 0'1f 0
(I’of—< 0 U1f) ® o f

Now C*(R2) ~ Mg(C(S')) & M(C(S')) and for z € Ly 1,
SP(®),2) ={w€ L) |w=zorw?=2}U{we€ L |w =2z},
and for z € Ly 3,
SP(®1,2) = {w € L1 | w? = 2} U {w € L, > with multiplicity 2 | w = z*}.

Recall that two #-homomorphisms ®, ¥ : A — B with B unital are called
approzimately inner equivalent when there is a sequence of unitaries {u,} C B
such that

lim v, ®(a)u, = ¥(a), Va€ A
n-—0Q

By a result of Thomsen (see [27], Theorem 2.1), two *-homomorphisms between
circle algebras are approximately inner equivalent iff they have the same spectrum
(see the Definition 2.8). Therefore @, is approximately inner equivalent to

Uy Ma(C(S')) @ C(S') — Ms(C(S")) & Mo(C(S')),
given by the formula

o1(f) 0 0 a2(f) 0 0
Vi(feg)= ( 0 7_2(f) 0 ) b ( 0 oa(g) O )
0 0 a-3(g) 0 0 o49)

Since the maps s and r are local homeomorphisms, we can consider Ra *g, R,
and the corresponding embedding ®; will be approximately inner equivalent to

T, : Mo(C(S')) @ Me(C(SY)) — Msa(C(S))) @ Msz(C(SY)),

i aH(f) 0 0 cs(f) 00
Ui(feg) = ( 0 oa(f) O ) & ( 0 Falg) O )
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Computing the maps induced at K-theory by ¥, and 'Z'l, we find that at Kj:

NN

7t Zz;

(0 —1) (—1 2)
p N8/, \-3 2

EXAMPLE 3.6. In this example we consider a stationary diagram related to

while at X:
z2.

a branched covering. The map s will no longer be a local homeomorphism, so that
the construction of the imprimitivity groupoid will not be possible. Let o : I — I,
obtained by stretching and folding the interval I = [0, 11

(1) = 2 0t
Sl20-1) gt

0 2% 1

Figure 5.
Let L, = I and let
1 1

n+l <t - ¢ _ - <1< 2 0.

En {(t,l,zt) l0<t< 2}U{(t,2,2(1 )5 <t< 1} Yn 0
Note that we have two edges joining 1/2 € L,, with 1 € L, ;. It is easily seen that
X, is homeomorphic to a disjoint union of 2" segments and that r : X,, — L, are
local homeomeorphism. It follows that

C*(Rn) ~ C(I) @ Man.

Dadarlat (see [6], Remark 2.5) proves that, in the case Y is simply connected
and locally pointwise connected, the homomorphisms C(X) — C(Y) ® M}, are
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diagonal up to a unitary equivalence. Taking into account the fact that SP(®,,t) =
{t/2,1—1/2}, we deduce that

®, : C*(Rp) — C*(Ray1)

is given by (!)o

‘ _ (13 0

eno=("¢ L)
up to a unitary equivalence. This example appears in [2], where it is proven that
the inductive limit lim C*(R,,) is isomorphic to the UHF-algebra of type 2.

Note that the ;ap s : Xy — Lg is not open, therefore one can not form the

imprimitivity groupoid R; *g, R;. Another way to see this is that each t # 1/2 is
the starting point of a single edge, but for t = 1/2 there are two edges with this
initial point.

4. CIRCLE DIAGRAMS AND INDUCTIVE LIMITS OF CIRCLE ALGEBRAS

In this section we consider a diagram in which L, is a finite disjoint union of unit
circles

kn
Lo=|JLn; Yn20,
i=1

with L, ; = §* for every n,j. We set ko = 1 for convenience. If

1 _ n+1,1
Ext =B,
i

where E‘:;l" is the space of edges from L, ; to Ln41., then we require that each
E‘::,Tl" be either empty, or consists of edges of the form

{(z,h,w) € Lpj xNx Lpgii|w =z, h=1,...,mp}

or

{(z,h", w) € Ln; XN X Lypyp | w=2% h'=1,...,mg},

for some nonzero integers p, ¢ and some multiplicities m,, mg. We may have dif-
ferent p’s and ¢’s for the same z € Ly, j, but once p or ¢ are fixed, the multiplicities
~are independent of z. We suppose that each point in L, is the source and each
point in L, y; is the range of at least one edge. Hence, the maps r, s are onto,
and note that they are local homeomorphisms. It follows that the X,,n 2 1 are
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disjoint unions of circles, and the equivalence relations R,, all have Haar systems
given by the counting measures. The C*-algebra C*(R,) is isomorphic to

ks

D o My,

i=1

where [n,j] is the number of paths ending at each point of L, ;. Indeed, any
homogeneous C*-algebra with spectrum $! is isomorphic to C(§!) ® M, (recall
Remark 2.3). This is true because H3($?) = 0, and every complex vector bundle
over §' is trivial; or see Lemma 2.8 in [13]. The partial embeddings of

C*(Rn) 2% C*(Rnt1),

are approximately inner equivalent to maps of the form
Doyt 3Gy,
» g

where the sums are finite, and m - ¢ means ¢ @ id,, (see [27], Theorem 2.1). Note
that for any z € Ly, ;, SP(®y,, z) contains powers of z or roots of z, with certain
multiplicities.

Taking compositions of such maps (i.e., compressing the diagram), we get
embeddings which will have in their spectra (nonzero) rational powers of z or
elements of the form ¢z, where ¢ is a root of 1. On the other hand, taking into
account the fact that

31(: g = k- oy,

we may expand the diagram, introducing new levels, such that the generic partial
embedding is a sum of words in ¢, 7, with multiplicity 1.

DEFINITION 4.1. By a circle diagram we mean a diagram in which each
level is a disjoint union of circles, and the edges between two consecutive levels are
disjoint unions of sets of the form

{(z,m,w) €S x F x S* |w? = 29},

where p and ¢ are nonzero integers and F is a finite subset of N. That is, in the

notation at the beginning of this section, they are obtained from the compact sets
En+l,l

n; » Dy compressing or expanding in a finite number of steps.

From our discussion to this point, the proof of the following theorem is
immediate.
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THEOREM 4.2. To each circle diagram there corresponds=a tower of circle

algebras
AsCAIC---CAC -,
where
kn
A= B0 © My,
=1

and the embeddings may be expressed as compositions of o, ’s and 3, ’s. Conversely,
to each tower of circle algebras with these particuler embeddings we may associale
a path model.

REMARK 4.3. Note that
OpOp = Oppr and  TyTg = Tgqr,

up to unitary equivalence. Note, too, that o, commutes with &, iff (p,q) = 1.
Recall that #,00 = ¢ - 0y, 'and 07 = 07y = id. Taking inductive limits of tow-
ers as above, we get a class C of C*-algebras which includes the Bunce-Deddens
algebras and the C”-algebras considered in Section 2 of [1], where only &,’s are
allowed. Note finally that replacing the embeddings with other maps in the same
approximately inner equivalence class preserves the inductive limit.

The ideals in the algebras in C are characterized pretty much in a fashion
analoguous to the characterization of ideals in AF-algebras:

ProprosITION 4.4. Let J be a closed two-sided ideal in A = liTAn eC.
Then there are open subsels Q,, C L, satisfying the following conditions: ifz € Qn,
then all points in Lpyy joined with z are in Quyq, and if w € Loy 15 joined with
some points in L, with all of them in Q,,, then w € ,_;.

Proof. It is known that
J = U Jn,

where J, := J N A, (see [5]). Now we can use the structure of ideals in a circle
algebra and the diagram of the inclusions. 8

Note that in general J ¢ C in this setting, since all algebras in the class C
are unital.

Recall that a C*-algebra A has real rank zero if any selfadjoint element can be
approximated arbitrarily close by an invertible selfadjoint element or, equivalently,
by one with finite spectrum. Recall also that, for

®:C(S) @M, — C(S') ® My
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with
SP(®, z) = {wi(z),...,wr(2)},

where we count multiplicities, the spectrum variation is defined by

P = i C wi(z) — (2
SPV(®) := max, min max fw;(z) — wa(i)(<')],

where S is the symmetric group. Note that the multiplicity does not affect the
variation of the spectrum. Following Corollary 2.25 in [7], a C*-algebra A € C has
real rank zero iff for any n € N, for any £ > 0, there is an m & N such that

SPV(21) < e,

for any partial embedding of ®7.

DEFINITION 4.5. To each o4, a word in o,’s and 7,’s, we associate the

rational number
oal i L, »r
Al —
I, ¢

where the product over the empty set is 1.

ProprosSITION 4.6. Consider
A =lim(C*(R,), Pn)

as in the Theorem 4.2. If for any n and for any € > 0 there is an m > n such that
loa| < € for any word oo appearing in the partial embeddings of ®T, then A has

real rank zero.

Proof. Note that SPV(o,) = 2 and SPV(d,) < 27/q. Hence, if for any n
there is an m such that the partial embeddings of ®}* have many &,’s with ¢ big,
then the spectrum variation can be made less than £, and we may apply the result
in[7. n
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5. TRACES, CONDITIONAL EXPECTATIONS AND INDEX

We are now in the position to study the index associated to a pair of circle algebras,
and to see how it is related to the K-theory of the embedding. The notion of
index for subfactors of a type 1I; factor was introduced by Jones (see [11]) and
generalized to arbitrary factors by Kosaki, in terms of conditional expectations
(sce [12]). Watatani defined an index in the category of C™-algebras, using the
works of Jones, Pimsner and Popa ([20]), and the theory of Morita equivalence of
Rieffel ([24]). The C*-notion of index coincides with the number of sheets of a
covering map in the case the embedding of (*-algebras is induced by this map.
From our point of view, a pair A C B of circle algebras may be viewed as a
generalized covering. We consider here only pairs of unital *-algebras, with the
same unit.

In this section, we follow the standard definitions and notation in [28] and
[9]. We recall the salient terms as we need them.

DEFINITION 5.1. By a frace on a unital C*-algebra A we mean a faithlul
positive linear functional 7 satisfying

r(xy) = 7(ye).

A trace is called normalized if 7(1) = 1.

DEFINITION 5.2. Consider a pair of unital C™-algebras A C B with the same
unit. A conditional czpeclation £ : B — A is a linear, positive, surjective map

satisfying the equations
E(ba) = E(b)a, E(ab) = aE(b), Fla)=a, Ya€ A, VbEB.
We will suppose that £ is faithful, that is
E(b*0) =0 implies b =0, Ybe B,

A conditional expectation is said to he compatible with a trace ron Bif roE = 7.

DEFINITION 5.3. A finite family {v;,...,un} € B is called a quasi-basis for
Eif

n n
Zu,-E(uf:v) =z = ZE(zu;)uf Vz € B.
i=1

=1
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A conditional expectation E : B — - is of indes-finite type if there exists a
quasi-basis for /7. The indez of E is then defined by the equation

Ind(F) : Zu,u £ 5.

REMARK 5.4. The element Ind(E) is in Z({B), the center of B. In many
interesting cases, we will see that it is a scalar. Inthe case A= N C M = B
arc type Ily factors, and £ : M — N is the canonical conditional expectation
determined by the trace, the Jones index [M : N] coincides with Ind(E) (see
(20]). If M is an arbitrary factor and E : M — N is a faithful normal conditional
expectation, then E is of index-finite type if and only if Ind(E) is finite in the
sense of Kosaki (see [12]).

ExampLi 5.5. Let XY be compact Hausdorff spaces, with Y connected,
and let 0 : X — Y be a local homeomorphism. Then o is a covering map and the
conditional expectation

E:C(X)— CY), (Ef)y) = Z f(z

axy

where n is the number of sheets of o, is of index-finite type; in fact, Ind(E) = n.
In particular, this is the case when X =Y = §! and o(z) = z*. If we consider on
both copies of (/(S!) the trace 7 induced by Lebesgue measure on S!,

r(f) = / F(eitydt,

then 7o ' = 7. Indeed,

—_

n—

1 1
T(Ef) — /Ef(eZWit)(” — ;]_ /f(eﬂlﬁ)df
0 Q

12
k=

n—1 “

Z /f e2mic) nde—/f (e2™i%)ds = 7(f).

EXAMPLE 5.6. Let A C B be a pair of finite dimensional C*-algebras,

p q
A=P M, B=Pm,
i=1 i=1
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and let ® = (i) be the inclusion matrix. Let 7 be a faithful trace on B, and
define 5§ € C?, by 5 = (s1,...,54), Where 5; := 7(¢;), and ¢; is a minimal projection
in M; . Let t € C" be the vector determining the trace 7|A. Then { = 5. Let
E : B — Abe the conditional expectation determined by 7, with 7( E{x)y} = 7(xy)
for z € B and y € A. Then F is of index-finite type and
/17
nd(E) =) (; Z‘Piii’j) £,
j=1

i=1

where f; are the minimal central projections of B (see the Proposition 2.4.2 in
[28]). Moreover, Ind(E) is a scalar ifl there is 8 > 0 such that

50%! = 5.

In this case Ind(E) = 3 ([28], Corollary 2.4.3).

EXAMPLE 5.7. Let @ : C(I) — C(I},¥(f) = foo, where ¢ : [ — [ is the
branched covering in Example 3.6, and let

piom -, Eno=3(1(3)+1(1-3))-

Then E is not of index-finite type, since the branched covering is associated to a
nonfree action of Z; on I (see Proposition 2.8.2 in [28]).

DEFINITION 5.8. (The C*-basic consiruction) Let £ : B — A be a condi-
tional expectation. Consider & := B as a pre-Hilbert module over A with the
A-valued inner product

(b] | bz) = E(b'{bg), b],bg & B.
Let £ be the completion of & with the norm
[el] = 11E"B)|* .

Then & is a Hilbert C*-module over A. Let K(&) be the algebra of compact
operators. Then K(£) is called the C*-basic consiruction associated to (A, B, E)
(see the Chapter II in [28]).

REMARK 5.9. Observe that K(£) is the closure of the linear span of

{A(b1)ear(b3) € La(€) | b1, b2 € B},
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where A(l) € L4(E) is the operator of left multiplication by &, and 24 1s the
projection induced by E. Indeed, A{z)esA(y") is the rank onc operator 0,
where

0y (5) = (y | B).

For this reason, the C*-basic construction will be denoted also by C*(B,ea).
Moreover, if £ : B — A is of index-finite type, then

K,(f) [,A(f)"‘b' wa B,

where the norm on the tensor product is || || max (see Proposition 2.1.5 and Lemuna
2.2.9 in [28]). It is known that K(£) is strongly Morita equivalent to A, therefore
they have the same K-theory.

DeFINITION 5.10. In the above notation, the transfer map
Tg : Ko(B) — Ko(A)
is defined to be the composition
1\0(3) 20 Ko(C*(B,ea)) = Ko(A),

where the first map is induced by the inclusion B C C*(B,e4). When one views
Ky as formal differences of isomorphism classes of finitely generated projective
modules, the transfer map coincides with the restriction Mg — My, where M is
a finitely generated projective B-module (sec the Proposition 3.3.7 in [28]).

PropPoSITION 5.11. Let A = C*(R,,), B = C*{(Rus1), where the Ry are the
equivalence relations assoctaled to a circle dzaJmm as in Section 4. We view A fo
be contained in B via the embedding ¥,,. Lel

E: C*(Rug1) — C*(Rn)

be defined by the formula

(B (o, ) Z']\_l-“ (ovw, ¥'w), [ e C(R41),

where k(w) is the number of cdges starting al v(«) = r(o'). Then E is a con-
ditional expeclation of index-finite lype, the (*-basic construciion C*(B,ea) is
the C*-algebra of the tmprimitivily groupoid Rut1 *pr, Rny1, and the imclusion
B C C*(B,ea) 1s given by the dual map 3.,
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Proof. Note that the nuinber #(w) is finite, and is the same for each connected
component of L, since the map s : E',’,“H — L, is a local homeomorphism. Now

B+ ag)(e, ) = 3 s + Bag)(ow, ')

Zﬁ;)- Z f(”“"I7J9(f’n(7)aal)

VY =

> (Z ;(—L*)f(“w,ﬂn("r)w)y(ﬂn(v),n’)

palr) VW

= (E(f) * g)(ﬂt1“l): f S (;'{Rn#-l), q € (.;'(Ru),

and in a similar way E(®ng * f) = g+ E(f). Also,
1 , 1
E(q)ﬂg)(al ﬂ,) = ; mq)n!l(ﬂ‘W, w (d) = mk(w)g(ai O"') = g(ﬂ., GI)'

Since E is associated to a local homeomorphisin, it is of index-finite type, and
by a result of Watatani (see Proposition 2.1.5 in [28]), the A-module & = B is
already complete. Therefore K(B) coincides with C*(Rny1 *r, Rus1). We have
seen before (Theorem 2.5) that the embedding C™(Ru41) — C"{Rns1 *Rr, Rnt1)
is given by S, 8

It is known that the traces on C*(R,) and C*(Ru41 *R, fns1) are related
in the following way (see [23]): any trace 7 on the first algebra corresponds to a
trace 7 on the second such that

T(b50) = 7({f 1 9},

where (- | -} is a fixed inner product on C*(Rp41) with valuesin C*(R,), and 0y 4 1s
the rank one operator determined by f and g. Now a trace on C*(Ruq1*R, Bns1)
determines a trace on C*(R,) via the map [<‘13n]0[<1>,,]g, where [®]g is the map
induced by ® on Kp-theory.

Let us specialize at this point to circle diagrams and consider the trace tr on
C(S') ® My given by the formula

1

w(fy) = 3 [ £t e

70

On C*(Rn41), let 7 be a faithful trace which is a linear combination of these
traces. Let £ : C*(Rn41) — C*(R,) be a conditional expectation of index-finite
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type with 70 I = 7, and assume Ind(F) is a scalar. Since the K groups of
both algebras are finite direct sums of copies of Z, Ind(E) is the Perron-Frobenius
eigenvalue of [&),1]0[(1),1]0 (see [28]).
Recall that the center of @ C(5') & M,, is P C(S?). An inclusion of circle
k I

algebras A —+ B will be called connected, if ®(Z(A)) N Z(B) = C(§!) (see the
definition on page 32 in [9] for inclusions of finite dimensional algebras).

DerintTION 5.12. Consider a connected inclusion A — B of circle algebras.

Then a Markow irace on B is the trace with weights given by 3, where
5[@]o[P]o = B3,

and where 3 is defined to be the spectral radius of {®]o[®)s. The index [B : 4] is
also defined to be .
REMARKS 5.13. The maps [®]o and [®]} are related in the following way.

Z »+ Z sign(q)

Oy

Fix an entry

~
Tq

of (®]}, where the sums arc over the o,,’s and the &,’s involved in the corresponding

partial embedding (see (3.1} in Example 3.3). Then the carresponding entry in
[q’]o is

Do+

Ip ;q

The maps [®]; and [®]4 are related in a similar way.

Note that in the computation of the index, both maps induced by & on K
and K are involved, in contrast to the finite dimensional case. Also, different
homomorphisms between the same pair of circle algebras may induce the same

maps at the level of /-theory. For example,

and
oi(f) 0 0
VO — C(§") o M, ¥f = 0  ai(f) 0
0 0 o (f)

both induce multiplication by 3 on Ky and K;.
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The maps ®, ¥ have the diagrams

] v
<dlp
22 z k4
Figure 6.

The corresponding equivalence relations have different unit spaces: one is a union

of

two circles, the other is a union of three circles, therefore ® and ¥ are not

unitarily equivalent. Note also that they have different spectra.
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