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ABSTRACT. We classify those Hilbert spaces, contractively contained in a
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1. INTRODUCTION

We are interested in classifying those Hilbert spaces, contractively contained in
vector-valued H2-spaces, that are contractively invariant for the backward shift.
A Hilbert space M is contractively contained in a Hilbert space K if H C K and
lkll% = l|klix for every h € H. We write H < K. We assume that all Hilbert
spaces are over C and that they are separable.

For a Hilbert space £, we let L?(£) and H*(&) denote the standard Lebesgue
and Hardy spaces of functions Lebesgue measurable on D with values in £. The

inner product on both spaces is given by

() = [UO), 900 do().

oD
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Here ¢ is normalized Lebesgue measure on 9D. We will denote the orthogonal
projection of L?(£) onto H2(£) by P,. If X is a Banach space, then L®(X) and
H°(X) denote the Lebesgue and Hardy spaces of s-essentially bounded functions
on 0D with values in X. Both spaces have the norm

1 Alloo = ess sup [|A(M)]|x-
PN )

For f € L*(£) and A € L®(L(£,&.)), Af denotes the function in L2(€) defined
by (Af)(A) = A(X)f(A). This determines a multiplication operator M, : L*(£) —
L2(&,) with norm [|[M4]] < ||Al}co.

We can think of the above HP-spaces as either the subspaces of the corre-
sponding LP-spaces consisting of those functions with vanishing negative Fourier
coefficients, or, as HP-spaces of functions defined in the open unit disk, D, the
former being the non-tangential boundary values of the latter. In the H? case we
can take norm limits, but in the H*® case, where X will usually be the space of
bounded linear operators between two Hilbert spaces, we need to take limits in the
strong operator topology. For details about these functions, consult [i2] or [16].

For a Hilbert space £, we define the bilateral shift, Ug, on L%(&) by

(Ue UA) = A7 (3).

The space H2(£) is obviously invariant for Ug; let S¢ = Ug|H?(£). This is the
unilateral, or forward, shift. The backward shift is S}, the adjoint of Sg. It can
be represented as

(SENE) = S(f(2) ~ FO)

for all f € H%(£).

A vector space lying in a Hilbert space will be called a lincar manifold. A
subspace is a closed linear manifold.

By an operator, we mean a bounded linear operator. The range of an oper-
ator T' can be made into a Hilbert space, M(T), by equipping it with the norm
that makes T" a co-isometry:

TRl aery = llglln

where ¢ € (kerT)t and Th = Tg. Note that if ||Tf| < 1, then M(T) < K.
Conversely, if H < K and T is the operator that embeds H into K, then H = M(T).
If the operators 71 and T3 have ranges lying in the same Hilbert space, then M(T})
is the same Hilbert space as M(T3) if and only if 7377 = T>T3 . This is shown in
[13). A consequence is that for any operator, M(T) = M(T|(ker T)L).
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In the sequel, we take H to be a space contained contractively in H2(£) and
T : H — H?*(£) to be the embedding map. If A is invariant for S;, let Cy € L(H)
be the adjoint of S; as an operator on H. We then have

(1.1) S2T = TC,.

This notation will be used throughout the rest of the paper. We will say that
M is contractively (unitarily) invariant for S§ if SEH C ‘H and C%, is contractive
(unitary).

The first result classifying shift invariant spaces was the following theorem
of A. Beurling ([2]).

BEURLING’S THEOREM. If F is a subspace of H? then F is invariant for
the forward shift S on H? if and only if F = pH? for an inner funclion ¢ € H™.

This theorem was subsequently extended to the spaces H?#(€) by P. Lax ([9])
for finite dimensional £, and by P. Halmos ([6]) and H. Helson and D. Lowdenslager
([7]) for infinite dimensional £.

THEOREM. IfF is a subspace of H%(&) then it is invariant for Sg if and only
if F = QHA(L) for an inner function Q € H®(L(L,£)) and a Hilbert space L.

Here inner means that Q(A) is an isometry for almost every A € 9D.
L. de Branges ([3]) extended this result by considering Hilbert spaces con-
tractively contained in H2(£). A proof is found in [10].

THEOREM. Suppose H < H*(E). Then H is carried into ilself contractively
by Se if and only if H = M(Mg|H%(L)) for some B in the closed unit ball of
H*®(L(L,£)).

In this paper we obtain an analogous result for S;. That is, we classify
those H which are contractively invariant for Sf. The first step is to classify those
H for which C3, is unitary. We then treat the case where Cj, is a completely
non-unitary (cnu) operator. That is, where C}, fails to be unitary on any of its
invariant subspaces. Such an H is said to be cnu-invariant for Sf. A theorem
of §z.-Nagy and Foiag, which states that any contraction can be decomposed into
the direct sum of a unitary and a cnu-operator, will be used to reduce the general
case to the previous cases. Next we investigate when there is a space H < H2(&)
contractively invariant for S; such that C, is unitarily equivalent to a given cnu-
operator. We then discuss contractively invariant spaces in H2. We conclude with
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a characterization of spaces contractively contained in H2(£) and invariant for S2,
but not necessarily contractively.

The above theorems can be applied to special cases of our problem. If
H is closed and contractively invariant for S§, then H?(£) © M is an invariant
subspace for Sg. Thus H can be characterized as H*(£) © QH*(£,) for some
Q e H*(L(,,, £)) that is inner.

In [10], the spaces H such that StH C H and

(1.2) FONE < N3 = 152 113

for all f € H, are classified as the spaces M((1 —TpT§)"/?) where B is a function
in H®(L(K,£)), ||Blle € 1 and Tg = Mg|H?(K). This is a de Branges-Rovnyak
space, usually denoted by H(B). It is also shown in [10] that SfH C H, together
with the condition that (1.2) is satisfied on M, is equivalent to the complemen-
tary space of M being contractively invariant for S¢. (For a contraction 7', the
complementary space of M(T) is H(T) = M((1 — TT*)!/?). For details, consult
(13).) A space H that is unitarily invariant for S} cannot satisfy (1.2). This is
because [|S¢ fll% = || flln for all f € H and StH C M, combined with the above
inequality, would give M = {0}. We will see in Section 6, however, that there are
nontrivial spaces H on which S} acts unitarily. Such a space, then, cannot have
its complementary space contractively invariant for Sg. We will see such a space
that 1s not even invariant for Sg.

F. Suarez ([15]) has made a detailed study of a special case of our problem.
He has classified the invariant subspaces of S* as an operator on the de Branges-
Rovnyak spaces H(b). These spaces will be discussed in Section 6.1, although we

do not investigate them as deeply as Suarez has.

2. UNITARILY INVARIANT SPACES

Our first step is to classify those spaces which are unitarily invariant for Sz. To
express our results in a convenient form, we define a class of operators as follows.
Let A € L®(L(£)) be positive valued. That is, A(A) > 0 for almost every A in the
unit circle. Let £4 = MAH2(€). Define Ty : L4 — H2(E) by
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Tu =Py Ma|Ca.

Then
T = Ma|H%(E).

The operator ['4 is injective as I clearly has dense range. It is obvious that
UsLa C La and that Ugl% = I Se. Let Ua = Ue|La, so Ug € L(L4). We now
have that SpT4 = [ 4U%. Thus M(T' ) is contractively invariant for S¢ (because
', implements a unitary equivalence between U} and C;,I(FA)).

THEOREM 2.1. Suppose H < H%(£). Then H is unilarily invariant for S§
if and only if H = M(Tq) for some positive-valued Q@ € L™ (L(&)) such that Lg
reduces Ug and ||Ql|ec < 1.

Proof. Suppose first that 7 is unitarily invariant for S%. Since S;T = T'C3,
and Cy is unitary, it follows that

SgTT*Se = TCHCHT™ =TT,

Hence TT* is a positive Toeplitz operator on H2(£); so Theorem 6.2.A of [12}
provides a positive valued @ in the closed unit ball of L*®(L(£)) such that T7™ =
Tg2(= Py Mga|H?(£)). This gives

FQFZ? =Tg=TT",

so that H = M(T) = M(I'q).

1t remains to show that Lg reduces Ug, which is equivalent to showing that
Ug is unitary. This is immediate since Ug) is unitarily equivalent to 5, which is
assumed to be unitary.

For the converse, assume H = M(T'g) for some T'g where L reduces Ue.
We still have that U/g is unitarily equivalent to Cipy- Now Ug is assumed to
be unitary, so the theorem follows. 1§

A discussion of when £ 4 reduces Ug, for a positive operator A € L% (L(£}),
can be found in [10].

The referee has pointed out that a relatcd characterization is contained in
the work L. de Branges and J. Rovnyak. See Theorem 8 of [4].
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3. COMPLETELY NON-UNITARILY INVARIANT SPACES

To treat the case where S} acts completely non-unitarily on H, we will employ the
Sz.-Nagy-Foiag functional model for the operator Cy. Qur technique is an adapta-
tion of those used in [10]. Note that C is cnu if we assume C3, is. To construct the
model, we first form the characteristic function of C%. Let D¢, = (1 -—C—QC’H)I”
and Dg = -D?H_’H Define Dc;{ and D¢- analogously for C7, in place of Cx. The
characteristic function of Cy is the function ® ¢ H®(L(D¢,Der)) given by

(3.1) O(z) = (-Cu + ZDc;_l(l - ZC;{)_IDCH)IDc.

The characteristic function determines the cnu contraction to within unitary equiv-
alence. Let

A€ L®(L(D¢))
be given by A(A) = (1 — ©(A)*O(A))"/2 for A € AD. We define
Ho = HZ(D(:;‘) S] MALz(Dc.H); and

(3.2) M
Ke =He © ( @ ) H*(Dc,,).
Ma
We will denote the orthogonal projection of He onto Kg by Po. We will use Ug
to denote the isometry on He given by

(U (u® v))(A) = du(A) @ dv(X)

and we will let So = PgUp|Ke. The operator S is the Sz.-Nagy—Foiag model
for Cy and Ug is the minimal isometric dilation of Se. Thus there is a unitary
W : Ke — H such that CyW = WSe. The U§-invariance of Ko gives the
intertwining

SePe = Pols.

Suppose now we begin with a function @ € H*°(L(G,G.)) such that ||©[|» <1
and [|©(0)f|] < ||f]] for all f € G (a function satisfying these conditions is said to
be purely contraclive). For such a © we can construct A, He, Ko, Us and Se as
before. The operator Sg is then a cnu contraction with characteristic function ©
(up to a constant unitary factor). Notice that © as constructed in (3.1) is purely
contractive. This theory is the subject of [16].
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THEOREM 3.1. Suppose H < H%(E). Then H is completely non-unitarily
invariant for S; if and only if H = M(Y|Ke) where
(1) © € H™(L(G,Gx)) is purely coniractive with ||O| e < 1;
(i) Y : Ho — H?(&) is given by

Y= Py(Mp Mg)IHe
for some F € H*(L(£,G.)) and G € L= (L(£,G)) satisfying GH*(£) C AL*(G);
and

(i) Y|Ke is an injective contraction.

Proof. Suppose first that X is cnu-invariant for S;. Then %, is a ¢nu con-
traction satisfying

(3.3) SiT = TCY,.

Let © be the characteristic function of Cy, let G = D¢, G, = D¢+ and let
W : Ke — H be the unitary operator satisfying CyW = WSe. f welet X = TW,
then (3.3) implies that

X*"Sg = W*T*Se = W*CxT* = SeW*T* = Se X™.

We may now employ the Commutant Lifting Theorem (Theorem I1.2.3 of [16]) to
obtain an operator Y : He — HZ2(£) such that

I1Xx1 = v
(3.4) Y"Se = UeY™;
and
(3.5) X =Y|Ke.

Note that the last equality gives that ¥ |Ke is an injective contraction.
We can write
Y =(A B):He — HE).

Note that this implies B*H2(£) C AL?(D¢,,). Because of (3.4), we have the
intertwining relations
A*Sg = Sp. A",

and
B*Sg = (Ue|AL*(De,,))B".
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The first of these gives that A* = Mp|H%(£) for some F € H®(L(£,Dc-)). The
second gives that B* = Mg|H%*(E) for some G € L®(L(£,Dc)). Finally, the
equality X = TW gives H = M(Y|Ke).

For the converse, suppose ©, F, G, X and Y are as in the statement of
the theorem. Form Ko, He, Up and Sg. It is clear that ¥*Sg = UgY™, thus
S¢(Y|Ke) = (Y|Ke)Sg. This gives a unitary equivalence between S; acting on
M(Y|Ke) and Se, since Y|Kp is injective. This completes the proof as Sg is a
cnu-contraction. Al

4. CONTRACTIVELY INVARIANT SPACES

We treat the general case by employing a theorem of Sz.-Nagy and Foiag which
reduces the general case to our two previous cases.

THEOREM 4.1. Suppose H < H*(E). Then M is contractively invariant for
Sg if and only if H = M((Y|Ke Tgq)) where:
(i) Q € L*(&) is positive-valued and ||Q|jco < 1;
(i) Lo reduces Ug;
(1) © € H*(L(G,G.)) is purely contractive with [|O||0 < 1;
(iv) Y : Ho — H2(E) is given by

Y =Py (Mp  Mg)[He

for some F € H®(L(£,G.)) and G € L=(L(£,G)) satisfying GH*(&) C AL%(G);
(v) Y|Ke is an tnjective contraction;
(vi) (Y|Ke Tq):He® Lo — HAE) is an injective contraction.

Proof. If H has the form stated above, then

S:(¥IKo To)=(YlKe To) (¥ 0 ).
Hence H is contractively invariant for Sg.

For the reverse implication, Theorem 1.3.2 of [16], implies there is a decom-
position H = My @ H, with respect to which Cx = C} @ C3 where C) is cnu and
Cs is unitary.

Write the embedding map T : H — L%(£) as

(Ty T2):Hi®H — HUE).



SPACES CONTRACTIVELY INVARIANT FOR THE BACKWARD SHIFT 133
The intertwining (1.1) then implies

SET; = T1C1,
SETZ = T2C2.

Here Ty and T respectively embed #; and H; into H2(£). Hence Theorems 2.1
and 3.1 provide functions of the appropriate type such that

Hi = M(Y|Ka),
Hz = M(FQ)
Thus
Ty = (Y|Ke)(Y Ko},
TTy = I‘QI‘E,.

This proves H has the desired form since

TT* =T\T7 + ToTy. 1

Consider now a space M([g) where £g = QHZ(£) does not necessarily
reduce Ug. As we saw in Section 2, the space M(Tg) is contractively invariant
for S%. To represent M(I'q) as in Theorem 4.1, we use Proposition V.4.2 of (16]
to provide an outer function A in the unit ball of H*®(L(£, F)) such that

(4.1) AN AN < Q(X)? for a.e. X € 6D

and if Ay € H®(L(E, 7)) also satisfies (4.1), then A;(A)*A1(X) < A(A)"A(X)

almost everywhere. The function A is called the mazimal factorable minorant of

Q? by J. Ball and T. Kriete ([1]). That A is outer means M4 H%(E) = H(F).
Let R € L®(L(£)) be the positive function satisfying

(4.2) Q) = AV A(N) + RN

The maximality of A implies that Lz reduces Ug; see the proof of Proposition
V.4.2in [16]. Now let Y = T3 : H*(F) — H%(£). Using (4.2), we have

(T; FR)(TZ I‘R)'.= =Taea+Tge :TQz = TQFZ?

so that M(T'g) = M((T4 Tr)). It can be shown that this is the desired repre-
sentation.



134 MIGCHAEL SAND

5. INVARIANCE EMBEDDINGS AND n-CYCLIC OPERATORS

In this section we investigate when a given model space Ko can be embedded in a
given H2(£) viaa map Y as in the statement of Theorem 3.1. To be more precise,
we call Y : Hg — H?*(E) an tnvariance embedding if

(1) Y : He — H?(£) is given by

Y = Po(Mp Mg)|He

for some F € H=(L(£,6.)) and G € L™ (L(£, G)) satisfying GH?(£) C Ma L2(G);
and

(2) Y|Ke is an injective contraction.

One consequence of this definition is that Ug¥* = Y*Sz. When an in-
variance embedding exists, Theorem 3.1 shows that M(Y[Kge) is contractively
invariant for Sg. Moreover, (2) in the definition gives that the operator Cy (the
adjoint of the action of S} on M(Y|Kp)) is unitarily equivalent to the model
operator Sg.

We first show at least one invariance embedding always exists.

TBEOREM 5.1. If Ko is any model space, with © € H™(L(G,G.)), then
there is an invariance embedding Y : He — H2(G. ® G).

The proof is facilitated by the following two lemmas.

LEMMA 5.2. If £ is a Hilbert space with orthonormal basis {e,} and f €
(¢ o]

112(5), then f=@(f, en)cen where {f,e,)e denotes the function A — {(f(X), en)e.
0

Proof. It is obvious that the functions {f, e,)ge, are orthogonal in H2(£).

The inequality
N

£ = o0, en)een

n=0

, <l

holds almost everywhere and the left-hand-side goes to zero, as N — oo, almost
everywhere, Hence Lebesgue’s Dominated Convergence Theorem yields

N

|7 =3 ¢s endeen

n=0

—
L&

giving the lemma. &
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LEMMA 5.3. Let x be a function in L™ thal is non-negative almost every-
where and fails to be log-integrable. Define My f = zf on L*(£), for a Hilbert
space £. Then M H2(E) = L*(£).

Proof. The theorem is known in the case that £ = C; it then reduces to the
well-known criterion for a function in L? to be cyclic for U, see [8].

For the general case, fix f € L(£) and € > 0. By Lemma 5.2, we can choose
N > 0 so that

N
| =Xt enteen <
n=0
where {e,} is an orthonormal basis for £. For n = 0,..., N, choose g, € H? so
that )

€

lzgn — {f, en>8”g < on "

Let ¢ = goeo + - - -+ gnven. Then

N
If — zgllLage) < “f ~ > {f,en)en
n=0

N
+ |29 = Y5 eadeen
n=0

L2(g) L2(&)

2

N
' 3e
e+ (Z ”xgn - (f; en)b’“%) < 7 |
n=0

Proof of Theorem 5.1. Write f € H*(E) = H*(G. ®G) as (J;l) where
2
fi € H%(G,) and f2 € H%(G). Let

Y*f =1 & MaMyfy=(1 0) (ﬁ) ©(0 MaM:) (2)

where z is a function in the closed unit ball of L* that is non-negative almost
everywhere and fails to be log-integrable. Clearly Y*H?(£) C Heo. In fact, it is
densc in He. To see this, first note that Y*(H%(G.) ® 0) = H%(G,) @ 0. By the
lemma, My H?*(G) is dense in L?(G), so MaM,;H?%(G) is dense in MAL%(G). Tt
follows that Y* H?(£) is dense in He. Consequently, PoY™* = (Y |Ke)* has dense
range so that Y|Kg is injective. It is clear that ¥ is a contraction. We conclude
that Y is the desired invariance embedding. 1

The above embedding result is somewhat crude, particularly with respect to
the dimension of £. We wish to find a more explicit connection between properties
of So and the dimension of £ The relevant property of Sg is in fact given by
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the following definition. An operator T on the Hilbert space K is n-cyclic, for a
positive integer n, if there are vectors kj, ..., &, in K such that

V{Tk; |[ieN, and j=1,...,n} = K.

A 1-cyclic operator is simply said to be a cyclic operator.
We can now state the main result of this section.

THEOREM 5.4. Let Ko be a model space and £ a Hilbert space of dimension
n € Zt U {Ro}. There exists an invariance embedding Y : He — H*(E) if and
only if Se is n-cyclic.

Proof. Suppose first that such an embedding exists. Let {ex} be an orthonor-
mal basis for £. Since Y|Kg is injective, its adjoint, PeY™, must have dense range
in Ko. That is, PoY*H%(£) is dense in Ko. The relations Sg Po = PolUp and
UeY* = Y‘Sg give

PoY*Sher = SLPoY ey

Thus, the fact that the elements S’;’;ek span H?*(£), combined with the fact that
PoY*H?*(£) is dense in Kg, yields that the elements S‘éP@Y*ek span Ke. Hence
Se is n-cyclic.

The converse requires the following lemma.

LEMMA 5.5. Suppose F and F, arc Hilbert spaces and u@® v € HYF.) &
LY F). Then ihere exist funclions h € H?, F € H®(L(C,F,)) and G €
L*®(L(C, F)) such that
udv=FhadGh

Proof of Lemma 5.5. By the theorem of Halmos stated in the introduction,
there is a Hilbert space £ and an inner Q € H*(L(£, F.)) such that

(5.1) {7;1‘ =QHY(L).
0

So u = Qg for some g € H?(L). The equality (5.1) then implies S¢ is cyclic since
Q is inner. The only cyclic shift is that of multiplicity one ([5]), so we may assume
ge H?,

The function 1+ [g(A)|? + ||o(M)||% is log-integrable, so there is an outer
function A in H? with modulus satisfying

(5.2) IAOI2 = 1+ g2 + ().
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We define a measurable L{C, F)-valued function by G(A\)h(A) = v(A). Note that
since h is outer, it is nonzero almost everywhere on 9D, so there is no difficulty in
defining G this way. It follows from (5.2) that

el
M= ——"=<g1.
le = T <
Hence G € L®(L(C,F)). It also follows from (5.2) that the function a(z) =
g(z)/h(z) isin H®. If we let F' = Qa, then FF € H*(L(C, F.)) and Fh = Qah =
Qg = u. It is clear that Gh = v, so the proof is complete. 1

To proceed now with the proof of the converse of Theorem 5.4, we first
assume that dim& = n is finite. Let {ey,...,e,} be an orthonormal basis for £
and let {f1,. .., fa} be vectors in Kg such that the Sk f; span Kg. By Lemma 5.5,
we can find, for j = 1,...,n, functions h; € H?, F; € H®(L(C,G.)) and G; €

T
L®(L(C,G)) such that f; = F;h; ®Gjh;. Writing an element of H2(E)as | |,
En
define Y™ by
T Z1 z1
Y*{ : |=(Fh - F)| : |&(G - Gn)
Tn Ln In
Note that each Gjz; is in Ma L2(G), so the operator (G;1 -+ Gn ) maps H*(£)

into Ma L?(G).

To show Y is an invariance embedding, we need to show that PaY*Keg is
dense in K. Let w; denote the column vector in H%(&) with h; in the j-th
position of the column and zeroes elsewhere. Then

Y*Siw; = USY *w; = U§f;.
So PaY*Ke contains the vectors
P@Uéfj = ngj

for k € Nand j = 1,...,n. This gives the desired result. Note that if ¥ as
constructed is not a contraction, we can multiply it by an appropriate constant,
so that it becomes a contraction, without loosing any of the desired properties.

In the case that dim& is infinite, we may use the invariance embedding
provided by Theorem 5.1. 1
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Combining Sz.-Nagy-Foiag model theory with the results of this section gives
the following.

COROLLARY 5.6. Let £ be a Hilbert space of dimenston n € Z1 U {Xp) and
L a cnu-coniraction on another Hilbert space. Then L is unitarily cquivalent to
the aclion of Sy on one of ils contractively invariant spaces if and only if L* is
n-cyclic.

CoROLLARY 5.7. If L is a cnu-coniraction with a cyclic adjoint, then there
ts a Hilbert space M, contractively conlained in H?, that is contractively invariant

for S* and on which S5* is unitarily equivalent to L.

6. CONTRACTIVELY INVARIANT SPACES IN H?

Corollary 5.7 suggests that the backward shift S* on H? has quite a variety of
contractively invariant spaces. This variety is in contrast with the case for the
forward shift, 5. For example, we saw in Section 1 that if a space, contractively
contained in H?, is contractively invariant for S, then it must be of the form
M(Tg), where B is in the unit ball of some H*(L(F,C)) and 75 = Mp|H?*(F).
From this it follows that no such space can e unitarily invariant for S. We will

see later, however, there is an ample supply of such spaces for S*.

6.1. DE BRANGES-ROVNYAK SPACES. Perhaps the best known of the spaces we are
considering are the de Branges-Rovnyak spaces. For b in the unit ball of H*°, the de
Branges-Rovnyak space for b is the space H(b) = H(T3) = M{(1 — T3 T3)"/?). The
details of how S* acts on these spaces have been worked out by D. Sarason ([14]).
In particular the Sz.-Nagy-Foiag model for the operator Cx(s) is determined. The
results depend on whether or not b is an extreme point of the unit ball of H®.
Suppose first b is an extreme point. In this case the characteristic function

of Cx(s) is simply © = b, giving

Ho = H? (4% ]MA)L2

_ M
K@:{H2®MAL2}9( b)HZ
Ma

h
where A = (1 — |6|?)!/2. The operator Y : Hg — HZ is simply Y ( l> = h.
g
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For b not an extreme point, we can form the bounded outer function a that
is positive at the origin and has modulus (1 — [b|?)*/2 almost everywhere on dD.
The characteristic function of Cy(s) is now the inner function

0(z) = (22‘3) . C - C2.

In this case He = H?(C?) and Ko = H%(C?)© Mo H?. If we tepresent a function
!

in H?(C?) as ( l) for h,g € H? then Y : H?(C?) — H? is again simply the
g

projection onto the first coordinate.

Analogous results, due to J. Ball and T. Kriete ([1]), are available for vector-
valued H2-spaces. If B is in the unit ball of H*(L(G,£)), then H(B) = H(Tg) =
M((1 = TTg)?). Let A€ L®(L(G, D)) be the maximal factorable minorant of
1-B*B,

o= (43) o=eon

and A = (1 — ©°0)1/2, '
Now write

Heo = HX(E) ® H* (D) ® MaL%(G); and

Mg
Ke=Heo | My HZ(Q')

Ma
In [1], it is shown that if Y : He — H?*(E) is given by Y(u @ v @ w) = u, then
H(B) = M(Y|Kg). This shows how the results given in [10] fit into our scheme.

6.2. THE SPACES M(T;|H(8)). Let 6 be any inner function in H®. Set He = H?
and Ko = H(8) = H* & 0H?. Choose h € H* so that H(f) Nker T; = {0}. If we
set Y = T}, then Theorem 3.1 implies that M(T5|H{6)) is contractively invariant
for 5*. Of course, this is readily apparent from the relations S*T; = T3;5* and
S*H(0) C H(9).

Similar spaces arise from functions ¢ € L® that are non-negative and satisfy

f]oqua > —o0.

Such a function is the modulus of an outer h in H*. Thus
T =Ty = T3 T

so that M(T'g) = M(T3).

6.3. UNITARILY INVARIANT SPACES IN H2, Now we give a characterization of the
spaces in H? that are unitarily invariant for S*.
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THEOREM 6.3.1. Suppose H < H?. Then H is unitarily invariant for S* if
and only if H = M(T,) for some non-negative ¢ € L such that

/]ogq do = —o0.
a

Proof. Suppose H is unitarily invariant for $*. By Theorem 2.1, it must
be that H = M(T';) for some non-negative ¢ € L% such that £, = ¢H? reduces
U = Uc. To determine which q satisfy this condition, we first recall a result
concerning the invariant subspaces of the bilateral shift on L%, a proof of which
can be found in [8].

THEOREM. Let F be a subspace of L?. Then F is a non-trivial invariant
subspace for the bilateral shift if and only if either

(i) F = xgL? for some measurable £ C 8D; or

(i1} F = wH? for some u € L™ with |u| = | almost cverywhere.

The subspaces of the first type are those that reduce U, while those of the
second type contain no subspace which reduces U. So Ly reduces U, if and only
if it is of the form xgL?. Let |E| denote the normalized Lebesgue measure of E.
If |E| = 1, then ¢H?Z = L2, implying ¢ is cyclic for U. This implies that ¢ cannot

/]oqua = —oo.
oD

If [E| < 1, then g obviously fails to be log-integrable.

be log-integrable, i.e., that

On the other hand, if we begin with a ¢ > 0 in L that is not log-integrable,
either ¢ > 0 almost everywhere or q is zero on a set of positive measure. In the
first case, ¢ is cyclic for U/, so £, reduces . In the second case, Beurling’s theorem
gives that £, = xpL? for some E, so again it reduces U/. 1

In particular, the spaces M(T, .} for E C 8D satisfying 0 < |E| < 1 are
unitarily invariant for S*. These spaces also have the property that their comple-
mentary space fails to be invariant for 5. Hence the results in [10] mentioned in
Section 1 do not apply to these spaces. Moreover, this fact illustrates one way in
which contractively contained spaces behave diflerently than subspaces, since if a
subspace is invariant for an operator, then its orthogonal complement is invariant
for the adjoint of that operator.

Observe first that the complementary space of M{Ty,) is

H(Txs) = M((1= Ty T5p) %) = M(TILS) = M(Ty,)
XE XE* xE X!

1-xe
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where £/ = 0D\ K. Suppose this space is invariant for S. We know it is invariant

for 5 so let A and Caqr, ) be the operators on M(T, ) satisfying STy,

FypAand S*0, = I‘XE,(,,'M(pm). Then

FXE’ = S*er,gr = I‘XE’CI';A(FXE]A'

Thus C:\*f(l“x,;)A = 1. This implies that A is unitary (because Cam(ry,) 18) and
thus that M(T, _,) is unitarily invariant for 5, a contradiction.

Note also that since xpL? # L?, it follows that M(I',,) is proper. To see
this, suppose it is not proper. Then

H*=T,L, = Prqxpl? C Pyxgl® Cc H.

In other words, PyxpL* = H?. This says Py|C, : £, — H? has closed range.
Hence its adjoint, qu]Hz, has closed range. The operator P is just multipl-
cation by xg, so we conclude that xgH? is closed. An application of Beurling’s
theorem gives that yp H? = m = xpL?. In particular then, xgH?2 must con-
tain xr for any measurable I' C E satisfying 0 < |F| < |E|. So xr = xgh for
some h € H?. But this implies that h is zero on E \ F, a set of positive measure,
which is impossible for a non-zero H? function. Hence M(Ty) is proper. The
spaces M(I'g) thus give a large class of spaces that are non-trivial and unitarily
invariant for S*.

6.4. SPACES WITH NORM ) _ cvn|f(n)|2. Let v = {@n }§° be a sequence of numbers
satisfying

(6.4.1) I € o < vy

and

(6.4.2) ) — 0.
Let

(o) = {f € H? | ian|f(7z.)|2 < oo}

00 ~ —_—
have the inner product (f, g}o = > an, f(n)g(n). Clearly K(«) is a Hilbert space
0

contractively contained in #2. The condition (6.4.2) ensures that K(a) is proper
in H?. One example is the Dirichlet space which has v, = (n+ 1)1
Consider, for a positive integer k and f € K(«), the inequalities

1S 712 = 3 el F 4 B2 = Y el Flm)?
0

n==rk

<> anlfm)? < Iflla < oo

n=k



142 MICHAEL SAND

Several conclusions follow from this. First, K(a) is contractively invariant for
5*, and second, [|S** f|lo — 0 as k& — oo. The second fact, along with Proposi-
tion VI.2.1 of [16], gives that the characteristic function of Ci(q) must be inner. A
third conclusion is, since ||S* flja < [|[f[lo for all f in K(a), that ker D¢, = = {0}
and thus D¢g- = K(a).

The operator Cy(q) can be computed directly. If f,g € K(a}, then

(Crtyf, e = {579V = Y an f(n)g(n + 1)

n=0

an-157(n)g(n)

e

n=]
= An-1 57 Yy

=3« Z=L5F )T = (DS, )
n=} n

where D is the diagonal operator on H? with respect to the basis {¢"} with entries
{n—1/en}. Here {(z)} = z. The boundedness of D follows from our hypothesis on
the sequence . Thus Cx(q) = DS, a weighted shift. A direct computation shows
that ||Cxc(ayflla < l|flla for all f € K(a), so as before, it follows that D¢ = K(a).
Thus the characteristic function of Ci(q) has values that operate between infinite
dimensional spaces.

The spaces K(a) can be used to show that every vector in H? is contained
in a space that is contractively invariant for S*. We begin with a lemma.

LEMMA 6.4.1. Lel {cs}5° be a sequence of non-negative numbers such that
Yoen < . Then there ezits another non-negalive sequence {a,}, satisfying
(6.4.1) and (6.4.2), such that }_ ane, < 00.

Proof. Choose ny so that Y ¢ < (k+ 1)7%. Let an, = & and choose the

. )=y
TEMalning g ’s s0

k< tnggr < onggo < - <ap,-1<k+ L

Then
oo Migr=1 [~ 00 oo 1
Zm‘c.’:z Z ajcj<2(i+l)2c:j<2(i+l)2<oc‘
i=0 j=ngy i=0 i=n, i=0

This completes the proof since the constructed sequence obviously satisfies (6.4.1)
and (6.4.2). 8
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Now let f € H?. Choose {a,} as in the lemma so §_ an|f(n)]? < co. Then
K(«) is the space we are looking for. Another application of the lemma shows that
we can also choose a space K(a') such that

fek(a) G K(a),

showing there is no minimal such space.
Shifts on Dirichlet spaces are investigated by S. Richter in [11].

7. GENERAL INVARIANT SPACES

We conclude by considering spaces that are invariant for Sz, but not necessarily
contractively. Qur proof is a modification of the proof of an analogous result for
Se that can be found in {10].

First, consider a method to construct an operator-valued function. Suppose
£ and F are Hilbert spaces and A : H*(£) — H?*(F) is an operator. If ¢ € £, then
Ae € HY(F). Now define .

Fp(z)e = (Ae)(z).
Then F4(z) € L(E, F) for all z € D and Fae € H?(F) for all e € H*(E).

If f is any function defined in D and 0 < r < 1, let (C, f)(2) = f(rz).

THEOREM 7.1. Suppose H < H2(£). Then M is invariant for S} if and only
if H = M(X) where X : Ko — H%(£) is a contraction, © is inner, and there is
an 0 < r < 1 such that
(7.1) X"Crp= PogFx.p
for all E-valued polynomials p € H*(£).

Proof. Choose 0 < r < 1 so that rSf acts on H as a contraction of norm
strictly less than one. Let Cx be the operator on H whose adjoint is this action
of rS%. Thus {{Cx|| < 1 and so the characteristic function of Cy is inner.

As in the proof of Theorem 3.1, we have a contraction X : Ko ~— H2(£)
which in the present case satisfies rSp X = XSg. Hee & and n > 0, then

X*Crcne - X*Tncne - X‘?‘nS?e
=S X"e = PoUgX"e
= Po(("X"e) = Po((" Fx-«e)
= PoFx.("e
so that (7.1) holds.

On the other hand, if we begin with an X as in the statement of the theorem,
one computes that X*rSe = Se X*, which shows that AM(X) is invariant for S;. #



14

11.

12.

13.

14.

15.
16.

4 MICHAEL SAND
REFERENCES

. J. BaLL, T. KrIETE, IIl, Operator-valued Nevanlinna-Pick kernels and the fune-
tional models for contraction operators, Integral Equations Operator Theory,
10{1987), 17-61.

. A. BEURLING, On two problems concerning linear transforinations in Hilbert space,

Acta. Math. 81(1949), 239-255.
L. DE BRANGES, Square Summable Power Series, Springer-Verlag.
. L. DE BRANGES, J. ROVNYAK, Appendix on square sumnimable power series, in Per-
turbation theory and its applications in gquantum mechanics, John Wiley and
Sons, New York, 1966, pp. 295-392.

. HaLMos, A Hilbert Space Problem Book, Springer-Verlag, 1982.

. HaLmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.

. HELSON, D. LOWDENSLAGER, Invariant subspaces, in Proceedings of the inter-

national symposium on linear spaces (Jerusalem, 1960), Jerusalem Academic
Press, Jerusalem, 1961, pp. 251-262.

K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs,
NJ 1962.

P. LAX, Translation invariant spaces, Acta. Math. 101(1959), 163-178.

. N.K. NikoLskII, V.I. VASYUNIN, Notes on two functions models, in The Bieberbach
Conjecture: Proceedings of the symposium on the occasion of the proof, Amer.
Math. Soc., Providence, RI 1986.

S. RICHTER, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386
(1988), 205-220.

M. ROSENBLUM, J. RovNYAK, Hardy Classes and Operator Theory, Oxford Univer-
sity Press, 1985.

D. SARASON, Sub-Hardy Hilbert Spaces in the Unit Disk, John Wiley and Sons, New
York 1994.

D. SARASON, Shift invariant spaces from the Brangesian point of view, in The Bieber-
bach Conjecture: Proceedings of the symposium on the occasion of the proof,
Amer. Math. Soc., Providence, RI 1986.

F.D. SuaRrEZ, Backward shift invariant spaces in A2, preprint.

B.Sz.-NaGy, C. FoiAs, Harmonic Analysis of Operators on Hilbert Space, North-
Holland, Amsterdam 1970.

=M=}

MICHAEL SAND
Department of Mathematics
University of California
Riverside CA 92521
U.S.A.

Received November 10, 1994; revised March 31, 1995.



