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ABSTRACT. We give a proof of the asymptotic completeness for the wave
operators associated to the pair (h(D), (D) + Vs + V1) = (Ho, H), where
h is a simply characteristic symbol, Vs a short-range perturbation and Vi
a long-range potential. The proof is done by using a propagation estimate
proved in [2] by means of Mourre’s theory, a characterisation of the orthogonal
complement of the ranges of the wave operators in the space of scattering
states of H given in [10] and some technical results.
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1. INTRODUCTION

In [10] the author proved some results for the pair of operators (h(D), h(D) +
Vs + Vi) with & as general as posible. Among them there are two results (or
rather their proofs) which are particularly important for us because we can use
these results to complete the study of spectral and scattering properties of simply
characteristic operators proposed in [2]. These results are:

(a) The range of Wy is contained in the space of scattering states of H.

(b) A characterization of the orthogonal complement of the range of Wy in
the space of scattering states of H.

The purpose of this paper is to use the above characterization and some
basic results of [2] to prove the asymptotic completeness of the modified wave
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operators associated to the pair of operators (h(D), k(D) + Vs + V1) with h a
simply characteristic symbol.

The plan of the paper is as follows. In Section 2 we state the main result
and we make the reduction of the general case to the case Vs = 0. The proof of
the main result is the object of Section 3 in which we also prove the asymptotic
completeness of the modified wave operators defined by means of the exact solution
of the Hamilton-Jacobi equation constructed by the methods of [4] and [6]. Let us
recall that in {9] and [10] the modified wave operators are defined by means of an
approximate solution of the Hamilton-Jacobi equation.

Now we recall some notation. If A is a self-adjoint operator on a Hilbert
space ‘H, then (A) denotes the operator (1 + |A|*}!/%, H,.(A) is the absolutely
continuous subspace of A, E,(A) is the orthogonal projection of this subspace,
Hsc(A) is the singularly continuous subspace for A and Ran 4 is the range of A.
Besides we use the following standard notations:

() = (14 |2[*)%, zeR"
and 0 = 8/0z, D = ~id, and for 2 = (z),...,zn} and @ = (ay,..., @)

g gxn
ag Qp o _ T —_
- 2’: . e m a‘lld 6 ol Y .
1 ozt dzan

za

2. STATEMENT OF THE RESULT. THE HAMILTONIAN

First we shall recall some definitions and notation we shall use.
Let F(M) denotes the indicator function of the set M and assume that R"
is divided into unit “cubes” Cy, k € N, so that

R*= | JCy and CxnCj =8, k# .
kEN

We say that f € co(LP), p2 1,if
I fllo,p := sup |F(Ci)fllp < oo and  lim ||F(Ck)fll, = 0.
kEN k— o0
Also we say that a function f is quasi-divergent if
lim |[Cy N.B,| =0,
k— o0

for all m € N, where B, = {z € R"; |f(z)] < m} and |M| denotes the Lebesgue
measure of the measurable set M.
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We shall work under the following hypotheses.
HYPOTHESES

I. The free hamiltonian Hg is a self-adjoint operator on the Hilbert space
M = L%(R"), with the domain D(Hy) = {u € H; hii € H}, Hou = F~1ha, where
4 1s the Fourier transform of u and h is a real valued function which satisfies:
(i) A : R" — R is a continuous function.
(i1) Let S, be the set {¢ € R™; h is not C'™ in any neighborhood of £}, let
C, be the set {£¢ € R*\ $,; vh(f) = 0} and let § = S, UC,. Then A(S) is a
countable subset of R.

(111) For any compact interval I C R\ h(S), with h~1(7) # @, we have
dist (A=1(I), Sp) > 0.

(iv) F(Sp) € co(LY).

() Jim - (B +] 7 O = .

(vi) sup{ID°R(©)] / (1 + e + | 7 ME)D); € € R*\ Sy} < oo, for each
multi-index o with o] 2 2.

II. (vii) Vz is a C*™ real valued function which satisfies
ID*Ve ()| < calz)™"71, = € R,

for some 6 > 0 and all o« € N".
From the hypotheses (iv) and (v) it follows that £ is a quasi-divergent func-
tion (see Appendix of [2]). Now from Theorem 9 of [3] we obtain that Vi is a
symmetric Ho-compact operator. We denote by Hjp the operator Hy + V;, with
the domain D(H ) = P(Ho).
III. Let Vs : D(Vs) — H be a symmetric operator and let H be a self-adjoint
operator on H such that:
(vii)) Rang(H.) C D(Vs)ND(H) for each g in C§°(R) and H|X = Hpx +
Vsix, where X = J{Rang(H.);9 € C(R}}.
(ix) For some ¢ > 0 the operator g(H)Vsg(Hr){X)!** has a bounded
extension to the whole of H for each ¢ in C§°(R).
(x) For any g in C§°(R) the operator g(H) — g(Ho) is compact.

We can now state the main result of this paper.
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THEOREM 2.1. Assume that the hypotheses (i)-(x) are saiisfied. Then there
exisis ¢ C® funclion W : R x R*\ S — R such that:
(a) The medified wave operators

(2.1) Wi =s— lim e WEDIE (H()

t—too

ezist and define partial isometries which inlertwine H and Hy;

(b) RanWy = Hac(H)J'

(¢) Hee(H) = {0};

(d) h(S) U ap(Hy) is a closed countable subset of R;

(e) The eigenvalues of H which are not in FS’TU ap(HL) are of finite mul-
tiplicity and they can accumulate only at the poinis of h(3) Uop(Hp).

In [2] we proved the following Theorems 2.2 and 2.3.

THEOREM 2.2. For any compact interval I C R\ h(S) there is a self-adjoint
operaior Ay such that Aj is conjugate to Hr on the interval I and Hy, is co-smooth
with respect to A in the sense of Definition 2.1 given in [7]. Also we have that for

any compact interval I C R\ h(S) and any non-negative number s, {A)*{X)~*

is a bounded operator on M.

THEOREM 2.3. Assume that the hypotheses (1)—(x) are satisfied. Then
(a) The wave operators

W, (H, HL) =8 - t_l}il}:’o et gmiths Fu(HL)

extst and define partial isomelries which interiwine H and Hp;

(b) Ran Wy (H, Hy) = Hac(H);

(€) M) = {0},

(d) A(S)Uop(HL) is a closed countable subset of R;

(e) The eigenvalues of H which are not in h(S) U op(Hy) are of finite mul-
tiplicity and they can accumulate only at the poinis ofTS).U op(Hyr).

REMARKS 2.4. (a) Since Theorem 2.3 is true with the condition (ix) replaced
by the condition:
(ix)" For some € > 0 the operator g(H)Vs(X)}'*¢ has a bounded extension to the
whole of H for each g in C°(R),
it follows that Theorem 2.1 remain true if we replace the condition (ix) by the
condition (ix)’.
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(b) The condition (ix)’ is always true when Vs is a symmetric Ho-compact
‘operator and there is an £ > 0 such that the operator

(Ho+1)~ Vs (X)1*¢

“has a bounded extension.

(¢) By using Theorem 2.3 and the chain rule for the wave operators it follows
that we can assume that Vs = 0, so we proceed directly to the investigation of
Hy. In what follows we omit the subindex L, i.e. weset H = Hy and V = Vp.

Finally Theorem 2.2, Theorem 2.10 of [2] combined with a partition of unity
in R\ (RS'TU'U,J(H )) lead to the following useful estimate:

THEOREM 2.5. Let 0 € &' < s and let g € CP(R\ (A(S) Ucy(H))). Then
there is a constant C = C(g,s,s") > 0 such that

(2.2) Xy~ eHg(HYX) | < O™,  teR.

This estimate is a basic one for two reasons. The first reason is that it can
be used essentially in the proof of the existence of wave operators in Theorem 2.3.
The second reason is that we can use it to prove that each element of Hac(H) is a
bound state for the momentum operator D under the total evolution e~ ([1]).
We shall do this in the next section.

3. PROOF OF THE RESULT

Let F denote the Fourier transform on &'(R™). Let ¢ be a real number and let @
be a distribution in §'(R"™ x R"). We define the operator

a(X, D) : S(R*) — §'(R™)
by
(@(X, D)p,9) = 2m) 2 ((1@F a)o T, ¥ @ 9), v, ¥ € SR™),
where T; : R® x R® — R™ x R" is the linear map defined by
Tz, y) =tz + (1 - t)y, z—y).
Then we have
jled
a(X, D)= Y la—| (826 a)o(X, D)
laj<k
3.1) o
! 1 ~1f 3o oo
+5Y u;i/(l-t)k 18292 a)(X, D) dt,
0

le|=k
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with the integral converging weakly.
in particular if a, b are smooth functions such that a, b and all their derivatives
are of atmost polynomial growth then (3.1) gives

1

(3.2) (X), (D) =i 3 / (350 ® 8;b)(X, D) dt,

1€j8€n g
with the integral converging weakly.
Let m be a real number. We define the space of symbols:

S™ = {a € C®(R™); Ya € N*, 3C, > 0, |8%a(z)] < Calz)™ 1%, z € R*}.

Now we can state and prove the following important lemma.

LEMMA 3.1. Leta; € S™ forj =1,2,3 and assume thalmy+ma+mz < 1.
Let b be a smooth function on R™ such that supp b’ is a compact set. Then for each
r 2 1 the operaior

ay(X){a2(X), o(D/r)]as(X)
is bounded on L2(R™) and there ezisis a positive constant C = C(ay, ag, a3, b} such
that
(33) ||a1(X)[a2(X), b(D/T)]a;;(X)“g(Lz) {: CTSI, T 2 1.
Proof. Taking into account (3.2) it follows that the distribution kernel of the
operator aj(X)[ax(X),b(D/rYas(X) is

1

K =it 5 [ ai@)asu)r Brae @ Gt + (1 - Oy, oy - 2)) .
1€j€n Y

Now using the fact that ¢; is in 5™/ and applying Peetre’s inequality twice

we obtain
[K (2, 9)l  Cr=Y(z)™+matms=1en oy — )y N~ [85b(r(y — z))]
1€5€n
<0t ST rr(y ~ ) 195b(r(y — =),

1<5€n

where m = |mg — 1| + |mg].
Hence from Schur’s lemma ([5]) it follows that

lla1 (X)[02(X), 5(D/Maz(X)llseay < €70 D0 )" E5bllea- @

1£5€n
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THEOREM 3.2. Lel the hypotheses (1)—(vii) be satisfied and let x be a smooth
function on R™ such that 0 K x < 1, x(&) =0 for || £ 1 and x(§) = 1 for |€]| > 2.
Then for each u in Hao(H) we have

(3.4) lim sup ||x(D/r)e” "Hyl| = 0.
r—o0 t

Proof. Let G = {g € C§°(R); supp g N (A(S) Uop(H))= 0}. Since Hqo(H) =

V Rang(H), it suffices to show that
9€9

(3.5) Jim sup [[x(D/r)e™* " g(H)ul = 0

for each u in L?(R™). By a density argument we have to prove (3.5) for u in S(R").
Let u be in S(R™). Then by the fundamental theorem of calculus we have

IX(D/r)e™ " g(H)ul|? = |x(D/r)g(H)ul)®

t

=i [ (6@, V0L gy, e~ g () s
u

For 6 as in the assumption (vii) we choose ¢ such that 1 < 20 € 1+46. Then
we have the estimate

| (b /), Vx)eH g(Hu, e g(H)u) |
< XY XD /r), VEOUX Y ([ I{X) e g(H ) X) =7 |PI(X) ull®
Now using Theorem 2.5, Lemma 3.1 and the assumption (vii) we see that
I{X) =% e*H g(H)(X)~7||* < C(s)™7 3,
1) D), VKX e < &

Summing up we obtain

sup Ix(D/r)e™"H g(H)ul|* < lix(D/r)g(H yult?

, r=2l

+Cr! ( ] (s)7°% ds) X} ulf?, ue SRM).
Now (3.5) with u in S(R") is an easy consequence of this estimate.

The next Theorem 3.3 from {10] is an important step in the proof of the
asymptotic completeness in Theorem 2.1 (the case Vg = 0).
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THEOREM 3.3. Assume that the hypotheses (1)—(vil) are satisfied. Then there
erists a C* function W : R x R*\ S — R such that (a)-(e) are valid.
(a) The modified wave operators

Wi(H, Ho) =s — lim e e WP B, (H,)

t—koo
erist;
(b) Wi (H, Hp) are partial isometries;
(c) e *HWy(H, Ho) = Wa(H, Ho)e "o, { €R;
(d) Ran Wi(H) HO) - ’Hac(H);
(e} Let G=R"\'S. Then

) +T
= {ue HaoelH); Jim = / IW(D)e  ulldt = 0, ¥y e CP(G)}.
0
Proof. The proof follows the same way as the proof of Theorems 2.1, 2.2, 2.3
of [10]. &

THEOREM 3.4. Assume that the hypotheses (i)—(vii) are satisfied. Then
Ran W (H, Ho) = Hac(H).

Proof. et u € Hac(H) © Ran Wi (H, Ho) and let g € C§°(R) such that
supp g ﬂh( 5) = 0. Choose x a smooth function on R" so that 0 < x < 1, x(§) =0
for |€] € 1 and x(¢) = 1 for |€| > 2. Then for all r > 1 we have

T
. -
Nt yal) = i = [ laCHe™ul
0

T
1 :
< Jim 7 [ () = o(Ho))e™ ul
(36) T—oo TQ

,
+fim L [ lo(Ha)(1 = x)(D/r)e"ul
0

+llglleo sup Ix(D/r)e™ H ul|.

Since g(H) — g{ Hp) is a compact operator and u is in Hac(H) it follows that
the first term in the sum of (3.6) is 0 by the RAGE theorem ({11]). Also the second
term is 0 by Theorem 3.3 {(e). So we obtain

Ng(H)ull < Hglloosupllx(D/T)e"“H l, ¥r>1, Vg€ C(R), suppg NA(5) =
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Now using Theorem 3.2 we obtain that g(H)u = 0 for each g in C§°(R),
suppg N m = 0. Since u is in Hac(H) and F(?} is a countable subset of R we
get u=0. Thus Ran W (H, Ho) = Ha(H).

Similarly Ran W_(H, Hy) = Hao(H). 1

Now Theorem 2.1 (the general case) is an easy consequence of Theorem 3.4,
Theorem 2.3 and Remark 2.4 (¢).

As we already mentioned in the introduction, the function W, used in the
Definition 2.1 of the modified wave operators, is an approximate solution of the
Hamilton-Jacobi equation ([9], [10]). In [4] and [6] the function W which defines
the modified free evolution is an exact solution of this equation. The next theo-
rem implies that the asymptotic completeness in one case implies the asymptotic
completeness in the other case.

THEOREM 3.5. Assume that the limits (2.1) exist as well as the correspond-
ing limits Wi when W is replaced by W. Then the following are equivalent:

(a) Ran Wy C Ran Wy (same sign);

(b) There ezist two measurable functions Fy such that for every compact set
K C G and everye >0

Jim [{e e 16 @ CO-Fe _ py ()] > | =05

(c) Ran Wy = RanWy  (same sign).

The theorem is an easy consequence of the definition and of the following
elementary results:

Result 1. Let V be a partial isometry on the Hilbert space X and let u be
in H. Then ||V*u|| = |ju|] if and only if « is in the range of V.

Result 2. Let (M, p) be a o-finite measurable space, let {f;}+>0 be a family of
bounded measurable functions on M and let 7" be a bounded operator on L?(M)
such that

T=w-— tlim M;j,.
Then there is a bounded measurable function f on M such that T = M; and
1lleo < tim 1l
- 00
Here M, denotes the multiplication operator by the measurable function g.
Result 3. Let G be an open subset of R?, let f be a bounded measurable

function on G and let {f;}:>0 be a family of measurable functions on G such that
for every ¢ > 0, |fi] = 1 a.e. in G. Then the following statements are equivalent:
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(a) M; :s—tlim My,
hndol
(b) For every compact set K C G and every € > 0

Jim €€ K; [£(8) - f(©)] > e} = 0.
If one of the two conditions are satisfied then |f| =1 a.e. and

Mj=s— lim Mj,
t=r00

Proof of Theorem 3.5. Using the first result we obtain that the condition (a)
18 equivalent to the condition

WiW, = s — lim P ED-WEPD B (Hy).

Now using the next two results we obtain that the condition (a) is equivalent
to the condition (b).

Since it follows that |Fy| = 1 a.e. we obtain that the condition (b) is sym-
metric in W and W so this condition is equivalent to the condition {c). 8

REMARK 3.6. As a consequence of this theorem we have that all the con-
clusions of Theorem 2.1 remain valid if in the Definition 2.1 the function W is the

" exact solution of the Hamilton-Jacobi equation constructed following the method
of (4] and [6].
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