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ABSTRACT. We investigate stochastic integration and random stopping in a

non-commutative filtration by embedding our analysis in the von Neumann

algebra formed by the product of the algebras of the filtration.

KEYWORDS: Non-commutative probability, von Neumann algebras, random
times.

AMS SUBJECT CLASSIFICATION: Primary ; Secondary .

1. INTRODUCTION

In two papers, [11] and [8], 2 non-commutative stochastic integral has been devel-
oped which has the property that as function of the integrand, the integral is a
homomorphism. In [11] this is achieved by taking as departure point the existence
and properties of random times and their associated time projections. From this a
stochastic integral is obtained in which the integrands are (identified with) opera-
tors in an appropriate L? space and it is their action upon points in the L? space
(with which L? bounded martingales are identified) that effects stochastic integra-
tion. In [8] a different approach is taken. Here an operator valued belated integral
is developed (for a treatment of belated integrals see [9]). This is a ‘measure the-
oretic’ integral but it shares features of that developed in [11], in particular, the
integral 1s an operator which when it acts “performs” stochastic integration. This
paper gives a vartant upon both of the themes explored in the papers noted above.
It is novel in that it does so in the context of a product von Neumann algebra and
develops the integral “algebraically” in a natural and pleasing way. The reason for
looking at the integral in this product structure arose from the realisation that the
structure of the algebra of stochastic integral operators casts some (general) light
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upon questions such as martingale representation aside from providing a bridge

between operator theory and stochastic analysis.

2. MATHEMATICAL PRELIMINARIES

Let H be a complex Hilbert space, B(H) the bounded linear operators on H and
A a von Neumann subalgebra of B(H) equipped with a faithful normal state w.
For each ¢ € R* let A; be a von Neumann subalgebra of A with the following
properties:

(i) if t,s € R and ¢ € s then A; C A,;

(i1) (U At)” = A, i.e. A is generated by the algebras A;,1 2 0;

120

(iii) () .A; = A,. Furthermore, we suppase the existence of a family of con-
t>s
ditional expectations { M, : t € R*} with M, : A — A, and:

(iv)w M, =w Vi € RY;

(v) Mi(azb) = aMi(z)b Va,b e A,z € A;

(vi) My(I) = I for I the identity operator in A.

We can use the state w to construct G.N.S. spaces £2(.A4), L2(A;) in the usual
way. The map 7 : A — B(ﬁz(A)) defined by 7(a) - b = ab for b € A, is a well
defined normal (isometric) isomorphism. We observe that 7(.4) is a von Neumann
algebra, using the fact that the unit ball of 7(.A) is ultra-weakly compact. So m(.A)
becomes an isometric copy of A. Moreover I is a cyclic and separating vector for

m(A). As seen in [7] we can define
M, : LY(A) — L*(A;) YteR*
to be the orthogonal projection onto £2(.4;). We then have:
M= Ma€ A, YieRY VacA

and M, lies in the commutant of #(.A4).
DEFINITION 2.1. A slopping lime, 7, is an increasing family of projections

{m(Q)},cq+ with Q; a projection in A, and 7(0) = 0,7(c0) = I.

Note that this definition extends the ‘usual’ (commutative) case. This point
is elaborated in [6].
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DEFINITION 2.2. A 7(A) [respectively £2(A)]-adapted process is a family
{xi}teﬁ‘L with z, € m(A;) [respectively £2(A)] VI € RY and 2o, € 7(A) [respec-
tively £L2(A)].

In particular a stopping time is a w(A4)-adapted process. Furthermore we
can define the von Neumann algebra

u= [ =A)
temt
(with m(Aw) = w(A)) the product von Neumann algebras for the algebras
{W(A‘)}tei*" See [15}, Part 1, Chapter 2, Section 2. We can consequently view
m(A)-adapted processes as clements of #f, and a stopping time is a projection in .

DEFINITION 2.3. (i) For two stopping times 7 = {4}, 5+ and 0 = {Q;}ieﬁq-
we can define an order 7 € 0 ¢ Q) € @4, Vi € RT. Note that this order agrees
with the order of stopping times in the commutative case, see [8], but is the reverse
order for operators in /.

(ii) For P the set of all finite partitions of [0,00] and T' = {to,....tn} €P

we define:
n-—1

MT(T) - ZW(Qi..H - Qt,') : Mt1+1 .

i=0
Clearly M,(r) is an operator in B(£?(A.,)) and as seen in Theorem 2.3 of [7]:
(ii1) M7y is an orthogonal projection;
(iv) for T, 7" € P

T' 2T = Myry < Mymy;
(v) if o is another stopping time with ¢ > 7 then:
Ma(T) = Mr(T) YT ep.

In view of these properties and the fact that 7 is a directed set with the order

of inclusion we note that { M1y} becomes a decreasing net of orthogonal

TeP
projections. Hence there exists a unique orthogonal projection

M, = Inf M,
7 M
and

MT(T) — M-r

in the strong-operator topology as 7' /. We shall call M; the time projection for
the stopping time 7 (Definition 2.4 of [7}).
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3. A HOMOMORPHIC INTEGRAL

DEFINITION 3.1. We define a family of von Neumann algebras {7} by:

TeP
VT is the von Neumann algebra generated by

{MT(T) . T 1s a stopping time }
We also define the itme algebra V which is generated by:
{M, : 7 is a stopping time }

Note that

ve (U

TeP
since

M, = 71‘2;) A({T(T).
Furthermore for 7 a stopping time and 7" = {to,...,tn} € P, we can define the
stopping time
0 0 <s <« t1
TT(s): T(t,') I €5 < iy I<ign-1
7 §=1, =00

and observe that M,r = M,(7). Hence VT C V ¥T € P. So, we conclude that

v=(Uv)"

TeP

LEMMA 3.2. Vit € [0,00] M, belongs in the centre of V.
Proof. My, = I and so the result holds trivially in this case.
Suppose now that t € [0,00), T is a stopping time 7 = {W(Qt)}zen—_‘; and

T eP withT = {0 =1to,ty,...,tn = 00}. Then:

EkE{O,...,n—]} with Iy ST <tpq1.
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So
n—1
MT(T) <M, = W(Qti-n - Qf‘) 'M.f:+1 - My
i=0
k-1 n—1
= Z W(Qt.‘+1 - Qh‘) ’ Mti-H - My + Z W(Qhu - Qi.‘) : Mi.‘.m - My
i=0 ' i=k
(with the first sum equal to 0 if k = 0)
k—1 n—1
= Z W(Qt;’.n - Q) 'M1i+1 + Z '”(Qf.‘-q-l - Q) - M,
=0 i=k

(since M,’s are orthogonal projections that increase as ¢ increases)
k=1
= Z Mt.-+1 : W(Qt;-u - Qt:‘) + W(I - th) - My
i=0
(since M, lies in the commutant of w(A,))

k—1
= M- lz Mh‘-m ' W(Qte“ - Qh) + My - 7"(1 - Qik)

i=0
k—1 n=-1

=M, [Z #(QH-H - Qti) ! Mt.‘+1 + My - Z Mt.‘+n ‘ W(Qt¢+: - Qti)
=0 i=k

= M- My7).

Hence, V1 € [0, 00], M; commutes with the generators of V and as a result M; € V'.
If we now consider the stopping time:

I s>t
T(S)_{O s<t

for a fixed ¢ and the partition 7" = {0,1,00}, then
M, = Myry € V.
So M, belongs in the centre of V, as required. &
LEMMA 3.3. For each partition T = {tg,...,t,} € P, VT is isomorphic to
C- M, & w(A,l)(M,, -M)® - ®r(A,_ YT - M, _,)

where the algebras in the direct sum are the reduced algebras ([15], Chapter 2,
Section 1).
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Proof. For a fixed partition T' = {tp,...,¢,} € P and a fixed stopping time

7 we get:
n—1

Myry = Q1 — Qu) - ey,
i=0
n—1

= I - Eﬁ'(Qti)‘(Mii-{-l - Mff)
1=1
since tn = 0o and 7(Qy, ) = M;, = I and Q;, = 0. Hence, M7y for any stopping
time 7 can be written as a sum of the form

n-1

Z W(')(Adfﬁn - Mt.) + lMt, .

i=1

By mutual orthogonality of the projections (M, — M,;)’, the same can be said
for any element z of the #-algebra generated by the M7y, where 7 is a stopping
time. Furthermore if z4 is a net of such elements with z, — & € VT in the
strong-operator topology then

x, - (M,

—'Mtl)——*b(M; —Alt')

1 141

in the strong-operator topology. But since m(Ay,)- (M, ,, — M;,) forms a (reduced)
von Neumann algebra, 3a,, € A, such that:

7!'((11.7)(]141.._“ — Afgi) = b(]l{(;‘“ - Mi-‘)

and
n-1

b= I‘Mh + Z"r(ati)(Mh+1 - M‘n‘): #E C.

i=1

Furthermore, by the mutual orthogonality of the projections (Mt;+1 — M*»'):;l we
observe that this decomposition is unique in the sense that:
n-1]
b= puMy, + ) wlan) (M, — My,)
i=1
n-1
= p’Mtl + Z ﬂ-(a:i)(Mti-i-l - ]Mi-)
i=1
>p=u
and
W(ati)(MtH-l - Mti) = W(a;;)(Mti+l - Mt.)s 1 Sisn-1L
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This shows the existence of a well defined map
¢V — CMH b W(Atl)(Mfz - Mil) G- w(Atn—l)(I - M'ln—l)'

This map is linear since:

n—1 n—1

O{IMy, + Y wla1) (Mg, = Mu) + uMay + Y w(b ) (Mg — Me,) |
i=]

=1
n—1
= (I){(l + ﬂ)MH + Z ﬁ(ai" + b3i)(Mti+l - Ml.')}
i=1
= (l -+ “)Mtl G D Tr(atn-l + btn—l)(I - Mtn-l)
=My, & -®m(ag,_ ) =My, )+ pMy, & ®a(be,_ )T - M, _,)
It is multiplicative since:

<p{ [1m:, + 3 (e Moy, — My,)| e, + S #(0e) (Mo — M) }

=1 i=1

n-1
= <I’{Iﬂ}wh + ; w(ati)ﬂ(b!i)(Mti-H - M’h‘)}

n-1 n—1
= CI){IMh + Z W(at.’)(Mti+1 - Mi.‘)} ! (P{uMh +Z7r(bii)(M¢i+1 - Mt(}
i=t1 i=1

(by orthogonality and (My,,, — M;,) € m(A,)). One shows that & is adjoint pre-
serving in a similar fashion. Finally, we shall show that the map is an isomorphism.
Indeed, consider the stopping time

0 0<s<iy
7(s) = { 7(Q) ti <s<tip1
I s 2t

with i 2> 1 and Q@ € A¢,. Then
MT(T) = Mti-{-l - W(Q)(Mii+; - Mii)

and for the stopping time

F(s) = 0 s<tip
TS)— I 8>ti+1

we get:
M!.‘.I..l = f(T) (S VT-
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Since any von Neumann algebra can be generated by strong-operator limits
of the span of its projections we deduce that

m(Ae,)(Ms,,, — M) CVT for i 1.

Finally, for
0 s S tl
I s > tl

we observe that

F

Mtl = M:(T) e VT

and so CM;, C VT, which shows that ® is surjective.
For injectivity, suppose that ®(a) = 0 for

n—1

a = [AJ:I -+ Z W(at‘)‘(ﬂ4g‘-+l - Mt‘).

=1

Then,
®(a) = IMy, @ m(ae,)(My, — My, )@ - @ m(ay, )]~ M,,_,) = 0.

Hence | = 0 and 7(a;, }(My,,, —M;) =0for 1 <i< n—1. So @ is an isomorphism,
as required. I

CoROLLARY 3.4. In the case when A admiis a finite, faithful, normal trace
we can deduce that VT is a finite, countably decomposable von Neumann algebra
and consequently admits a finite, faithful, normal trace.

Proof. We have that A is finite and countably decomposable. Consequently,
CMy,, m( A )( My, — My,), .. m( A, )(I — My, _,) are all finite and countably
decomposable and so is their direct sum and hence so is VT by Lemma 3.3. 1

An open and interesting question arises when one considers under what cir-
cumstances the algebra V will admit a finite faithful normal trace. In fact it was
Just such a question, arising in a somewhat different situation ([11]), that moti-
vated the use of the product construction employed here. The properties of the
algebra V have a bearing upon the relationship between the random times and
their time projections and the existence of a cyclic vector for a certain reduced
algebra of V leads directly to a martingale representation theorem. But we will
not pursue this here.
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Before we proceed with the main results in this section we shall show that V
is not the von Neumann algebra V generated by {7r(.A) M, :teR } Indeed, we
shall show that I is a tracial vector for V, but not for V. Suppose T is a stopping
time and T € P a partition of [0, 00]. Then 7(s) = Q, for s € [0, o0] and:

n—1 n—1
MT(T)(I) = Z m(Quiyy = Qi) - Mt-'+1(I) = T(Qtigs — Q) =1
i=0 =0

since Qs = I, Qo = 0 for a stopping time. Furthermore, for finite products:
P=MT‘(T1)--—M,M(TN) PU):I.

Hence,

n ok

(iZ:;IsP;) (Zu; )1_ (ZI,P,) (Z*‘J)I—ZZM@

i=1j=1
= (2113 )(ZI‘P,) for {;, u; € C.

Finally for A € V and P;, as before, finite products of time projections M(ry we
have:

A (Xj: ANE (thA_,-) . (Zj: LR

where (A;) is a net of finite linear combinations of
finite products of time projections which converges to A

in the strong-operator topology

= li}n((i:lgﬂ) A3T)

by above
= (j;&Pf) 4 (nJmAj 1)

since i I;P; € B(L*(A))
i=1
= (é L P) (1i}nAj) I
- (Zn: z,-a) AL
i=1
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So we conclude, again by taking strong-operator limits, that for A, B e V:
ABI = BAI

So
{ABI, I} = (BAII)

which makes I a tracial vector for V.
Suppose now that I was a tracial vector for V. Let C' € V\ {0} and C 2 0.
There exists a € A such that ||a]| = 1 and {Cq, a) > 0. This holds since A is dense

in £2(A) and the inner-product is continuous on both variables. So now

(r(a*)Cm(a)],I) = {Ca,a) >0
= (Cn(ae*)], 1) >0

since I is assumed tracial. But,

(€1, 1) — {Cn(aa™)i, I} = {C[] - w(aa*)]1, )
= {Cx(bb*)I, I)
with b € A, since A is a C*-algebra
and I —aa” 2 0
= (Cb, b}
as before

20
since C is a positive operator. Combining with above we get:
(CI,I) 2 (Cr(aa™)[,I) >0

and this holds for all positive operators C in V.
Let C =1 — M, for t € [0,00). Then, since I — M; > 0 [otherwise we would
be dealing with a trivial filtration] we deduce from above

(I — M) T) > 0.

But (I — M;)I = @, which contradicts our assumption that 7 is tracial for V, as

required. 1§



STOPPING AND INTEGRATION IN A PRODUCT STRUCTURE 155

LEMMA 3.5. For a net {(Ai)tE[D,m]}i ind withi € I a directed sel we have
the following:

(i) {(At)lE[O,DO}}i — (Bt)ig[n,00] in the sirong-operator topology, then
(A¢)i — By Vt € [0,00] in the strong-operator topology in m(A;);

(i) if {(At)te[o,oo]},» arec all conlained wn a bounded sel of U, and
(Ar)i — By Vit € [0,0c] in the sirong-operalor topology in w(A;), then
{(Al)te[o,oo]}i — (Bi)ie[0,00] i the strong-operator topology.

We include the proof of this standard result for those (probabilists?) unfa-
miliar with the product von Neumann algebra.
Proof. (i) Let (hy)ie[o,00] be a vector in the Hilbert space € L£2(A), the

) ) temt
space on which If acts. Since

in the strong-operator topology, then

(A e 1o (he) e — (B (b, s

in @ L£2%(A) for all such vectors.
teR*

Consider now the vector (hy), g+ with

b — 0 t#s
= helf?(A) t=s

for a fixed s € [0,00]. Then, by above (A;);h — B,h in £2(A). Since the choice
of hin £2(A) and s € ﬁ+ is arbitrary we conclude that (A;); — B, in the strong-
operator topology.
(i1) Suppose that
sup sup [|Ai| = N < o0.

Choose (ht), g+ € D L£2(A). Then
eR?

o €
Yo lklP<oo= 30 gl <

tEF j=n(e,N)
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for some n(e, N) € N, where (h;);jen is the countable set of non-zero elements of
(h1), g+~ Hence:

”{Bt - (At)i} ht)ten "
$ o - caupin|

ne, N)

A

” [Bi, — (Ag )] b, N 2

i "4 | ||Btj (Ag):

i=n(e,

nie, N) 1
|| [B;J (Ag th

AN

|+N_

But (A:); — B, VvVt € ﬁ+, in the strong-operator topology. Hence for j &
{1,2,...,n(e, N) — 1}, we can choose iy € I such that:

(B, ~ (Ag; )i, I < €.

So we get:
IH{B; - (A,J)i}iew(ht)‘eﬁafnz <2, Vizi

{ N:'l! }

in the strong-operator topology, as required. 1§

In other words:

DEFINITION 3.6. For each T = {{o,l1,...,tn} € P, we define the sub-
algebras U7 of U as follows:

{m(a)}, g+ €UT = a €A VieR'

and
at:atjfort) t<ijppand 0K ji<n—1.

REMARK 3.7. We saw in the previous section that we can view stopping
times as operators in the algebra &/. We can also, now, regard elements of If as
operator valued functions, i.e.: RW — B(L£2(A)). In this context we can view
elements of U7 as “simple functions”. These two view points will be useful, the
former in the algebraic properties of the “integral” to be defined, the latter in the
definition of this “Integral”.
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COROLLARY 3.8. UT is a von Newmann algebra, for each T € P. Further-

more, there ezists an ulira-weakly continuous -homomorphism T U — UT

[There is no ambiguity about the symbol since it will be clear when we are dealing
with a map or partition.]

Proof. 1t is clear by the definition of #? that it is a s-subalgebra of U.
Furthermore, if {(A*)teﬁ"'}z‘ — (B’)tei‘” in the strong-operator topology, with
{(A‘)teﬁ‘*}s € UT Vi € I then, by Lemma 3.5 (i), we get (A); — By Vt €

ﬁ+, in the strong-operator topology. So B; = By; for t; € ¢ < tj41 and hence
(Bt)teﬁ'* € UT . This makes UT strong-operator closed and hence a von Neumann
algebra.

For each partition 7' € P we shall define the map T : ¢ — UT by:

n~1

T{(A),eg*} = D AuXi (D) + A g ()

j=0

where x denote the usual characteristic functions. 7(1) = I and

n—1
T(I(A*)zei‘* 1wt Z LAt; + Bij)Xity,1550) () +{Av, + Bi, X1, ()
3=0

=IT((Ad) ) + TU(BY),c5+)

with { € C. Furthermore:

n-—1

T((At)ter . (Bt tEIR ) - Z AtJ Bt X[’J>ta+1)( )+Atn . Biﬂx{tn}(t)
7=0

= T((Ad)eg+) - T((Bo), )
and

T((A’ zen+ ZAf X["MJ-H) +At X{tn}(t)

_ T g)-
Hence T is a *-homomorphism.
If now we have {(At)zeu‘e* }z. — (Bt), g+ in the strong-operator topology in
a norm-bounded subset of U, then, by Lemma 3.5 (1), (4:); — By Vi€ Rt
the strong operator topology; and by Lemma 3.5 (ii)

{T(Ai)t@?* },- - T(B‘)feﬁ*



158 C. BARNETT AND S. VOLIOTIS
in the strong operator topology, since

s:?II{T(Ar),Ew}fIiI SUPII{( t) e+ Jill < oo

1

So we deduce that T is normal and by [15], 1.4.3 Theorem 2, T° becomes ultra-
weakly continuous as required. &

DEFINITION 3.9. For each T = {{q,%1,...,tn} € P we define the map
ST U — B(L(A)) by:

n—1
ST{(Athymt} = D A(Mijy — M) + Ap - My,

LEMMA 3.10. STis a strong operator continuous *-homomorphism.

Proof.
n-1
ST(I) = (M, — My,)+ 1M,
j=1
= I
Furthermore,

ST{I(As), g+ + (Bt} = Z LAs; + Bi, )(Miyy = M)+ (LA + Bio) M,

=1ST{(A t)tei’f}'i'ST{(B‘)teR“’};
.Sm{(At)tE'ﬁ"'} : ‘ST{(B’)teW}

n—1 ) n—1
B {Z A!j(Mt'H-I - M”) + Atu - Mh } ‘ {Z Bi_‘,-(Mij'+| - Mi_;) + Btoﬁjh }
j=1 L=

ne] n=|
=30 Ay(Miyy, — My)(My,,, — My )By + Auy B M,
i=1j'=1
since (M‘j'-n - M;j,) lies in the commutant of #(A;,,)

and M,, commutes with 7(A;,) and is orthogonal to all

projections (My,,, — M;,) with j = j'
n-1

= > AyBi(Mey,, — M) + A Be, My,
i=1

sincc(Mti“ - Aﬂ ')(Mtj'-n - Aft;) = 6jj'(h4t_,-+1 - Mtj)
= 5T{(4 )ten (B )tsﬁ‘*}i
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n-1

Sm{(at)t€§+ }* o Z(ng_*_l - Mtj) . A:] —+ MMA:O

ji=t
n-1

= Z ‘A:j(Mtj+J - ij) + A:QMtl
=1

since (My,,, — My,) lies in the commutant of 7(Aq;)

= ST (A b

tE'_R-'*.
Suppose that {(A:),g+}; = (Bi)er
Then, by Lemma 3.5 (i) (4:); — B: V¢ € [0, 00] in the strong operator topology.
Hence, Vj € {0,...,n~ 1}

+ in the strong operator topology, in #7T.

(Atj)f(Mf;'+1 - Mtj) - ij(Man - M?;’)

in the strong operator topology since this topology is continuous under right mul-
tiplication. Then

n-1 n—1
(A )i(Meyy — Myj) — Z By (Mg, — M)
j=0 3=0

in the strong operator topology. So

ST{(A) g+ s — ST(BY)

e®m’ tet

in the strong operator topology. N

REMARK 3.11. (i) When the algebra Ao is trivial, that is scalar multiples
of the identity, then ST becomes surjective onto V7.

(ii) The map ST is the first step toward the “integral” we wish to define here,
and in particular ST |U7, the restriction of $7 on U7, is in fact the integral of the
“simple functions” for a partition T" € P. Furthermore, ST = sTuT .- T.

THEOREM 3.12. Suppose that (A;), =+ € U and that {SW(A‘)tei+}TeP

and {ST(A:)tei’*‘}TE'P are Cauchy nels tf: the strong operator topology. Then
there ezists a unique element, which we name S(Ar), g+, ™ B(LYA)) such that
SG‘(A:),EWP — S(A¢), g+ as T/ in the strong operalor topology.

Furthermore, the set of elements of i which have the aforementioned property
forms e C*-subalgebra of U which we will denote by F. Finally, the map S above

is o well defined ¥-homomorphism: F — B(L*(A)).
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Proof. We shall first need to use the following property:

V(A‘);Ei"" ||ST(At)1ei+” < ”(At)iei"'” = Sup “Atll'
tEP

This can be shown from first principles, using the orthogonality of the projections
involved, but there is a more general result which can be applied in this case
since ST is a x-homomorphism between two C*-algebras. This result states that
any *-homomorphism between two C*-algebras is norm reducing ([13], Chapter 8,

Proposition 1.11). Turning now to the supposition that .Sﬂ"{(At)tER—r }TeP
Cauchy net for the strong operator topology in B(£2(A)) we get that

Is a

{5T(A),cq+ - T € P} C {X € B(L(A) : IXN < (140, e+ 11}

which is a bounded ball in B{L?(A)).

But we know that the unit ball of operators on any Hilbert space is strong-
operator complete ([17]). So, we conclude, that there exists an element of {X €
B(L*(A)) : |IX]| < ”(A‘)tei‘*”}’ which we will name S(A;), g+ which is the
strong limit of ST {(A‘)tei‘“ }Te'P . Since the limit in the strong operator topology
is unique, we can in fact define the map S : F — B, with F C ¥, the set of elements
in i with the aforementioned property. Furthermore, SW(A:)teF* — S(AD)ert
by definition, as T  in the strong operator topology, and hence F is clearly a
*-closed subset of I,

Suppose now that (A1) gt (Bi), g+ belong in F. Then

ST(At) — S(Af,)

tet T

and

Sq'(Bt)tEi-F g S(Bt)

el

as T/, in the strong operator topology. Since addition is strong operator contin-

uous, we deduce that
ST{(4q) g+ + (B,

te P — S(Ae) gt + S(Be)yet-

This shows that {ST [(A1), g+ + (Bt),g+] }pep IS strong operator Cauchy and
similarly for {ST (A7), g+ + (B?)eigt) Lpep: Hence (Ar), g+ + (Bo), g+ € F
and furthermore

S{(A:) gt + (Bt)

te 1EIT+} = S(A’)aei+ + S(B‘)teii'"
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Furthermore, we shall now use the fact that multiplication is strong operator
continuous on By (£L2(A)) x B(L%(A)) where By (L*(A)) signifies the unit ball of
B(L*(A)), (17).

Since
{S(I'(At);en }TE‘P = “(At)geﬁ*'“ - By ('Cz('A))

we deduce that:

ST(AD g ST (Be), g+ — S(A), g - S(Be) e

teR T

and similarly for ‘S/T(A:)ieﬁ*' ST (B} )icwt
Since ST is a *-homomorphism ¥ T € P we conclude that (A‘)teﬁ“' . (B‘)teii"
€ F and

S{(A), e+ - (Bt} = S(A) e - S(Be), e+

Finally, S7 (A, )ten+ — 5'(.»4¢)t6§»r as T/ in the strong operator topology, so

S'T(At) et — S(Ad),cg+ In the weak operator topology. Thus ST(A*)tEﬁ+ —
{S(At),cg+}" in the weak operator topology since *-operator is continuous in

the weak operator topology and S7 is a *-homomorphism. But ST(A}), =+ —
S(AY) e
ST (AN '

operator topology is Hausdorff we combine to get:

teR
in the strong operator topology, by definition, and therefore

+ — S(A}),cg+ in the weak operator topology. But since the weak

{S(40) gt} = S(AD) e+

So S is a *-homomorphism, and F is a »-subalgebra of /. It only remains to be
shown that F is complete with respect to the || - ||.

Indeed, suppose that {(A;) )remt }neN is a sequence in F which is ||-{]-Cauchy.
Since U 1s a Banach space, 3(B:), .=+ € I{ such that {(At tER } —(By) ewt in
-1l

Fix € > 0,h € L?(A). Then In, € N such that

teER

nzZn, = “{(At)teﬁ'*}n - (B‘)teﬁ“"“ <&

Since {(At)te'ﬁ'"}n € f’{ST{(A‘)teE*}n }T;E’P is strong operator Cauchy in
B(L£*(A)) and so 3T, € P such that

.7 2T, = ”{ST{(A»t)ﬁEE“' }no N ‘Sm{(*d“)tei* }no}huz <&
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So we have for T, 7' > T,

|57 (B e = 57 (B1) e 11
< ”{ST(BL it = STI(AD, gt na h”
+ {57 {(At)‘si‘P}na—- {(A’)zei'*}"o}h“

- {ST'{(Mw}m = 57 (BY), g+
<Je

|1z + e

{lAll2

)tei" tER &+ o
+ (B‘)‘zeii* ~ {(At) g+ }n.
= (2kllz+ 1) -&.

Hence {S7 (B, )ieit }TE'P is strong operator Cauchy.
But {(A, it } (B‘)tei'* in || -|] implies that {(A})
in ||

Using a similar argument. we deduce that {S7(B; )ecmt }TE'P

— (B:)te—+

te lEi+ }n

1s also Cauchy
in the strong operator topology and hence:

(Bihiegt €F

as required. O

COROLLARY 3.13.
I1S| = 1.

Proof. Indecd, S is a *-homomorphism between two C*-algebras and using
the results in [13], Chapter 8, Proposition 1 and S(I) = I we deduce that ||S|| = 1.8

REMARK 3.14. For T, € P and an clement (A}, =+ € 4T we observe that:

tEI!

2T, = S'T(At)tEﬁﬂ' = 'S'TD(A‘)tei*'

As a result {ST(A ‘)tei*}r p 1s a Cauchy net in the strong operator topology

and so is {ST(A}) tei‘L}PE‘P Hence (A, )ten € F and
(At = l}l}l ST(A‘)tEﬁ*

= 57 (A)

tert
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By viewing S as an integral we see that all “simple functions” are integrable.

Furthermore for any “integrable” (A}, g+ € F we have:
ST(A Dieit = = 5T T(A) temt
=S5 T(A)y e+

This shows that the integral of an integrable process is in fact a limit (in the
strong operator topology) of integrals of simple functions.

THEOREM 3.15. (i) Any process (A,), g+ €U with A, hermitian Vs € R+
and A, 2 A; for s 21 belongs in F. Szmﬂarly for “decreasing” pracesses

(i) If (A )JEI!+ €U and s — A, is norm-continuous on Rt then (A’)sell-"
1s integrable. If s — A, is norm-continuous on R, then (A,),Eif becomes locally
integrable, i.e. (A, 'X[O'R](s))sei"' € F,VReR.

Proof. (i) Consider the partitions 7,7 € P with T 2 T’. Assume first that

T = {to,t1,...,tn}

and
T= {tOltl)' . ')tn-ZxSatn—btn}'
Then
S,T(AS),,EH*' = Ao My + AH(MM - M)+ -+ Atn—z(MS - Mia—z)"‘
+ As(Mzn—l - M5) + Ain—] (1 - Mtn—l)
and
S(I"(A ) ER+ =4, Mh + At! (an Mh) +-+ Atn—:(Mn! - Min—2)+
+ A-tn-e(Miu-n - MS) + Ain-l(I - Min-l)‘
Hence

{S7(A0), et = 57 (As) gt } = (As = Aty )(Meo_, — My).

But A, > A,,_, and (M,,_, — M,) is an orthogonal projection which commutes
with both A, and A, _,. Hence
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In the more general case where T' contains m more points s;, ..., sm than 7", we
can define recursively partitions T, = 7", 71,..., T, = T, each of which contain
one more point s; than the previous. Using the above result we have:

S“T"‘“(As)sen STH(A), g+ 2 0.
Hence
(ST = STYAs), g+ = Z(S‘T'“(A — ST (Ay), ) 2 0.
=0

So ST(AS)ueu_* is an increasing net of hermitian operators, and since

157 (A4, el < NCAL),
we have
ST(AS), et S A, gl - T

Consequently, {ST(4,)
and ST (A, ) et — S(As)

el }Te'P is strongly Cauchy and so (A, ) =+ € F

seRT"
By conmdermg (—As)aer we can deduce the same for decreasing processes.
(i) Ye > 0 3R € R such that |4, — Ay|] < e for s,s' 2 R, since s — A,

is assumed norm-continuous on R'. Furthermore, since [0, K] is compact the
map s =~ A, on [0, R] becomes uniformly continuous. Hence, 36 > 0 such that
|s — s'| < 6 = ||As — Ay]| < g, for 5,5 € [0, R].

Fix a partition T3 = {50, 51,.-.,5n} with 5,7 = R and s;4, — s; < 6 for
0<i€n =2 T = {to,t4,... .t} and T = {1}, ¢],..., £/} are two partitions
finer than Ty, then there exists a partition 77 2 T, 7" 2 T¥. We then have:

ST(A) et = 5" - T(A), it
= 57" T(A), g
and .
ST (As) et =57 T(As) e

= 57" . T'(A,)

séi-"

as in Remark 3.14. Hence:

157 (As) ST'(AS),ewII=IIST"(T(A ), et = T/ (A, gl

ST (A), g+ — T'(4s)

séiq-

sewtll

1", .
as ST is a *-homomorphism between C*-algebras.
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Now fix s € R*. There exists an ¢ with 0 € ¢ < n—1I such that s; < s < si41.
Then T(A,) = Aq; for some j with s; < t; < sj41, since T 2 Ty and 77(A;) = Ay,
for some k with s; <1}, < s;41, sinee TV = Tp. So

T(.A,) —_ T’(A‘g) = Atj - Ati

with s; < ¢; < si4y and s; < 8}, < s;1;. By above, |-Ae, — At;“ < ¢, since Ty is
chosen so that 5,41 —s; <dfor0< i< n~2and 5,_1 = R.
Finally for s = co
T{Aw) = Ao = T Aco..

Hence:

IT(A0), g+ = T'(Ae) el = sup (IT(A) = T'(As)]| < .

SER
sER
This makes ,S'T(As)se§+ norm-Cauchy and consequently strong operator
Cauchy, as required.
If now s = A is continuous on R* then to apply the same arguments we have
to restrict our attention to compact sets, where the uniform continuity condition
holds. We thus say that in this case (As)seﬁ*' is locally integrable. 1

COROLLARY 3.16. Any stopping time 7 is integrable. Furthermore
M, =1-25(r).

Proof. By definition, for a stopping time 7, we have 7 € & and 7(0) = 0,
7(00) = I, 7(s) is an orthogonal projection in 7(A,) and 7 is increasing. By
Theorem 3.15 (i) we deduce that 7 € F. Furthermore, for T = {to,¢1,...,t,} € P
and 7(5) = 7(Q;) VS eR*,

n—1
MT(T} = Z W(Qf.-f-] - Qh) ) Mti-ﬂ
1=0
n—1
=7- Z W(Qh)(Mti+1 - Mi-)
=0

as seen also in Lemma 3.3

=1-57(r).

But M,(ry — M, asT /" in the strong operator topology, as seen in Definition 2.3,
and ST (r) — S(r) as T / in the strong operator topology by Theorem 3.15. So
we conclude:

M, =1-5(1). &
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REMARK 3.17. (i) For any projection valued process 7 in ¥ we can define
M, = I — S(r), which, since 7 is a projection in F and S a homomorphism,
means that S(7) is a projection and hence so is M,. Some of the properties of this
correspondence are investigated below.

(i) For integrable projection valued processes 7,0 we can, following Defini-
tion 2.5 of [10], define

(0 V) = (o) A(7)e

and
(eAT)=(a) V(T

which extends the order relation for stopping times to integrable projection valued
processes in F. Note that if we consider o, 7 as projections in F then there exists
an “operator” definition of ¢ A 7 and o V 7 which are the opposite of the oncs
mentioned above. We shall use the first of the two (as indeed in the case of
o < 1), but we will be required to refer to the second. In such cases we shall use

the expression “as operators”, so that
c& T & 7L 0o asoperators.

THEOREM 3.18. For two projection valued processes 7,0 in F and a partition

T € P the following hold:
(1) 7€0=>M <M,

(i1) Myepy V Mo(py = Myyo(ry and Moy A Mo(ry = Mrno(r)-

(iii) If T and o commute then Mopo = M; AM, = My - M, and Myvo =
M, Vv M,.

(iv) For two stopping times 7,0 we also have Myp, = M, A M, and for V
fintte Mryy = M, V M,.

Proof. The results (i), (i) and (iv) have been proved in [10] and [6]. We shall
simplify these proofs.
@)
TLo=T20 asoperators
= 5(r) 2 S(9)
since S is a *-homomorphism
S I-M, 21-M,
= M, < M,.
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(i)
Moy =1~ S"(r Vo)
=1-8T(r Ao} as operators
= 157 {Jim (r-0)'}
= I Jim §7{(r-0)"}

since S7 is strong operator continuons by Lemma 3.10

= 1= lim {$7(r) - §7()}"
ST is a *-homomorphism
=1-5T(r)AST(o)
=1 —{1= M)} NI = Moy}
= Mr)V Mo(z).
Furthermore:
Mopory =1 - ST(T Ao)
=1-57(rVvo) asoperators
=1-S"{I-(I-1)A{I-0)} as operators
=I-STD)+ST(I-7)AST(J —g) asabove
= (1= STMIAU - 5T (o))
= My A Mo(r).

(iii) Suppose now that 7,0 commute. Then:
TVo=71Aoc asoperators
= lim (7 - o)*
k—o00
strong operator limit

= limr- o
k—oo

since 7,0 commute and are projections in F

=71-0 as operators

and 7V o € F, since F is a C*-algebra.
Similarly:
TAo=7Vo asoperators

=I-(J-1)A(I—-0)
=]—-(I—-71)(I—-0) asabove

=r+0—7'0

167
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and 7 Ao € F,since F is a C*-algebra. Hence:

S(rve)=8(r Ao) asoperators
= S{r - o)
= 5(r) - S(¢)
S is a homomeorphism

= S(r) A S(0)
since S(7) and S(c) are commuting projections; and

S(rAeg)=S5(rVva) asoperators
=5(tr+o—7-0) asabove
= S(r) + S(ry — S5(r) - S(o)
= S(r) v 5(o)

as before. Consequently:

Moo =1-5(rvoe)=1-5(r)AS(o)
=I—(I=M)A(I-M,)=M VM,
and
Mipo =1 -S(rAo)=1-5(1)V S(o)
=I1-[I-{I-5S()}r{l-S(e}}]
=M, AM, =M, M,
since M, and M, are projections that commute as S(7) and S(¢) do.

(iv) Suppose now that 7 and o are stopping times. For t,5s € Rt with { < s

we have:
(rAo) = (7) V(o)

< (7)s V(0)s
as 7,0 are increasing
=(TA0d);.

Hence 7 A o is also a stopping time, and similarly for 7 V ¢. Furthermore,
TAo = 7V o as operators and since 7V o 2 7 as operators and TV o > o as
operators we deduce

(3.1) S(rAe) 2 S{(r)v S(a)
since S is a *-homomorphism and similarly

S(r v o) < S(r)AS(a).
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By (ii)
ST(rAna)=5T(r)v ST (o)

ST(rAe) < S(r) v S(e)

since S(r) = suppep ST (1) and S(0) = suppep ST (1) or

(3.2) S(rAe) = ;12?35@(7 ANa) £ S(7) v S(o).

Combining (3.1) and (3.2) we deduce:

S(r Ae) = S(r) v S(g).

Hence
I—Mpe =(I-M)IV({I-M,)
o)
Mine = My A M,
as required.

Finally suppose that V is a finite von Neumann algebra and note that for a
stopping time 7, S(7) € V. Then:

MoV Mo = Jat inf, {Mecr) Y Mo }

since V is finite which makes the lattice of projection a continuous geometry ([20],
Chapter 7). But
Moy N Mo(rry = Ma(ryvor)
by applying (ii) for the time 7(T) and ¢(7”) on the partition T U T".
Furthermore since 7, o are increasing processes VIV, T € P:
o(T) 2o
= 1t(T)ve(T)2r(T)Ve
=>  Myryvoer) Z2Morve
by (i)
=t Meryvory 2Miryve.

Silnilarl Y.
i f M-,- T ? T™VG
111 ( )VO‘ M A"
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or

M.V My = inf inf { M.y v My }

- o [}
.«>" MTVO’ .

But we know from (3.1) that:

S(rve) € S(r)yAS(o)
= I- My <(I-M)A( - M)
= My, 2 M, VM,

Combining, we get
M.V M, =M,

as required. #

—+ to be a

REMARKS 3.19. (i) We define an £%(A) adapted process (&), g

martingale if
M =& VYs<teR*Y.

Note that an £2(A) process with the martingale property is always adapted. From
Proposition 1.1 in [10] we know that if (&)
3¢ € L%(A) such that

(gt 18 @ bounded martingale then

fi:Mtf ViER+

We now observe that, in such a case, for a stopping time 7
& =M (8) = }161'171, Myry(€)

in L?(A), since M7y — M, in the strong operator topology. But

(43) Mun(©) = L {rl+ 1) = 0} Mena(® = 3 (r(t + 1) = 7(0)6ens.

This is in fact the extension of the stopping of a bounded martingale, to the non-
tei"" 3 6 € LZ(A))

cew+ We have that (S(Aq), Ei—+)£ can be considered

commutative set up. Furthermore for a bounded martingale (M;£)
and an integrable process (A;)

as a stochastic integral of (A;) with respect to the martingale (M£), g+

teR -
(i) The deterministic stopping time { is defined as,

{(s)z{ﬂ s<t

I s>t
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It is clear that { commutes with any stopping time and in fact { belongs in the
commutant of i. Furthermore:

Mf-(T) = Mt
if T € P andteT. Consequently:
M{ = Mt.

CoROLLARY 3.20. (i) For a bounded L*(A) martingale (&)
jections 7,0 tn F with 7 2 o as operalors, we have:

M'r‘(gu') = Er-

el and pro-

(ii) For T a projection in F and (&)
is a bounded L*(A) martingale.

et @ bounded L?(A) martingale, &7y,

Proof. (1) From Theorem 3.18 (i) we deduce that M, < M,. But both are
projections. Hence
M, My,=M, M, =M,

So
M. (&) = M- "My (€) = Mr(ﬁ) =&

(i) f lies in the commutant of F and so commutes with any projection valued
process 7 in F. By Theorem 3.18 (ii1)

Mip, =MiANM, = M; M, =M, -M,.

Hence:
ft./\'r = {A‘r(f) = Mi MT(&)

i.e. is a martingale. Also,
leinell, < |M-@)]], ViRt

REMARK 3.21. We now observe that we can generalise the notion of stopping
time. We can consider any projection valued process in F to be a “stopping time”.
We can then define the time projection M,, for such a process g, as M, = I—S(o),
which agrees with the definition for stopping time given previously. As we see in
Corollary 3.20 these results hold for such projection valued processes. In particular,
in (i) we see a version of the Doobs Optimal Stopping Theorem. In (ii) we see a
basic property of probabilistic stopping times, that the stopped process obtained
from an £? martingale is itself, that is the £ bounded martingales are stable
under stopping.
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LEMMA 3.22. If a process (Ar), g+ in i is such that VR €R, {te0,R]:
Ay # 0} is finite, then (A‘)ten € F and S(Ay), mt =0

Proof. From properties (ii) and (ii1) of our filtration and the continuity of
the state w we deduce that M; — [ as{ — oo in the strong operator topology and
M, — M, as s \, { in the same topology. See Theorem 5.1 of [4].

Hence, Ve >0 £ € L*(A) 3R € [0,00)such that:

I-M)|P< —5 _ vizR
”( i)§“2< sup “A‘“

ert

In [0, R] there exist only finitely many £y, ...,¢,(R) for which A; # 0. Furthermore,
right continuity of My implies that 36 such that:

€
sup ||Ad] - n(R)
teRY

(Mo, 45 — My JE]|; < 1<i<n(R).

So, for the partition
T = {O:thtl +8,82,t2 46, .. -vtn(R):in(R) + 6; OO}

we have:
{]97‘ (A,)teiqrg”Z = n ng Ac(Maoys — My)E+ Agps( = Aa’,,+§)5”2

n{R)
Z\[At (Mesrs = MOJE, + | As (T = Musa],

since the projections (My, 45 — M;,) are mutually

orthogonal and commute with the A,

€ £
< .
< sup |4 (“(R) sop A () + sup HA:II)

R
1eR” 1R

= 2¢.

Hence {ST(A4,)
quired. 1

tei““}'re? is strong operator Cauchy and converges to 0, as re-
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REMARKS 3.23. (i) The “Doobs Optimal Stopping” theorem tells us that

for two stopping times 1, o
TLoe=> M, €M,

The above lemma can be used to construct two times 7,0 with M, = M, and 7,0
non-comparable, thus killing off the converse.
(ii) We shall now demonstrate that the integral S is not a “Lebesgue” type

integral. Consider the process (A‘)teﬁ+ given hy:

{0 ifteRt\Q*
A= .
I ifteQtu{oca}

and the subnets of partitions counsisting of rational and irrational points respec-

tively. We then have:

ST(A),eg+ =1

for all rational partitions, and
ST(A), g+ =0

for all irrational partitions. So (A}, g+ cannot be integrable.

(i1i) In [11], Definition 4.2 we see that for stopping times o, 7 such that ¢ < 7
we can define the stochastic interval (o, 7] = ¢ - (I — 7). Furthermore a stochastic
integral, of (o, 7] with respect to the martingale (M), g+, € € L%(A), is defined
M3 (&) — MZ(¢).

In view of the previous results, - (I — 7} is in fact integrable (Theorem 3.15),
and:

Slo( = 1)¢ = S(o) - ST = 7)¢
=(I — My)- M€
= (M; - M, )¢
since o < 7= M, < M,
=(M; - M})E

So we do not in fact need to make a new definition, but instead compute the

integral in question.



174 C. BARNETT AND S. VOLIOTIS

Acknowledgements. Dr. Voliotis would like to thank the Science and Engineering
Research Council for financial support during the period of his PhD studies. Much of
the content of this paper arose from his PhD Thesis ([21]).

REFERENCES

1. C. BARNETT, R.F. STREATER, [.F. WILDE, The Ito-Clifford integral, J. Funct. Anal.
48(1982), 142-212.

2. C. BARNETT, R.F. STREATER, .F. WILDE, Quasi-free quantum stochastic integrals
for the C.A.R. and C.C.R., J. Funct. Anal. 52(1983), 17-47.

3. C. BARNETT, R.F. STREATER, I.F. WILDE, Stochastic integrals in an arbitrary
probability gauge space, Math. Proc. Cambridge Philos. Soc. 94(1983), 541-
551.

4. C. BARNETT, R.F. STREATER, I.F. WILDE, Quantum stochastic integrals under
standing hypothesis, J. Math. Anal. Appl. 127(1987), 181-192.

5. C. BARNETT, T.J. LYONS, Stopping non-commutative processes, Math. Proc. Cam-
bridge Philos. Soc. 99(1986), 151-161.

6. C. BARNETT, B. THAKRAR, Time projections in a von Neumann algebra, J. Operator
Theory 18(1987), 19-31.

7. C. BARNETT, B. THAKRAR, A non-commutative random stopping theorem, J. Funct.
Anal. 88(1990), 342-350.

. C. BARNETT, S. VOLIOTIS, A homomorphic integral, Souchow J. Math., to appear.
9. C. BARNETT, 1.F. WILDE, Belated integrals, J. Funct. Anal. 66(1986), 283-307.
10. C. BARNETT, I. WILDE, Random times and time projections, Proc. Amer. Math.

Soc. 110(1990), 425-440.

11. C. BARNETT, I. WILDE, Random times, predictable processes and stochastic integra-
tion in finite von Neumann algebras, Proc. London Math. Soc.(3} 67(1993),
355-383.

12. R.G. BARTLE, A general bilinear vector integral, Studia Math. 15(1956), 337-352.

13. J.B. ConwaYy, A Course in Functional Analysis, 2nd edition, Graduate Texts in
Math., Springer-Verlag, New York Inc., 1990.

14. K.L. CHUNG, R.J. WILLIAMS, Introduction to stochastic integration, 2nd edition,
Birkhduser Verlag, Boston 1990.

15. J. DIXMIER, Von Neumann algebras, North-Holland Math. Libraray, 1981.

16. A.U. KUSSMAUL, Stochastic Integration and Generalised Martingales, Pitman Pub-
lishing Limited, 1977.

17. J.R. RINGROSE, Lecture Notes on von Neumann Algebras, Department of Math-
ematics, University of Newcastle upon Tyne, 1966-67 (unpublished lecture
notes).

18. M. TAKESAK], Theory of Operator Algebras I, Springer-Verlag, New York Inc., 1973.

19. B. THAKRAR, Non-commutative stopping times, Ph.D. Disertation, Imperial College,
London, 1988.



STOPPING AND INTEGRATION IN A PRODUCT STRUCTURE 175

20. D.M. TOPPING, Lectures on von Neumann Algebras, Van-Nostrand, New York, 1971.
21. S. VoLIOTIS, Homomorphic operator valued stochastic integrals, Ph.D. Disertation,
Imperial College, 1994.

C. BARNETT and S. VOLIOTIS
Department of Mathematics
Imperial College of Science,

Technology and Medicine
London SWT7 2BZ
U.K.

Received August 11, 1994.



