J. OPERATOR THEORY © Copyright by IMAR, 1995
33(1995), 91-124
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ABSTRACT. Twisted group C*-algebras associated to two-step nilpotent
groups are studied and their primitive ideal spaces are described as fibre
bundles over an abelian group with fibre spaces being quasi-orbit spaces for
afline group actions. Under appropriate conditions a #-isomorphism is con-
structed between such a C*-algebra and the C*-algebra of continuous sec-
tions of a C"-bundle over an abelian group with fibres stably isomorphic to
twisted abelian group C*-algebras, thus simplifying the description of the cor-
responding primitive ideal spaces. These results are then applied to the study
of twisted group C”-algebras associated to gencralized discrete Heisenberg
groups. The multiplier groups are computed, and a setwise parametrization
of the primitive ideal spaces is given. For discrete Heisenberg groups of rank
greater than or equal to five it is shown that the associated twisted group C*-
algebras can always be decomposed as C*-algebras of sections of C*-bundles
over a torus with fibres being matrix algebras over non-commutative tori.
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0. INTRODUCTION

Twisted group C*-algebras corresponding to locally compact abelian groups arise
in a wide variety of situations in mathematics, including the representation the-
ory of nilpotent groups and connected Lie groups {[2], [14], (28], [7], [6]), non-
commutative differential geometry ([8]) and the study of continuous trace C*-
algebras ([9], [29], [30}). These C*-algebras have been intensively studied over
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the past few decades, and, as a result, much is already known about their struc-
ture, including the topology of their primitive ideal spaces ({4], [17], [12]) and, in
certain cases, a description of their K-groups ([10], [27]). Recall that if A is a
locally compact abelian group with multiplier o € Z?(A, T), then Prim(C*(A4, 0))
is homeomorphic to ,§a, where 9, is the symmetrizer subgroup of A correspond-
ing to a,ie. S, = {s € A: Fa,s) = ofa,s)o(s,a} = 1, Ya € A}. Very
recently, S. Echterhoff and ). Rosenberg have completed an extensive study of
twisted abelian group C*-algebras, particularly as related to the theory of crossed
products of continuous trace C*-algebras by abelian groups. They have shown
that if ¢ is a type I multiplier on A, then C*(A, ¢} is strongly Morita equivalent
to Co(g,,) and if in addition A is second countable and 5, has infinite index in A,
then C*(A,0) = Co(.ga) ® K, where K is the C*-algebra of compact operators on
a separable infinite dimensional Hilbert space ([9]).

For nonabelian groups, much less is known about the structure of the cor-
responding twisted group C*-algebras. A general program to study this problem
was initiated in [27], where certain techniques for studying the structure of the
C*-algebra in terms of normal abelian subgroups were provided. Extensive stud-
ies of certain particular cases, including the rank 3 discrete Heisenberg group and
non-twisted two-step nilpotent group C*-algebras, were carried out in [24], [6),
[22], [31], among other places.

In this paper, which can be regarded as a sequel to both [24] and [27],
we intend to apply the techniques of [27] and [13] to study the twisted group
C*-algebras associated to two-step nilpotent groups, the untwisted algebras hav-
ing already been studied in [28], [5] and {6]. We first turn our attention to gen-
eral locally compact second countable (hereafter, abbreviated by l.c.s.c.) two-step
nilpotent groups, where by generalizing some results from {27] we are able to de-
scribe their primitive ideal spaces via bundle-theoretic ineans. We recall that the
quasi-orbit space Q¢(X) for a topological transformation group (X, GG) is defined
to be the quotient space X/ ~, where for #1, 23 € X, 2y ~ 23 if Gzy = Gza.

THEOREM 1.1. Let N be a l.c.s.c. fwo-step nilpolent group with center Z,
and let ¢ € Z*(N,T) be a multiplier on N. Define subgroups Z, C Z and K C N
by

Zo={z€2:5(z,n)=1, Yn€ N}

and
K={keN:5(ck)=1, Yc€[N,N]}.

Then there is a one parameter family {(Xy, N/K}:v € ZO} of free affine actions
of N/K onl.cs.c. abelian groups X, giving rise to a continuous open surjection
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from Prim(C*(N, ¢)) onto Z, with fibre over vy € Z, gtven by the quasi-orbil space
QN/K(XY). Here X, = g,y for an abelian subgroup Sy of N/Z, depending only on
[0) € HY(N,T) and v € Z,.

Foro=1,2%2, =% and K = N, so that for nontwisted group C*-algebras,
this result reduces to Corollary 2.3 of [5], which described Prim (C*(N}) as a fibre
space over Z.

After proving this general result, we discuss situations under which the
above theorem can bhe combined with techniques of P. Green ([13]) to describe
certain twisted group C*-algebras even more precisely as the section algebras of
C*-hundles whaose fibre (*-algebras are stably isomorphic to twisted abelian group
C*-algebras (and thus, by using results on twisted abelian group algebras, whose
primitive ideal spaces can be parametrized in an even more straightforward fash-
ion).

We then specialize our study to consider twisted group C*-algebras for gen-
eralized discrete Heisenberg groups. These groups are finitely generated non-
torsion two-step nilpotent groups of rank 27 + 1 with rank 1 center; explicitly,
given an n-tuple (dy,ds,...,d,) of positive integers with d;|dzi- - -|d, we write
H(dy, dy,...,dy) = {(r,s,t) : v € Z, s,t € I"} where the group operation is
defined by

) . WA Y ’
(7aS].aH'a"’nat]’“wtn)(" 3510 3 'Ja"':tn)

n

:(1a+7”+2djs§tj,sl +s’1,...,tn+i;).
j=1

By using results from [6], it can be seen that these are exactly the finitely generated
discrete non-torsion two-step nilpotent groups with rank one center. Therefore, by
applying the classical theory of A. Maltsev ([21]), for fixed n € Z* these groups can
be viewed as a parametrization of the isomorphism classes of cocompact discrete
subgroups of the (2n + 1)-dimensional leisenberg Lie group. For the case n = |
and d; = 1, these C*-algebras have already been exhaustively studied in [24], and
for thecase n 2 2, dy =do = - - =d, = 1 and ¢ = 1, the primitive ideal space of
the corresponding group C*-algebra was described in [5].

In order to understand the twisted group (*-algebras for these groups, one
must first understand what sort of multipliers for these groups can arise; re-
call for a discrete group (¢ the multiplier group for (¢ i1s defined to be the sec-
ond cohomology group for (¢ with coeflicients in the trivial (-module T, writ-
ten H2(G,T) = Z4(G, T)/B3G, T). We have explicitly caleulated the multiplier
group for gencralized discrete Heisenberg groups in the following theorem:
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THEOREM 2.11. Let N = H(dy,...,d,) be a generalized discrete Heisenberg
group.. Then the multiplier group of N, H*(N, T) is given by

T? n=1

2 —
H4N,T) = {25, y ZjEn-l) x TEn+1)n=1) 559

The proof of the theorem uses Mackey’s analysis of the multiplier group of
semidirect product groups ([20}}, and in the course of the proof, we provide an
explicit parametrization of the multiplier groups involved in terms of cocycles in
Z%(N,T) representing each cohomology class. Thus we are able to show:

COROLLARY 2.14. Let N = H(d,,...,d,). Forn > 2, every multiplier on
H is cohomologous to a multiplier inflated from the quotient group N/L where

L=dyZ = {(dar,0,0): 7€ 2} C Z.

Hence, for n > 2 no twisted group C*-algebra of the form C*(N, o) can be
simple; in fact by applying some of our general structure results we are able to
prove:

THEOREM 3.4. Letn 2 2 and let N = H(dy,...,dn). Then for any o €
Z2(N,T), there exists £ € I, a subgroup R of I*™ of index £, and a onc parameter
family of multipliers of R, {r, : v € 07 = T} such that C*(N, a‘) 15 *- zsomorphzc
to the C*- algebm of conlinuous secttons of a C*-bundle over 2y = 7 with fibre
over y € Z, *-tsomorphic lo M(C*(R, 1)) the C*-algebra of £ x £ mairices with
enlries in the higher-dimensional rotation algebra C*(R, 7).

Thus when n > 2, the above theorem, together with the classical results
on twisted abelian group C*-algebras mentioned pre\flously, can be used to give
a description of Prlm(C'(N o)) as a fibre space over Z, = £Z = T with fibre
over v € T given by Sy, where S, is the symmetrizer subgroup of R associated
to the multiplier 7,. Therefore, in a natural way one can view the C*(N, o) as
associated to one parameter families of rotation algebras, as in the well-known
result of Anderson and Paschke ([1]), and one can view the above theorem as one
more example of the ubiquity of rotation algebras, or “non-commutative tori”, as
they are popularly known.

For the case n = 1, taking N = H(d) and ¢ € Z%(N,T), the C*-algebras
C*(N,0) can be analyzed completely using the method of [25] and [27]; in this
case not all multipliers are inflated from quotient spaces, and indeed for a generic

subset of H2(N, T), these C*-algebras are simple, as already seen in the case d = 1
in {24], [25], and [27].
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At first glance, this essential distinction between the cases n = 1 and n > 2
may appear surprising. We note however, that a natural explanation for this
difference can be obtained by examining the Lyndon-Hochschild-Serre spectral
sequence ([15]) for I*(N, T) corresponding to the exact sequence of groups

l—L—N—N/L—1,

where L is a central subgroup of rank 1, so that N/L is a central extension of Z??
by a finite cyelic group.

The paper is organized into three sections. The first section gives our gen-
eral results on the primitive ideal spaces for twisted two-step nilpotent group
C*-algebras, the second section contains the main result on the structure of the
multiplier groups for generalized discrete Heisenberg groups, and the third section
contains the description of the primitive ideal spaces of the twisted generalized
discrete Heisenberg group C-algebras.

Some of these results first appeared in the first author’s M.Sc. thesis written
at the National University of Singapore ([19]), and we would like to thank Professor
I. Raeburn for suggesting to us that it might be possible to gencralize some of the
results there.

L. THIES PRIMITIVE IDEAL SPACE FOR GENERAL TWISTED TWO-STEP NILPOTENT
GROUP C*-ALGEBRAS

Let N be a Les.c. two-step nilpotent group and o € Z2(N, T} a Borel multiplier
on N. In [27], Corollary 1.6, necessary and suflicient conditions were given for
simplicity of the corresponding twisted group C™-algebra (™*(N,s), and in [2§]
and {5], Corollary 2.3, descriptions of the primitive ideal space of the untwisted
group C™-algebra C*(N) were given. In this section, we will oblain a setwise
description for Prim (C*(N, o)) for general o.

We first recall that for ¢ € Z*(N, T), the twisted group (*-algebra C*(N, o)
is defined as the C*-enveloping algebra for the Banach #-algebra LY(N, o) with its

usual Ll-norm, and product and involution defined by

(1.1) fi-f2(n) = /fl (m)fo(rn~ "' n)o(m, m™ n) dm
N

and

(1.2) fr(n)=o(n,n=1)f(n"")
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for f, fi,fo € LY(N). (Since N is nilpotent, it is unimodular, and the modular
function drops out of the standard formulae.) Recall also that the *-isomorphism
class of C*(N, o) depends only on the cohomology class of & in the Moore coho-
mology group H2(N,T) = Z*(N,T)/B*(N,T) = Z*(N,T)/B*(N, T) (see [22] for
technical details on cohomology groups).

To state the main theorem of this section, we first need to recall some
facts about the symmetrizer & associated to ¢ € Z%(N,T), first introduced by
K. Hannabuss in [14].

Given o € Z%(N,T),let 7 : N x N — T be the symmetrizer, or symmetrized
form of o, defined by

(1.3) g(m,n) = o(m,n)o(n,n"1mn), mneN.
Recall from [27] the symmetrizer identities

(1.4) a(m,n)a(n"'mn, p) = 5(m, np)

(1.5) o(mn,p) = o(m, n)o(p~ mp, p~'np)a(m, p)o(n,p), m,n,pe N.

These identities imply that for D any central closed subgroup of N, the map
ep(c): N — D, defined by

(1.6) ep(a)(n)(d) = 7(d,n) = o(d,n)e(n, d), neEN,deD

is a group homomorphism.

For future reference, we note that the map ¢p : Z%(N,T) — Hom (N,ﬁ)
factors through the Moore group H(N,T) = Z%(N,T)/B?*(N, T) and this defines
a group homomorphism (also denoted by ¢p) ¢p : H%N,T) — Hom(N, ]3) =
HY(N,HY(D,T)). Now let Z denote the center of N, and define the closed sub-
group Z, C Z by

(1.7) Zo={z€Z:pz(a)n)(z) =1, Vne N}

By [27], Proposition A2 there is a multiplier w on N/Z, such that ¢ is
cohomologous to the inflated multiplier Inf w defined on N, where if # : N — N/Z,
is the canonical projection, Inf w is defined to be w o (w, ). For nontrivial Z,
we can then deduce using [27], Theorem 1.2, that C*(N, o) is *-isomorphic to the
section algebra I'g(E) of a C*-bundle E over ZO with fibre over v € 20 given by
C*'(N/Zo,wy =w - ds(7y)) where

(1.8) d2(7)(s,t) = ¥(n(s)n(t)n(st)™"),  s,t€ N/Z,
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for a Borel cross-section 7 : N/Z, — N satisfying 7(1n;z,) = 1n.

By [18], Theorem 4, there will be a continuous open surjection from
Prim(C*(N,¢)) onto Z, with fibre over ¥ € Z, given by Prim (C*(N/Z,,wy)).
Thus to understand Prim{(C*(N, 7)), we first need to understand Prim (C*(N/Z,,
wy))-

By following through on the above strategy, we will prove:

THEOREM 1.1. Let N be a l.cs.c. two-step nilpotent group wilh cenler Z
and multiplier o0 € Z>(N,T). Define Z, C Z as in (1.7). Then there is a normal
subgroup K C N with N/K abelian, and a one parameter family {(X,,N/K): v €
Z,,} of frec affine actions of N/K on l.c.s.c. abelian groups X.,, such that there s
a continuous open surjection from Prim{C*(N, o)) onto Z, with fibre over y € Z,
grven by the quasi-orbil space QN/K(XV). Here Xy = g'., for an abelian subgroup
Sy of N/ Z, depending only on [0] € H*(N,T) and y € Z,.

The proof of Theorem 1.1 will be accomplished by a succession of lemmas

and propositions.

LEMMA 1.2, Let N,Z,0,Zq,{wy : ¥ € Z,} be as above. Let Ny = N/Z,,
and let Zy = Z]/Z, C Ny1. Then the homomorphism pz, (wy) : N1 — 21 defined as
usual by oz, (wy)(n)(2) = &, (2,n), is independent of v € Z, and has dense range

m Z).

Proof. Let Res : HY(N1,T) — H?(Zy, T) be the restriction map. Easy calcu-
lations show that da(v) € ker Res, and hence ¢z, (d2(y))=1€ H3(Ny, HY(Z,T)),
Yy e Zo. Therefore,

ez.(lwy]) = 02,(lw - d2()]) = 2, (W]) - 2, ([d2(7)])
= ez, (W) 1 =9z (), Ve,

and is thus independent of ¥ € 20. We now show that pz, : Ny — 21 has dense
range.

Suppose that ¢z, (w) maps N; into a proper closed subgroup ngl. Then
Pontryagin duality shows that there exists z; € X+ C 21, z1 # 1z, with
0z, (w)(m)(z1) = 1, Ym € Ny, which contradicts the maximality of the subgroup

Zo. Thus the range of ¢z, is dense in 21, as we desired to show. 1
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Now let N, Z, e, Z,, Ny and wy be as in Lemma 1.2, and let C = [N, N] and
Cy = [Ny, Ni] be the commutator subgroups of N and N; respectively. It is clear
that n(C') = C), and since N is two-step nilpotent, C C Z, so that C) = 7(C) C
n(Z) = Z),. Let Res : 21 — 6’1 denote the restriction map on characters. Then it
is clear from (1.6) that oc, (wy) 1 Ny — Cy satisfies ¢, (wy) = Reso gz, (wy), so
that as a consequence of Lemma 1.2, ¢, (wy) has a dense range in C;, which is
independent of v € Z,.

We now consider multipliers w on N such that the range po(w) : N — Cis
dense:

PRroOPOSITION 1.3. Let N be al.cs.c. two-step nilpolent group with commu-
tator subgroup C, and suppose that w € ZZ(N,T) is such that pc(w) : N — C
has dense range. Let K = kerpc(w) C N, and define SC K by S ={se€ K :
w(s, k) =1,Vk € K}, i.e. S is the symmetrizer subgroup of K corresponding to
w/K x K. Then C C K, and Prim (C*(N,w)) is homeomorphic o the quasi-orbit
space corresponding to the affine action of the abelian group N/K on S defined by

n.x(s) = @(s,n)x(n"'sn), neENseSxeXx=35

Proof. Corollary 1.6 of [27] shows that K is a normal abelian subgroup of N
with C C K, so that N/X is abelian, and applications of [27}, Propoesition 1.1 and
Theorem 1.5, and [26], Proposition 5.1, imply that C*(N,w) is *-isomorphic to a
twisted crossed product C*(/, Res w) x4, N/K, where the action o of N/K on
Prim (C*(I,Res w)) = Sis topologically conjugate to the affine action of N/K
given in the statement of our proposition. We will prove that this action is free,
thus implying the results by an application of Gootman and Rosenberg’s proof of
the Effros-Hahn conjecture ([11], Theorem 4.2).

Let S be the symmetrizer subgroup of w in K. A calculation using the
definition of K shows that ¢' C §. Now let y be an arbitrary element of X = §,
and supposc that n € N stabilizes y. To show that the action of N/K on S is
frec, it suffices to show that n € K. For s = ¢ € € C S we obtain &(c,n) =
x(e)x(n=Ten) = x(e)x(c) = 1, since c € € C Z. So @(e,m) =1, Ve € C. By the
definition of K, this implies that n € K. Hence the action of N/I{ on X = Sis
topologically free. Since N/K isl.c.s.c. abelian, we see that (C*(K,w), N/K, o, 7)
is an Effros-Hahn regular free dynamical system ([11], Theorem 4.2) and it follows
by {12], Theorem 17 that Prim (C*(N,w)) is homeomorphic to the quasi-orbit
space QM K(5).

Propasition 1.3 can be immediately applied to give a slight variant of [26],
Corollary 1.6:
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COROLLARY 1.4. Let N be al.c.s.c. two-siep ntlpotent group with multiplier
w € Z3(N,T) and commutator subgroup . Then the twisted group C*-algebra
C*(N,w) is simple if and only of

(1) pc(w) : N — C' has dense range, and

(i) the action of N/K on .§, where K, S and the action are defined in

Proposition 1.3, 1s minimal.

Proof. The direction (<) follows immediately from Proposition 1.3. As for
(=), if (i) does not hold, by [27], Theorem 1.2, C*{N,w) is not simple. If (i) holds
but (ii) does not hold, then Proposition 1.3 shows that C*(N,w) is not simple. 1

We can now combine Lemma 1.2 and Proposition 1.3 to prove Theorem 1.1:

Proof of Theorem 1.1. We assume that ¢ = Infw, where w is a mulli-
plier defined on Ny = N/Z,, so that C*(N, ) is *-isomorphic to the section
algebra of a C*-bundle over Z, with fibre over y € Z, given by C*(N;,w,) for
wy = w-da(7y). Thus by [18], Theorem 4, there is a continuous open surjection from
Prim(C*(N, o)) onto Z, with fibre over ¥ € Z, given by Prim (C*(N1,wy)). Now
let Cy = [N;, N1]. By Proposition 1.3, letting K = ker ¢, (wy) € N1, K 1s inde-
pendent of y and Ny /K is abelian, and putting S, = {s € K; : @4(s,k) =1, Vk €
K1}, Prim (C*(Ny,w,)) is homeomorphic to the quasi-orbit space QN/%1(X.,) for
the affine action of Ni/Kj on X, = 3';, defined by

(1.9) nx(s) = By(s,n)x(n~"sn),  n € Ni,s€Sy,x € Xy

Now define K C N by K = {k € N : pc(e)(k)(c) = 1, Ye € C}. Then K
is a normal subgroup of N and N/K = (N/Z,)/(K/Z,) 2 Ni/K; is abelian.
Combining our results, we have shown that there is a continuous open surjection
from Prim(C*(N, ¢)) onto 20 with fibre over v € 20 given by a quasi-orbit space
for an affine group action, QN/K(XA,), as we desired to show. &

ExAMPLE 1.5. To illustrate the use of Theorem 1.1, we compute the primi-
tive ideal space of C*(N, ¢) for a straightforward example; more examples will be
given in Section 3. Let N = {(r,s,t,n): r,s,t,n € Z}, where the group operation

is given by

(r1, 51,81, 01) - (2, 52,82, n2) = (71 + ra + {152, 51 + S2, 82 + t2, 7y + n2).
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Note that N is just the direct product H x Z, where H represents the standard
integer Heisenberg group. Fix an irrational a € [0,1) and ¢ € 27, ¢ > 1, and
define a multiplier o on N by

U((7'],31,f.1,7l[),(7‘2,32,1.2;712)):l'.’ e

27 [rgtl+.12 -iui__”] [ Z_’D.] son,

A calculation shows that Z, = {(0,0,0,qn) :n € Z} C Z = {(»,0,0.n) : r,n € Z},
and ¢ = Inf w for w defined on Ny = N/Z, = H x Z, in the obvious way.
For any % € Z, = T, another casy calculation shows that da(y) as defined
in (1.8) is a multiplier on Ny lifted from a multiplier ou Ny/11 x {0} = Z,,
hence is trivial. lence [w,] = [w] € H3N,,T), ¥y € T. We now calculate
Prim (C*(Ny,w)). Using Proposition 1.3, one checks that ) = {(»,0,0,0) : » €
Z} and ¢, (w)(ry, 51,41, 11)(1,0,0,0) = [e‘z"i“"]r, so that Ay = kerge, (w) =
{(r,5,0,0) : »,s€Z nel,}, and w|K; x Ay is defined by
2w 5271
w({ry,s1,0,01), (re,52,0,7)) = [eT]

Thus the symmetrizer subgroup S of Ky corresponding tow is {(j, £¢,0,0): j, k €
Z}, and the map ¢ : N/K; = Z — Ny given by () = (0,0,¢,0) is a splitting
for the projection Ny — N;/K;. The action of Z = N,/K, on S 72 =Tis
calculated to be given by

- o B(E—1)
t-(\p)= (e_“""/\,e‘-muq "5 /\'q‘;z), (tel, A, neT).

Since « is irrational, this is a minimal action of Z on T2, so that, for each y € T,
the quasi-orhit space for the action of N,/K| on X, reduces to a point. Thus
Theorem 1.1 tells us that Primn (C*(N, ¢)) is homeomorplhic to the circle group T. §

In certain situations, we can cormbhine Theorem 1.1 with a result of P. Green
([13]) to simplify considerably our description of Prim(C* (N, o)), via the following
reduction method:

PROPOSITION 1.6. Suppose that N s a l.c.s.c. two-step nilpoient group with
center Z, commulator subgroup €, and multiplier w € Z*(N. T). Suppose there is
a closed central subgroup D, such tha!

(i) w/D x D is trivial.

(i1) pp(w) : N — D is surjeclive.

Let M =kerpp(w). Then M is a normal subgroup of N containing D, and
there is a mulliplier 7 on the group M/D such that

CH (N, w) = C(M]D,7) 0 K{LX(N/M)).
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Here K(L2(N/MY)) represents the C*-algebra of compact operators on the Hilbert
space LA(N/M). If in addition C C D, then both M and M/D arc abelian groups.

Proof. M is normal since it is the kernel of the group homomorphism ¢p (w) :
N — D. Since pp(w) is surjective, N/M is isomorphic to D. Let N* be the central
group extension of N by T defined as in [4], p. 301 (setwise by N = T x N, with
product (A1, n1)(A2,n3) = (AL daw(ny, na),ning), A € T, n; € N, 1 = 1,2); define
central extensions M* and D* of M and D similarly. By [26], Proposition 1.1,
we can write C*(NV,w) as a twisted covariance algebra, in the sense of P. Green
(12, C*(N“,C*(D,Res w)}, Tpw), where the action a of N on C”"(D,Res w) is
given by

(L10)  a((A,n))f(d) = &(n~ dn,n~ )} f(d) = pp(w)(n~ ) d)f(d), f € LY(D)
and the twist 7 : DY — UM(C*(D, Res w)) is given by
(1.11) TN d))f(d) = Af(d7rd),  feL'(D).

Since w is trivial on D x D, this twisted covariance algebra can be viewed as
C*(N¥,C,(D), Tp.) where the action & of N* on C,(D) is given by

(1.12) &((A,n) - f(x) = Hepw)(n™)x), feCo(D).

Given (A,n) € N¥, and n € N, let (:\7;) and 7 denote their images in N /M"Y
and N/M respectively. Note that under the canonical isomorphism N¥ /M"Y =
N/M, (5\71) is identified with n, ¥ (A, n) € N“. Let ¢ be the isomorphism from
N¥/M¥ = N/M to D defined by ®(r) = pp(w)(n). It is easy to check that ®
gives an N“-equivariant isomorphism of the N¥-spaces N¥ /M and D. By [13],
Theorem 2.13 (i), it follows that C* (N, Co(ﬁ), Tpw) is x-isomorphic to

C* (M, Co(D)/1, T52 Py @ K (LAN“ /M¥)),

where I = {f € Co(D) : f(15) = 0}. Now Co(D)/I = C, and casy calcula-
tions using [26], Proposition 5.1 show that C*(M%,C,7£.) is *-isomorphic to the
twisted group C*-algebra C*{M/D, 1) where 7: M/D x M/D — T is defined by

(1.13) m(z,y) = w(c(z), c(y)) wlc(z)e(y)e(zy)~', c(zy)), =, y€ M/D

for some Borel cross-section ¢ : M/D — M satisfying ¢(1py/p) = 1m. Upon
using the isomorphism N“ /MY = N/M, we obtain C*(N,w) = C*(M/D,7) ®
K(L?(N/M)), as desired.

If D contains C, one easily calculates that D C M C K where K is the
normal abelian subgroup of Proposition 1.3. Thus M and M/D are also abelian. §
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-

REMARK 1.7. We note here that if we take D = (7, then condition (i) will
automatically be satisfied. Hence to apply the theorem with D = € it is enough
to verify condition (ii). The simple example of the rank three Heisenberg gronp
given in the first paragraph of [27), Corollary 1.7, shows that the surjectivity of
condition (ii) is a necessary condition which cannot be replaced by a dense range
condition, for example.

Combining Theorem 1.1 with Proposition 1.6 gives:

THEOREM 1.8. Lel N be a l.cs.c. two-slep nilpotent group wilth center Z,
commutator subgroup C and multiplier ¢ € Z*(N,T). Let Zo, Ny = N/Z,, and
w € Z%(N,T) be as in the paragraph preceeding the statement of Theorem 1.1, Let
Cy = [N1,N1| and Zy = Z/Z,. Suppose thal there exists a closed subgroup Dy of
Ny with Cy C )y C Z; C Ny such that

(1) w/Dh1 x Dy s trivial;

(ii) ¢p,(w) : Ny — Dy is surjeclive.

Then there is a one parameter family of abelian groups {X, 1 v € ,’:?;'a} and
a continuwous open surjeciton from Prim(C* (N, a)) onlo Z,, with fibre over y € Z,

qven by X,

Proof. By the proof of Theorem L.I, C*(N,s) can be viewed as the
{“*-algebra of continuous sections of a C*-bundle over 20 with fibre over v € 20
given by C*(N),w,), where w, = w - dao(y) € Z*(N;,T). The argument of
Lemima 1.2 shows that ¢p, (wy} = ¢p,(w), VY € 2,,, and therefore, by our hypoth-
esis on ¢p, (w), is surjective, Vv € Z,. By Proposition 1.6, there exists a normal
abelian subgroup M, of N; containing Dy, depending only on w and a one paratn-
eter family of multipliers on the quotient group M1/ Dy, {ry € Z*(M, /Dy, T), v €
20} (these multipliers 7, will each depend on v € Z.), such that C*(N},wy) is
s-isomorphic to C*{ M, /D1, 7 )oK (L3*(N,/M})), for each y € Z,. Thus C*(Ny,wy)
is stably isomorphic to the twisted abelian group C*-algebra C*(M,/Dy, 1), and
consequently Prim (C*(Nj,wy)) is homeomorphic to X,, where X, is the dual
group of the symmetrizer subgroup S, C M;/D; associated to the multiplier
Ty € Z%(M;/Dy, T). Applying [18), Theorem 4 once again, we obtain the desired

result. 1

We now note that if € is compact, the decomposition of Theorem 1.8 can

always be obtained:
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COROLLARY 1.9. Let N, Z, o, Z, be as in Theorem 1.8 and suppose thal
Cy=[N/Z,, N/Z,] is compact. Then the conclusion of Theorem 1.8 holds.

Proof. Since €, = [Ny, Nq] is compact, € is discrete, so that any map
having dense range in ¢y will be automatically surjective. Since w is automatically
trivial on € (recall Cy C ker ¢, (w) where o = Inf w), we can therefore apply
Theoremn 1.8 with Dy =C4. 8

Corollary 1.9 will be used in Section 3.

2. THE MULTIPLIER GROUPS FOR GENERALIZED DISCRETE HEISENBERG GROUPS

In this section we will compute the multiplier group H*(N,T) where N
belongs to the class of generalized discrete Heisenberg groups described in our in-
troduction, i.e. N € {H(dy,...,dn) :n € ZF, dy,...,dn € Z with di|d3| - -|dn},
where recall setwise H(dy,...,d,) = Z x Z"™ x Z" with multiplication defined by

7
(21) (r,5,0)(", 8, 8) = (r+17+ ) ditis}, 55, b4t ), 10 €2, 5,8, 4,0 € T™.
i=1

Though these groups appear somewhat specialized, they occur in a wide
varicty of situations, as indicated in our introduction. For example, if B € My(Z)
has rank n < k, and if the group H(B) is defined setwise by H(B) = Z x ZF x 7*

with multiplication given by
(22) (rys,t)- (7, s t)Y=(r+ tTBs' s+ s t+1t), rr' €l s s tit'e 7",

then one can show using [16], Theorem 3.8 that there exists di,dy, ..., dn € ZF
with djlds|- - -|dn such that

H(B) = H(dy,ds, . .., dy) x 225",

More generally, the analysis of [6], Corollary 3.4 shows that the collection of groups
{H(dy,...,dn) : n € Z%, di,...,dy € 2, dy]dy] - |dn} is a parametrization of
the isornorphism classes of finitely generated discrete non-torsion two-step nilpo-
tent groups with rank one center. By the celebrated work of A. Maltsev ([21]), all
such groups embed as cocompact subgroups of simply connected two-step nilpo-
tent Lic groups with rank one center, and arguments similar to those used in (6],

Section 3, can be used to show that such Lie groups are all isomorphic to the
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classical Heisenberg Lie groups of dimension 2n + |, n € Zt, i.e. the groups
Hyp =R x R" x R® with mnultiplication given by

23) (rs,0).(7", s Y= (r+20"+ {1,8"), s+ 5,1+ t), " ER, 5,5 1,1 eR"

(Here (2, s} represents the standard inner product on R™).

Thus we view our groups {H(d\,...,dn) : n € Z%, dy,...,d, € Z*,
dy|da|- - -|d,} as natural candidates to put forth as generalizations of the 3-dimen-
sional integer Heisenberg group.

We now want to compute the second cohomology groups H? (H(d;, oy dn),
T). In addition to knowing the group structure of this cohomology group, it will
be useful for our results in the next section to construct explicitly a multiplier in
each cohomology class. )

From this point on we fix n € Z% and dy,...,d, € I+ with d;]d; for i < j.
Throughout the remainder of this section, ¥ will denote the generalized discrete
Heisenberg group, N = H(dy,...,d,). Consider the subgroups M and K of N
defined by M = {(r,5,0):r € Z,s € I"} 2 2"+ K = {(0,0,¢) : t € 2"} = I".
In what follows we shall frequently abuse notation and write (r,s,0) € M and
(0,0,) € K as (r,s) and t respectively. For later use, we let {m;,...,mnq1}
and {ky,...,k,} be the standard generators for A and K respectively, i.e. m; =
(1,0,...,0), my = (0,1,0,...,0), etc. and similarly for the {k;}. Clearly, M is
a normal subgroup of N, M N K = {1y}, and N = M K. Consequently N is a
semidirect product of M and K and we can compute %(N, T} by using results
from [3] and [20].

Since N is a semidirect product, there is an action 7 : K — Aut M obtained
by conjugation which one can calculate to be:

n
w(i)(r, s) = ('l‘ - Z dit;sg, S) s (7‘, h‘) eM,le X,
=]

Note that if we write (7, s) as the column vector (r,5;,...,5,)T, then

(] d;f.] dgtg . . . dntn\
0 1 ) 0 r
0 0 1 e 0 51
(2.4) m()(r, 81,...,80)" =
0 0 0 1 S,
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For convenience, we shall also denote the (n + 1) x {(n + 1) matrix on the right
hand side of (2.4) by #(t). The action 7 of K on M also induces an action of A on
the group of multipliers for M, Z*(M,T) (which one can check. factors through
the cohomology group H%(M,T)), given by

(2.5) (r(O7)((r, ), (', 81)) = (= ()7, 8}, 7 (1), 5N),
te K, (rs),(r,s)e M yez?(MT).

Let [[%(M, T))¥ denote the subgroup of those elements of H*(M,T) fixed
by the above action of K.

Since M and K are finitely generated free abelian groups, their second coho-
mology groups are easily described. In fact for any k € Z*, it is well known that
HZF,T) = T Here we give a modification of the description of H2(ZF,T)
due to Backhouse ([3]). Lot M (k) denote the additive group of & x & real matrices.
Let S(k) and 7 (k) denote the subgroups of M (%) consisting of all symmetric ma-
trices and all upper triangular matrices with 0’s along the diagonal. (We use here
upper triangular matrices rather than the more standard choice of lower triangular
matrices since it makes some of our upcoming calculations simpler.)

For each A € M (k) the function

ariu’ g
va(u,v) = v Av) u,v e 2k

defines a multiplier of Z¥. Each multiplier on 7* is similar to some y4 where 4 €
T (k). Moreover if A = (a;;) and B = (b;;) € M (k), then 7, 1s cohomologous to vp
if and only if there exists ' = (¢;5) € S(k) such that az;—bi; = ;5 (inod 1), V (7, 5),
i.c. if and only if A — B = ¢ (mod 1). Consequently if £(k) = {A € M(k): A=
(0) (mod 1)}, then the map from 7(k) into Z*(Z*,T) described above induces
an isomorphism of 7 (k)/E(k)Y N T{k} onto H2(Z*,T). 1t follows that {ys : A =
(aij) € T(k), aij € [0,1), ‘v’z,y} gives a cotnplete set of ineguivalent multipliers
for Z*.

Since N = MxK, by results in [20], cach multiplier of N is cohomologous
to a multiplier of the formn

(26)  opal(r s, ), (o5 1) = A((r5) w5 DB (5 Nt 1)

where v € Z2(M, T), e € Z2(K,T) and g : K x M — T satisfy the following
compatibility conditions:

@.7)  w()(y) -y (), (¢ 8)) = Bl (r o S)B(E (r,9))B(E (7 57),
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(2.8) Bt +t',(r,s)) = B, 7({t')(r,sHBE, (r,5)), (r,5),(r.sYeM, t,i € K.

Conversely, if y € Z3(M,T) and B : K x M — T satisfy (2.7) and (2.8), then
for any a € Z?(K,T), equation (2.6) defines a multiplier o o p € Z%(N,T). We
now let i be the group of characters of M. The action 7 of i induces an action
mof K on M given by

(7(t)(a))(v) = a(x(t)v), a€M,1€K, ve M.

Let the group of l-cocycles Zl(K,A?l), of 1-coboundaries BI(I{,M), and
the first cohomology group of K with values in the K-module M, H‘(I\’,I@') =
ZY(K,M)/B'(K,M) be defined relative to this action. Then Mackey’s result (as
modified in Appendix 2 of [27]) implies that there is an exact sequence

(29) 0 — HY(K,T)x H'(K,M) -5 HYA(N, T) 25 [(H2(M, T)X,
where the map ( is given by

(2.10) (o, DD((ry 5,8), (', 87, ) = [ee(t, ) x (8, (', 8],

for (r,s,1),(r',s'.t') € N,a € 23K, T),x € ZY(K,M).
We shall show later in this section that (2.9) can be extended to a split exact
sequence
(2.11) 0 — HY(K,T) x HY(K, M) == HY(N, T) 25 (H2(M, T))K — 0.
LEMMA 2.1. Let A = (a;;) € T(n+1). If n = 1, [ya] € [H¥(M, T)]¥,
VA€ T(2). Forn22, [va) € [HYM, ¥ if and only if diay; = 0 (mod 1) for
all32j72n+41 and deayz =0 (mod1).

Proof. Recall that [y] € [H%(M, T)}¥ if and only if m(¢)(y) - y~! is an exact
multiplier for every ¢ € K. Thus we must show that m(t)(y4)y;' is exact if and
only if the stated conditions concerning the entries of A are satisfied. It is easy to
check that (7(t)ya)y;' = Tara where MA = n(t) Ar(t) — A.

For the n = | case one sees that M is a symmetric matrix for all ¢ and thus
Ymp is exact for all ¢, so that H*(M,T) = [H*(M, T)]¥. Thus we concentrate on
the case n > 2. We write
(0 az a3z - - Giayg \
0
0

\o )
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where A’ is an n X n upper triangular matrix. One then calculates

o0 - - -0

0 ! dity

W(t)TAﬂ'(t) =A4] - B where B = . (a12,---,a1,n41)

dntn

0 /
so that ypra will be exact if and only if the » x n matrix A is equivalent modulo 1
to a symmetric matrix. Now B = (b;;)1g: j<n where bj; = ditia; j41. Thus a
necessary and sufficient condition for n(£)T Am(t)— A to be exact is that b;; —bj; = 0
(mod 1), V1,7, for every choice of ¢t € K, 1.e. we want

(2.12) ditiay j41 — djt a1 i1 =0 (mod 1), V1< <n,tekK.
Suppose Ypra is exact for allt € K. Then puttingt = k1 = (1, 0,...,0), and taking
i=1and 2 <j<nin(2.12), we obtain dya; ;41 =0 (modl), V2 < j < n,ie
dia;; =0 (modl), V3 < j<n+1. Puttingt = k2 = (0,1,0,...,0) and taking
i=2and j = 1in (2.12), we get dpa;z = 0 (mod 1), proving the necessity of the
stated condition.

Conversely, if dyai;a = 0 (mod1) and dia;; = 0, 3 < j < n4 1, then
since dy]d;, V1 < 1 € n, we also have dja;; = 0 (mod1), V1 < i< n, 3 <
j €n+1and diayz =0 (modl), V2 < ¢ < n. Therefore (ditiar j41)1<ij<n 18
equivalent modulo 1 to the symmetric matrix whose (1, 1)-entry is dit1a12 and all
of whose other entries are zero. Thus in this case Yar can be calculated exactly
as Y ((ry5),(r', ) = e2mi(dit1012)5181  which is easily seen to be exact for all
te K. n

COROLLARY 2.2. Forn=1,1letT =7T(2), end forn > 2, let
T = {A = (a;;) € T(n+1) : d1a;; =0 (mod 1), 3 < j < n+1, daaip =0 (mod1)}.
Then
-
H2 M T K E 1 T . = n{n—1
(HA T = /84 DT )= {5 s ot

where L, = Z/kZ is the cyclic group of order k.

n=1,
n>z2,

Proof. Lemma 2.1 shows that for n = 1, [H(M,T)¥ = H*(M,T) =
H%*(Z?,T) = T, and for n > 2, it shows that the map A — 4 of T into
Z?(M,T) induces an isomorphism of 7/&(n + 1) N7 (n + 1} onto [H2(M, T))¥
The conclusion follows upon observing that T/&(n + 1) N T(n + 1) is isomorphic
to Za, x 20570 x TS, 4
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We now define for each A € T, the function B4 : K x M — T by
P s {5 ~1)
(2]3) ﬁ,«t(t, (7‘, S‘)) = C~Wld1hJ—2—‘-a,2-

LEMMA 2.3, For each A € T the pair (y4,84) salisfies the Mackey com-
patibilily conditions (2.7) and (2.8). Hence by Mackey’s results, the funclion
g4 NxN—T defined by

aa((r.s,1),(r', 5" ) = yal(r,8), 7O, 5')Balt, (+',5))
= 7a{(r.5). (", '»'))ﬁA(f (r',s")

1s @ mulliplier of N.

Proof. 1t is straightforward to check that (y4,Sa) satisfies (2.7) and (2.8)
so that 04 as defined in the statement of the lemma is a multiplier. We note for
future reference that because A is upper-triangular with 0’s along the diagonal,
A-m(t) = A, Yt € K, so that y4((r, s}, (v, s") = va({r, s), 7(&)(+', s")), VI € K,
which completes the proof. &

LEMMA 2.4. Let 5 : T — H2(N,T) be defined by n(A) = [04], where o4 is
as defined in Lemma 2.3. Then v induces a monomorphism

T:T/Em+1)NT(n+1)— HYN,T)

such that the composition

(H2 (M, TS £ T/em+ 1) AT(n+ 1) — H2(N, T) ™ (120 LT

is the identity map on [H*(M,T))¥.

Proof. 1t is straightforward to check that 3 is 2 homomorphism. Now let
C=(cj) €&(n+1)NT(n+1), thatis, ¢;; = 0, i > j and ¢;; = 0 (mod 1), 7 < j.
We shall show that not only is o¢ € B*(N, T), but in fact, o = 1. One easily
calculates that

p2miditic {—LT—“L‘( 31023
oc((r, s t), (", 8", 1) = e

152 !
which is automatically equal to 1, since dy, #;, s}, clg,gil—}zz;’k € Z. Thus
the map 9 factors through T/&(n + 1) N T (n + 1) giving thus a homomorphism

§:T/Em+1)NT(n+1) = H2(N,T). By Mackey’s resulls, Res(5([A4])) = [va).
Hence the composition Reso?jo is the identity map on [H2(M, T)]* as desired. 8
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The next corollary follows immediately.

COROLLARY 2.5. We have the following short ezact sequence, which s split:
0 — HYK,T) x HY (K, M) - HA(N,T) 25 [(#2(7, TE — 0.
Consequently H*(N,T) = HX(K,T) x HY(K,M) x [H2(M, T)|¥.

Since H?(K,T) and [H%(M, T)]¥ are known, to complete our calculation of
I?(N,T) it remains only to calculate the cohomology group Hl(K,]Q), which we
do now.

LEMMA 2.6. Let n > 2. For any x € Z'(K,M) we have x(kj, m)% = 1,
V2< 5 < noand x(ky,my)% = 1.

Proof. Let x € ZY(K,M). For 1 < i, € n, we have
(ki + k. (1)) = ks, ma) %5 x (s, (,5))x(hy, (r, ).
By interchanging the roles of 7 and j, we obtain
X(lzi,ml)d“-" = x(k]-,m])d"“, 1<, 7€
Putting i = 1 and s = (1,0,...,0), we obtain
x(k;,m)% =1, 2€j<n.
Putting ¢ =2, j =1 and s = (0,1,0,...,0) we obtain
x(ki,m)® =1.

We now define for n» > 1 a map

~ T? n=1
Y ZY (K M) — ’
( ) {Zdz X Z:;;’l x T n>2,
given by
¥(x) = {(Xn,xlz) n=1,
e cnXxn (s 1<iEn,2€<i<n+1)) nz2,

where xi; = x{ki,m;), 1 <i<n, 1<j<n+ 1.
The following lemnma shows that ¥ is surjective.



110 Soo Teek LEE AND JUDITH A. PACKER

LEMMA 2.7. Forn = |, choose arbitrary v, J eT, 7=12and forn > 2,

choose Xx11,X21,-..,Xn1 such (hat Xn =1 and X:l =1, 2<17<n, and choose
arbitrary x;; €T, 1<i<n, 2<j<n+1 Definex : K x M =T by
1—1
(2.14) [“”J“—l*”] x5 n=1,
X(tl(r’ Q)) = 11311...._)_ nontl
(2.15) x?;“ H ”‘HHASJ‘”‘ w22,
i=1 i=1j=2

Then x € ZV(K,M) and
\I/(X)z{(X“’X'Z) n=1,
(X111X21)"'1X1’111 (Xt]l<7<7112S3<11+1)) n 22

Proof. Tt is clear that for fixed n € Z¥* and t € K, x(¢, ) is a character of M.
We check that the I-cocycle identity x (¢, w(t')(r, s))x(¥', (r,8)} = x(t + ', (»,s))
holds for the separate casesn=1and n> 2. Forn=1,1,¢ € K, (r,s) e M,

) Fs(tha' )+t -1, r(t+t ) s

x(t+t,(r,8) = x5 Xiz2
Lsi(t—1) ﬂstt et Bae'(v'=1)
= X1 XT5x 1 X1 1.51L Xt 12X1z

= x(t, (r, )X (r s X

= x(t, (r + st'dy, s))x(t', (v, 5))

= x(t, 7(t" v, s))x(t’, (r,5)).
Forn 2> 2,1,0'€ K, (r,5) € M, we have

x(&, (@) (r, S))—x( ( +Zdt¢,, ))

n

L dtia,
= x(t, (v, s))x(t, my)=

n id.i:s,
woo ([6) =

which, since x@ = 1for i > 2 and since dy|d| - -|dn, is equal to x(, {7, ) )Xt‘d't o
Therefore,
. d n n+l
x(t+ 1, (r,5) = Xt-:;n(tn“ SICH +tl—1)H Tttt )H H X :J, (1)
i=1 i=13=2

= X3 ) ()
= x(&, (@) s (r8)). 0



TWISTED GROUP C*-ALGEBRAS 11t

COROLLARY 2.8.
2

~ T n=1
1 - ~ )
Z (K M) = {Zdz x I~ x ™ nx2

LEmMMa 2.9.

{LY):AeT} noe1,
U(BY(K,M)) =4 {(1,1,...,1,(A,A /4 xdnldi 1 1):AeT) n2
(B, 0) = { {(L, 1, L( J:AeT)
n n?—n
[For the case n > 2, we have placed (Xij)i1<ign+1, 2<j<n41 10 the following order:

(X12,X23, -+, Xn,n+1, followed by lexicographically ordering the remaining coordi-
nates).]

Proof. For a EM, define x* : K x M — T by

a a('u) g
t =7 e I M.
O = o ETE
By definition, BI(K,M) ={x*:a E]l?}
For1 €ig<n, 1 <j<n+1, we have n(k;)(m;) = mj + ;41 ;dimy, so that

forallaeﬂ,
—%—-Lm =1 jEi+1,

dy
a{miys) _ 1 .-
a(mz‘+:)[a?mx)]“" - [a(m,)] j=i+l

x*(ki,my) = {

d d
Let A = [a—(-—':m] . Then x%(k;,mip1) = [Ef’lnﬁj] = i/t 5o that

(1, n=1,
¥(x*) = 1o 1), (A A%/ dadd > 2
(x*) (( ), (¢ g ) n2

mn n nZ—n

as desired. 1

LEMMA 2.10.

. T n=1
1 _ H
HY(K,M) = {Zd2 X 23 x TrHDm=) p 39
Proof. Let
U= T iy
T UL AR e TI T n2 2
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Then by Corollary 2.8 and Lemma 2.9,

HY(K,M) = ZY(K,M)/B" (K M) = W(Z (K M) /¥ (B, 1))

,_V{T2/{1}><U n=1,
T2, x T X TP TV 1) x {1) x U x {1} n 22,

)T n=1,
T\ 2o, x T x TYU TV a2,

Hence it remains to determine T" /U for n > 2. We now define v : T" — T"~! for
nz 2 by

—dz/d; —d3fd —dgfdy
v(ug, g, ..., Un) = (“1 ug, Uz, -, U o Un ).

Then v is clearly a surjective homomorphism with kernel /. Consequently T" /U =
T"~1 and the lemma follows. &
We have completed the proof of:

THEOREM 2.11. Let N = H{d,,...,d,) be a generalized discreic Heisenberg
group. Then the multiplier group H2(N, T) is given by

T2 n=1,
HAN,T) = 23, x 070 s TR o 7ot s 7ot
I T

Proof. This follows immediately from Corollary 2.2, Corollary 2.5, and
Lemma 2.10. 1

REMARK 2.12. We note that for n = 1, H2(N, T) is always path connected,
whereas for n > 2, this will no longer be the case, unless d; = d = 1. An
explanation for this can be found in the proof of [27], Corollary 2.12 and for the
reader’s convenience we summarize that explanation here. The group N will have
as a classifying space a 2n+ 1 dimensional nilmanifold X, and the path component
of H2(N, T) will correspond exactly to the torsion subgroup of H3(X,Z). When
n=1,dimX =3, and H3(X,Z) = Z by Poincaré duality, showing that H2(N, T)

must be path connected.

For our results in the next section, we will want to use explicit cocycles in
Z*(N,T), so we now construct a monomorphism from H2?(N,T) into Z*(N, T).
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ProposiTION 2.13. Write H*(N,T) as T2 forn = | and as Zg, x Ty ' x

ni{n~-1

24,25 x T2 T2 < T~ forn 2 2 and define a map ¢ from HA(N, T)
into Z2(N,T) by

(2.16)  c((A, ))((r, 5, 1), (v, 5",1")) = )\“lr"‘d“"'is';‘u;zrri"'dls”‘“;—ll, n=1

and
(M1 oy ), (e pim)y (i 1 <G < k<), (Bt 1 < J < b <),
((-Yij . l ‘g7‘<- R)l gjg n’a(i)j) #(1‘0))) =0
where
n , , ;)= 1) st =1)
o‘((r,s,t),(r’,s', ('f)) — H)‘:;T H/‘;‘ i,/\f]l]-ﬂ 7 “;i,s, 3
i=1 i=1
217 s:s! ¢ 1
(2.17) H i H fBlate H a:}ﬁ', nx2.
1€j<k<n 1€j<k€n PESE
1858
(1 (1,1}

Then ¢ is a monomorphism which is a cross-seciion for the canonical projection
from Z2(N,T) onto H*(N,T).

Proof. For n = 1 the result is easily seen to be true and hence we concentrate
on n 2 2. For this case the proof just amonnts to a change in the notation pre-
viously used. In particular, A; = e?™%it | < 1< n, and Yij = @it g4 ]
i < j € n, where the (a;;) are as in Lemma 2.1. The (B, 1 €1 < j €< n) are
the standard upper-triangular parametrization for H2(K,T) where K = Z". The
pi = Xi1, 1 £4< n, and the o = xi541, 1 <7< 7 < n, (4,7) # (1,1), where
the (x;;) are as in Lemma 2.7. (Lemma 2.9 shows that without loss of generality
we can choose ay; = 12 = 1.) It is clear that the map ¢ is a monomorphism, and
Lemmas 2.1, 2.2, 2.3 and 2.9 combine to complete the proof of the proposition. 1

From the proposition we immediately obtain the following:

COROLLARY 2.14. Let N=H(dy,...,dy) forn 2 2 and let L={(dym,0,0) :
meZ}C Z={(r0,0):r€Z} CN. Then every maulliplier on N is cohomom-

logous to a multiplier of the form Inf w where w is a multiplier on the quotient
group N/L.

Proof. We note that L is a central subgroup of N, and, that if ¢ is as in
equation (2.17), then a/L x L = 1in Z2(L,T) and &((d2m,0,0),(r,5, 1)) = 1,
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V(r,s,t) € N and Vm € Z, so that by [27], Proposition A2, [¢] = [Inf w] for some
w € H*(N/L,T). (One can check that L is the largest subgroup of Z that will
have this property for all ¢.) Indeed, one can easily verify that ¢ itself is a lift of a
multiplier on N/L, by considering N/L as the semidirect product (Zg, x Z*)xZ"
and noting that ¢ is made up from components as in (2.6), (2.7) and (2.8) which
satisfy the Mackey’s compatibility conditions for the quotient group. We will use
this fact in the next section. @

REMARK 2.15. It is easily seen that Corollary 2.14 does not extend to the
case n = 1. We now attempt to indicate why there should be this significant
difference between the cases n = 1 and n > 2, as already seen in Remark 2.12.
Let N be a discrete group with normal subgroup L, and let A be a N-module.
The Lyndon-Hochschild-Serre spectral sequence [15] gives a first quadrant spectral
sequence converging to € H"(N, A), with Ep-term given by

n20
ED? = HP(N/L, HY(L, A)).

Therefore H2(N, A) can be obtained via the filtration H2 = Fy > Fy > Fy > {1},
where Fo/Fy = E2?, F1/F, = EL! and F, = E%°. Now let N = H(dy,...,d n)
and let L be some nontrivial subgroup of the center Z = {(r,0,0) : r € Z} and
let A =T viewed as a trivial N-module. Since L has rank 1, H%(L,T) = {1}
and consequently E2,? (a subgroup of £y? = H2(L,T) = {1}) is also {1}. The
map m : Fo — Fy/F) corresponds to the restriction map Res : H2(N, T —
H*(L,T) so that H*(N,T) = Fy = F, = kerRes. The map ¢ : ker Res =
H}N,T) - HI(N/L,Hl(L,T)) dlscussed in Section 1 corresponds to the pro-
Jection my : Fy — Fy/F, in the filtration, upon identifying EX' with a subgroup
of Ey' = HY(N/L, H(L,T)). The spectral sequence shows that ker ¢, is exactly
the image of the inflation map Inf : H2(N/L,T) — H?(N,T) (see [27], Proposi-
tion A2 for a detailed proof). If we can show that Fy/Fy, = EL! = {1}, it will
follow that Fy = F, and ImInf = ker ¢y will equal all of H%(N, T). Now EL! =
Ey' =kerd; : By’ — E3°. So in order that Inf : H*(N/L,L) — H3(N/L, T) be
onto, it is necessary and sufficient that 8, : H'(N/L, L) — H3(N/L, T} be one-
to-one. One computes that N/L is a finite extension of Z2*, so that H'(N/L, L)
will be isomorphic to T?" x F for some finite abelian group F. On the other hand,
H3(N/L,T) will be a finite group for n = 1, and will have a M di-
mensional torus as a subgroup for n > 2. It follows that for n = 1, 8, must have a
large kernel, thus it is impossible for Inf to be onto. On the other hand, for n > 2,
there is no such obvious contradiction to prevent 8, : E;'' — Eg'o from being one-
to-one. In fact [15], Theorem 4 gives an explicit formula for 3, in terms of a cup
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product construction, so that it should be possible to verify directly that in the case
n22 N=H(d,.. . ,d), L=dyZ, the map 8, : H(N/L, L) — H}(N/L, T) is
one-to-one. Since this follows from our Corollary 2.11, we will not elaborate on

this point further.

3. THE PRIMITIVE IDEAL SPACES OF TWISTED GENERALIZED HEISENBERG GROUP
C"-ALGEBRAS

In this section we use the results obtained so far to give a setwise parametriza-
tion for the primitive ideal spaces of twisted group C*-algebras constructed from
multipliers on generalized discrete Heisenberg groups.

Let N = H(d;,...,dn) and let ¢ be a multiplier on N as given in (2.16)
for n = 1 and (2.17) for n > 2. In order to obtain a setwise parametrization of
Prim(C*(N, 7)), our first step will be to calculate Z, = {z € Z : pz(c)(n)(2) = 1,
Vne N}

ProposiTION 3.1. Let o be as in (2.16) for n = 1 and (2.17) forn > 2.
Then

{(m,0,0): M pu~t™ =1, Y(s,1) € 7%} n=1,

Zoz n m
{(m,0,0): [H )\f'y;t"] =1, V(s,t)ezz"} n 22

1=1

Proof. Here Z = {(r,0,0) : r € Z}, and one calculates using (2.16) and (2.17)
that

SOZ(U)((T> 5, t))((m) 0,0)) = ’5((m: 0,0), (T: s, t))

(3.1) A [)\’p,_i]m n=1,

(3.2) B (H Afm;‘f) n>2,
=1

giving the desired result. &

Easy calculations using Proposition 2.13, Proposition 3.1 and Pontryagin

duality gives the following proposition.
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PROPOSITION 3.2. Forn =1, Z, is non-trivial if and only if both X and u
are torsion elements of T and in this case, [Z,Z,] = #T', where ' is the (finite)
subgroup of T generated by A and u. Forn > 2, Z, is a non-irivial subgroup of Z
containing {(d2r,0,0) : r € Z}, and [Z,7,] = #T, where T is the subgroup of T
generated by the elements {A1,..., Aa, i1, .., tin}-

Proof. For the case n 2 2, by Proposition 2.13, Ay, u; € Z4, and {d;, p; :
2<i<n} C1y. Since di|dy, Zg, CZy, CT,and {di,pi : 1 €i g n} Cy,
Therefore [ﬁ ,\;?"p.."“']dz = 1 regardless of which (s,1) € 22" we choose, and it
follows thatl{zézr, 0,0)} C Z, so that Z, must be non-trivial. Since {A;, ;1 1 €7 <
n} are all torsion elements of T, the subgroup of T generated by them, T, is finite,
hence closed, and therefore can be described by I' = {l]—j[] it (s,t) € Zz"}.

Now viewing Z = 7 and 7= T, it follows that Z, as defined in Proposition 3.1
can be viewed as Z, = I't C T=27=2 Itfollows by Pontryagin duality that
#I = #T = #(Z/TL)=#(Z/Z,) = [Z : Z,), proving the desired result for n > 2.
For n = 1, we see from the calculations of Proposition 3.1 that if either A and p is
a non-torsion element of T, then Z, must be trivial. Conversely, if Z, is non-trivial
so that Z, = {(£r,0,0) : » € Z} for some £ € Z*, then taking first s =1 and { = 0
and then s =0 and ¢ = 1 in (3.1) gives A* = 1 and p~*
and u are both torsion elements of T. The proof that [Z : Z,] = #(T) is the same

asin the case n > 2. 8

= I respectively so that A

We now concentrate on the case n 2 2. For future reference we introduce
some notation concerning the character group of #Z = {£j : j € Z}. Since {Z =7,
by duality we have a corresponding isomorphism T = 7= Zi, and this isomor-
phism is given by v — x, € 77 where xv(€3) = v}, To simplify notation,
hereafter we will identify v € T with x, € 172

LEMMA 3.3. Let N = H(dy,...,d3) be a generalized Heisenberg group for
n 2 2 and let ¢ be the multiplier on N defined as in (2.17), with parameters
Mot <iKn}, {yip:1<i<k<n}, {Bir:1<ji<k<n}and {o;;:1<
4,7 < n, (4,5) # (1, 1)} (recall that Ay, p1 € Zq, and {Xi, pi 2 <1< n} C Ly, ).
Define the subgroups Z, € Z C N and T' C T as in Proposition 3.2, and let
£ =#(T). Then o is the lift of a multiplierw defined on N/Z, = (2, xI*}xI™, and

C*(N, o) ts x-isomorphic to the C*-algebra of continuous sections of a C*-bundle
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E over Z, = 01 = T with fibre over y € T = Z, given by C*((Zy x Z*)xI™, w-6,),
where 6y € Z2(N/Z,, T) is defined by

id.;t.-a"-
(3.3) by ((5y5,8), (7, ', ¥)) = pi="

where p € T salisfies p* = v, and where ¢ € Z, is the image of r € Z in ZJIL = 1.

Proof. Arguments usmg Pontryagm duality show that we can view Z, C Z

as T CT2T=27=2Z=Z and therefore, that we can view Z, as (£Z x
{0}))4{0} = (7, so that o is cohomologous to a multiplier lifted from N/Z,. Since
every element of {\;, ;i : 1 € 4 € n} has order dividing £, (2.17) shows that o is
a lift of a multiplier w on N/Z, = (Z; x Z")xZ", obtaining by viewing the latter
group as a semi-direct product of Z; X Z™ and Z and repeating the analysis of
Corollary 2.14 with the group L there replaced by Z,; the parameters defining w
remain unchanged. The desired result will follow from the proof of Theorem 1.1,
upon showing that the multiplier da(y) on N/Z, corresponding to y € Z, defined
in (1.8) is cohomologous to the multiplier é, defined in the statement of the present
lemma. Define a cross-section 7 : Z, — Z by 7 : Z; — {0,1,...,£—1} C Z, and
use 7 to define a cross-section 7 : (Z; x Z*)»xZ" — N given by n((#,s,t)) =
(7(7),8,1), (7,s,t) € (Z4 x Z")xZ". Then computing da(7y) with respect to the
cross-section 7 we obtain from (1.8) that

.

Z“ tisi (P )T (F ) - (A +( ish
(34) dQ(T)((’I’ S t) (’l' S t)) =p i=1

where (7, 5,),(+',8',1') € (Zy xZ*)xI"™ and p € T satisfies p* = v (the cohomology
class of da(v) in H?((Z; x Z)xZ") is independent of the choice of p). Now define
b:(ZyxZ)xZ — T by b((#,5,1)) = p). It is easy to calculate that 8b-6, = da(¥),
where & is as in (3.3) of the Lemma 3.3. Hence 8, is cohomologous to d2(7), and
the result of Lemma 3.3 follows. 8

We are now ready to prove the main theorem of this section:

THEOREM 3.4. Lein 2 2 and let N = H(dy,...,dn). Then for any o €
Z*(N,T) there exisis £ € Z+, a subgroup R of Z** of indez £, and a one parameter
family {r, : v € 7= T} of multipliers of R such that C*(N, 0') is *-1somorphic
to the C*- algebra of continuous sections of a C*-bundle over Z, with fibre over
7€ Z, = =17 *- isomorphic to My(C*(R,7y)), the C*-algebra of £ x £ matrices with
eniries in the rolation algebra C*(R, ).
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FProof. By Proposition 2.13, we can assume that ¢ is a multiplier on N
parametrized in the standard fashion, as in (2.17). Using Lemma 3.3, and let-
ting £ € Z* be as in the statement of that lemma, to prove our theorem it suffices
to construct a subgroup R of Z?? of index £ and for every vy € ZO =T
a multiplier 7, on R, such that C*((Z, x Z")xZ",w - é,) is *-isomorphic to
M(C*(R,7y)). Let Ny = N/Z, = (Z; x Z*)»Z" and let D let the subgroup
of the center of Ny given by (Z, x {0})x{0} = Z/Z,. D clearly contains the
commutator subgroup €} of Ny, and direct computations with (2.17) and (3.6)
show that w - 6y is trivial on D x D and ¢p(w - 8y) : N; — D is surjective,
Vy € 2,,. Letting M = kerpp and R = M/D, we have R a subgroup of
Ny/D = 2% and [Z* . R] = [N; : M] = #[ = £, as desired. Applying Corol-
lary 1.9, we immediately obtain that C*((Z; x Z*}»Z", w - §,) is x-isomorphic to
C*(R,7y) ® K(L*(N1/M)) which in turn is *-isomorphic to C*(R, 7,) @ M(C) =
M(C*(R, 7)), since [Ny : M] = £. Here 7, is the multiplier defined on Rx R by us-
ing (1.13). Let ¢ : Z2" — Z; x 2°™ be the cross-section given by c((s, 1)) = (0, 5,1),
and define the multiplier Q : 22" x 72" — T by
35) UG = [T w5 T e T "

1€ <kEn 1€j<k&n :é;é:
(692 (1.1)

where the {¥;, Bk, ovij} are those elements of T associated to w and ¢ as in
Proposition 2.13. Then upon calculation, we obtain for v € Z, =171 = T, and
p € T with pt =7,

o (! 4 dit,s!
(36)  7y((s,0, (1) = A4 T E T g 0, (S
and C*(N, o) is *-isomorphic to the C*-algebra of continuous cross-sections of
a C"-bundle over T with fibres given by C*-algebras which are s-isomorphic to
matrix algebras of constant dimension over (varying) twisted Z2" algebras, as we
desired to show. 1

COROLLARY 3.5. Letn 2 2 and let H = H(dy,...,dn). Then for any
o € Z2(H,T), there is a continuous open surjection from Prim (C"(H,c)) onlo
T with fibres over ¥ € T homeomorphic to T", n, € T+, n, < 2n. Thus in
particular for n > 2 the twisted group C*-algebras C*(H,a) are not simple.

Proof. The proof follows from Theorem 3.4 upon using [18], Theorem 4, and
the fact that Prim (M,(C*(Z?",7,))) = Prim (C*(Z?",7,)) = §T,,, where S, is
the symmetrizer subgroup of Z%" associated to the multiplier 7,. In general, the
positive integers {n, € Z* : vy € T} will vary with ¥ € T, as we will see in
upcoming examples. §
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We illustrate some sample calculations in the following fairly straightforward
example (the basic strategy would be followed in more complicated examples as
well).

EXAMPLE 3.6. Let Ay = 2" %5 (pydy) = Ly = L= =1, 2<i<n,
let v =B =1, 1 € ykénleta”_L 1 €4i# 7 <nand (4,7 = (1,1),
and let {agr = e*™% : 2 < k < n} be arbitrary elements of T. Let o be the
multiplier on N = H(d,, ..., d,) given in (2.17) corresponding to the above choice
of parameters, Then, following the notation of Proposition 3.2, [' = {e”i% :
m € 2}, £ = dy, o is the lift of a multiplier w defined on Ny = (Zg, x ZmyxZ"”,
R = (Za, x {0})%{0}, and a calculation shows that R C Ny/D = Z** is given
by doZ x Z°"~1. Foreach pe T = = d;Z chaose p € T with p% = y. Find
G eZt, 2< j < nwith d; = 4;dy, 2< 7 < n(note &y = 1). Then we compute
that 7y on R x K is given by

i

(51

d2j1552| o '>‘Sn):t)y((8[]_ = dgj;,ﬁ?’?, .. 'vs:z):tl))

n

—28ipdit,d '—1—( 27 +D) ¢ vy dytidag! ditiey
= BB S g () (o, ¢yt i
e, 260G > bt
— e-2md,‘pt1 3 ((S,f § f ) v:i,h.«il,),,_J

f.it,'.'il,
= I 05,0, (o t’))*/“"”‘w:;

(recalling that (j4)% = jimod2, 7| € Z and that p can only be even if dy is odd).

Now write j = s;, ji = 81, 2 € i € n, and we see that 7, on R x [ is given by

T,y((e 1), (s, ")) = QL(4,0), (7, 1)) where (5,1), (5, ¢') € 2" and Q. ((4,1), (7", 1))
H (y“ * where

{ 21ri(—"2+—”7d; k=1,
XL =

ybr e2mibs 2Lk < n

For v € T, write y = ™€ £ € [0, 1]. Define m, € {0,1,2,...,n} by

I {#{’n 1 4L€ + 0y irrational} € irrational,
T #{k : 0 irrational} + 1 £ rational,

and let ny = 2m,. One easily calculates that Sq: C C 72" is given by S'nr >~ 7", so

that bgf = T", giving us the desired setwise parametrization of Prim (C*(N, 0)). 8
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To complete our discussion of generalized discrete Heisenberg C*-algebras,
we focus on the case n = 1. Recall in this situation that the group H(d,) = H(d)
has its second cohomology group given by T2, and a complete parametrization of
inequivalent multipliers is given by {os , : A, u € T} where

Tau(1,5,0), (', 1)) = N8 Pt )

(see (2.16)). By Proposition 3.2, there are two cases to consider: (i) at least one
of the pair (A, i) is a non-torsion element of T and (ii) both A and u are torsion
clements of T. We concentrate on Case (i) first, Case (ii) being very similar to
our results for n 2 2. The next result was first proved for the special case d = 1

in [24].

THEOREM 3.7. (See [24], Theorem 1.6). Letn =1, N = H(d) and 0 = 0 ,
as in (2.16) where either A or pu is non-torsion. Then C*(N, 0y ) is simple and
has a unique lrace.

Proof. Here, one alternative would be to use Corollary 1.4 to prove simplicity;
however, it is easier to use [25], Theorem 1.7, to get the desired result. The finite
conjugacy classes of N are exactly the elements in the center Z = {(m,0,0): m €
Z}. For (m,0,0) € Z and (r,s,t) € N, using the notation of [25], Definition 1.1,
we obtain

X700 (7, 5,0)) = F((m, 0,0), (1,5, 1)) = [\~

Since either A or g is nontorsion, it follows that if m # 0, the conjugacy class
{(m,0,0)} C N is not o-regular, and therefore by [25), Theorem 1.7, C*(N, o) is
simple and has a unique trace. 1

We now consider the case n = 1, A and g both torsion. Up to this point we
have stressed the differences between n = 1 and n > 2, but as mentioned earlier
surprisingly enough this case could serve as a prototype for the work on n > 2
already done. Let A = e & and o= 2% where (pi,q) = 1,7 =1,2. Then
Zo = {(45,0,0) : j € Z} C {(m,0,0) : m € Z} = Z, where £ = l.c.m.(g;, ¢2), so
that N/Z, = (Z; x Z)xZ with multiplier wy , defined on this quotient group in
the obvious way; i.e.,

y - 5 ey t(i=1
wau((F,5,0), (7,8, 1)) = AT Ha T s D

(3.7)
(7,5, ), (7", 8", t") € (L x I)x .

Then we obtain the following analogue of Lemma 3.3.
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LEMMA 3.8. Lel A and ji be torsion elements of T and let I be the finile sub-
group of T generated by (A, pt) and £ = #(I"). Then C*(H(d), 01 u) is #-tsomorphic
to the C*-algebra of conlinuwous sections of a (-bundle over Zo = 7= T, with
fibre over v € Zo =T given by C*((Ze x Z)XZL,wy ,, - by), where b, € Z45N/Z,,T)
18 defined by

(3.8) 6y((F.5,8), (¢, 1)) = p™'
Jorpe T with p* = .

Proof. The proof of Lemma 3.3 carries throngh almost without change, and

we omit details. I

We then use Lemma 3.8 to prove:

THEOREM 3.9. Let A, pu, T, £, oxy, wi, be as in Lemma 3.8. Then
C*(H(d), o) is *-tsomorphic to the C*-algebra of continuous sections of a C*-
bundle over Z, = 22 = 7 = T with fibre overy € T #-isomorphic to Mo(C*(R, 7)),
the C*-algebra of £x£ matrices over the twisted abelian group C*-algebra C*(R, 7).
Here R is a subgroup of Z% of index £ and 7, is defined on R by

(3.9) (s, 1), (5, 1)) = At =l a5 s
for some choice of p € T with p* = 7.

Proof. As in the proof of Theorem 3.4, we can view I as D where D -
(Zy x Z)XZ = Ny is given by (Zy x {0})%{0}. Then for every y € T, pp(wr .0y) =
ep(wa ud2(7)) = ¢p(wa,u) is a surjective map of Ny onto D="Ta computation

shows that
(3.10)  @p(ws)((#, 5 0)(r,0,0)) = [Mpu~l ™, (#5,0) € Ny, (11,0,0) € D.

Let M = kerpp(wy ) € Ny, and set R = M/D C Ny/D = Z?; one easily sees
that R = {(s,t) € Z? : X>;~* = 1}. Then one shows as in Theorem 3.4 that
C*((Zy x Z)%,wx 10y) = Me(C*(R, 7)), where 7, is defined as in (3.9); we omit

details. This *-isomorphism together with Lemma 3.9 competes the proof. &
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EXAMPLE 3.10. As in Example 3.6 we now consider a special case where
A= e2"i5', (p,g) = 1, and p = 1, for arbitrary d € Z+. Then T is the set of all
g-th root of unity, and £ = ¢, so that D = (Z, x {0})x {0}, M = (Z, x gZ)xZ, and
R=M/D=glx1 Forye T=7=g= 20, choosing p € T with p? = v, the
multiplier 7, is defined on R x R by
(g, B), (g7, ¥)) = e 27 FAEAEFE
_ e-zﬁidpx;iﬂi):’f—"'l,},d‘kj'

— [621ri(532'—')7]dkj‘1
(recalling that (§')2 = j'(mmod2), ¥’ € Z, and that p can only be even if g is odd).
Using the isomorphism R = Z? given by (gj, k) — (5, k), we obtain from
Theorem 3.9 that C* (H(d), o

tinuous sections of a C*-bundle over T whose fibre over "¢ = y € T is given by

2mil is #-1somorphic to the C*-algebra of con-
(e 9,1)

M, (A[o_‘_g%i]d) (here A, represents the standard notation for the rotation algebra
with phase factor « € [0, 1)). Therefore by [18], Theorem 4 there is a continuous

open surjection from C* (H(d), I ) onto T with fibre over ¥y € T given by a

iE
(e2rl q 'I)
2-torus if v is torsion and a point for v non-torsion. We remark that in the course

of proving this result we have shown that C* ((Zq x Z)xl,w( B
e L2 i

. )) (where

is as defined as in (3.7)) is *-isomorphic to M, ‘(A[qﬁ+ g_-%-_l]d), as first

w )
(e“-E RELITS)

shown for the case d = 1 by P. Milnes and S. Walters ([22], Theorem 3).

By using similar methods to those outlined in the previous example, one can
prove the following result, which we state without proof.

CoroLLARY 3.11. Fiz d € 2% and let )\, s be torsion elements of T gener-
aling a subgroup I' of order £. Then there is a conlinuous open surjection from
Prim (C*(H(d), 01,4)) onto T whose fibre over y € T is given by T2 if v is torsion
and a point tf v is non-torsion.
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