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ABSTRACT. Let T be an operator-weighted shift whose weights are 2-by-2
matrices. We say that, given € > 0, T is in the e-canonical form if each
weight is an upper triangular matrix {(ai;), with 0 € a11,a20 < 1 and aj2 # 0
implies ai1,a2; < . We generalize this concept to operator-weighted shifts
whose weights are n-by-n matrices and we show that every polynomially
bounded weighted shift, whose weights are finite-dimensional matrices of the
fixed dimension =, is similar to an operator in the e-canonical form. This
enables us to prove that every polynomially bounded weihghted shift with
finite dimensional weights is similar to a contraction.
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1. INTRODUCTION

Let X be a separable, infinite dimensional, complex Hilbert space and let L{H)
denote the algebra of bounded linear operators on ‘H. An operator T in L(H) is
said to be completely polynomially bounded (notation: T €{CPB)) if there exists
M 2 1 such that for every positive integer n and for every n x n matrix of
polynomials (p;;),

(1.1) s (T 52111 < M sup {[[(pis (Ol - 1T < 1},

where the operator (p;;(17)) on the left side of (1.1) is an n x n matrix with operator
entries acting on the direct sum of n copies of H and (p;;(()) denotes an n x n
complex matrix. The infimum of all numbers M that can appear on the right
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hand side of (1.1) is called the complete polynomial bound of T and it is denoted
by Mcpu(T). An operator 7" in £L(H) is said to be polynomially bounded (notation:
T €(PB)) if there exists M > 1 such that (1.1) is true for # = 1. In this situation
the infimum of all such M is called the polynomial bound of T and it is denoted by
Mpu(T). An operator T in L(H) is said to be power bounded (notation: T €(PW))
if there exists M > 1 such that (1.1) holds for n = 1 and for every polynomial of
the special form p(¢) = ¢™ where m is a positive integer. Then, the infimum of
all such M is called the power bound of T and it is denoted by My (7). Also an
operator T in £(H) is said to be similar to a coniraction (notation: T €(SC)) if
there exists an invertible operator S in £(H) such that ||S~1TS|| € 1. It is easy
to see that
(SC) c (CPB) C (PB) C (PW).

One knows (cf. [4]) that (SC)=(CPB), but the rclationship between the classes
(CPB), (PB), and (PW) is not completely understood. One does know, however,
that therc are examples of operators in (PW) that are not in (PB) (see [1], [2],
).

It is the purpose of this paper to enhance our knowledge of these classes
by continuing the study of power bounded operator-weighted (unilateral) shifts
started in [6] and [5]. Recall that if {W,}2, is any bounded sequence from L(H),
an operator T in L(H ()} is called an operator-weighted shifi with weight sequence
{Wi}2; (notation: T = Sqw,y) if

S{W'} (kl,kz, . .,kn,. . ) = (0, Wlkl, WQkQ, N .,Wnkn, . .),

for all vectors (ky, kg, ...) in H(e), The following proposition comes from {5].

PrOPOSITION 1.1. Suppose M 2 1 and n € N. Then there ezisls an in-
creasing sequence {wn (M)}, of posilive numbers such thal, for every sequence
{W;}e2, of muinally commuting operators in L{K), satisfyingdim K = n, Sqw,y €
(PW), and Mpw(Sqw,}) < M, we have that Siw,y € (SC) and Mcpp(Siw,y) <
wn(M). '

The principal result of this paper is that we can delete the assumption that

the weights are mutually commuting.

THEOREM 1.2. Suppose M = 1. Then there exists an tncreasing sequence
{wn(M)}%, of positive numbers such tha, for every sequence {W;}32; in L(K),
where dim K = n, Siw,) € (PW), and Mpw(Siw,y) € M, we have that Siw,) €
(SC) and Mepp(Siw;}) € wa(M).

In view of [5], Theorem 4.5, we have an immediate corollary:
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THEOREM 1.3. Let H be a Hilbert space and let {W;}%2, be a sequence of
n-normal operators in L(H™)) where W; = (N(i)) and N(;) commutes with N{Y
for all positive integers i,1 and for all integers j, k,r,s such that 1 < j, k,r,s < n.
Then Sqw,y ts power bounded if and only if it is similar {o a contraction.

2. PRELIMINARIES

For use throughout the paper, we introduce the following notation and terminology.
We write C for the complex plane, D for the open unit disc in C, and T for 8D.
As usual, we write N for the set of positive integers, Ny for the set of nonnegative
integers, and Z for the sct of all integers. If n € N U {Rq} and K is any complex
Hilbert space, we write KU for the (orthogonal) direct sum of n copies of K.

If K is any complex Hilbert space of dimension at most Xp and {D,}%; is
any bounded sequence from £(K), we denote by Diag(Dy, Do, ...) the operator in
L(K M) satisfying

Diag(Dl, Dz, .. 4)(](:1, kg, .- ) = (lel,ngz, .. )

for all vectors (k1,k3,...) in K®o) . In the special case in which D, = Dforalln ¢
N, we write Diag (D4, Dz, ...) simply as Diag({D}). (Of course, Diag (D1, Da, .. .)

1s also the direct sum EB Dy,.) Furthermore, if {W,,}%%; is any bounded sequence
from L(K), we denote by Stw,} the operator in L(K(™0)) satisfying

(21) S{Wn} (kl, k‘z, ey ]C", e ) = (0, Wlkl, Wzkz, Sy Wnkn, .. .),

for all vectors (ky,ks,...) in K®Re), (In other words, Stw,} is the unilateral
operator-weighted shift with weight sequence {W,}.) If all the weights in (2.1)
coincide with one weight W, we shall denote S(w,) simply as Sywy. Clearly Siwy
is unitarily equivalent to the tensor product S ® W acting on H ® K where S is
a unilateral shift in £L(H) satisfying Se, = en41, n € N, for some orthonormal
basis {en}5%; of H. Finally, associated with each ordered orthonormal basis X
of K are collections #/(K, X) and V(K, X) of operators in £(K) defined as follows:
T € U(K, X) if the matrix of T with respect to X is in upper triangular form, and
T € V(K,X)if T € U(K, X) and its matrix (¢;;) with respect to the basis ¥ satisfies
0 < ti; < 1 for every 4. In this paper we will be studying operator-weighted shifts
whose weights are n x n matrices. Although we aim for the utmost generality, we
shall confine our attention to a subclass of » x n matrices, and, therefore, to a
subclass of operator-weighted shifts.



220 SRDIAN PETROVIE

DErFINITION 2.1. Let n € N, let K be a Hilbert space of dimension n, and
let X be an ordered orthonormal basis of £. Let 0 < € < 1. An operator T € L(K)
is said to be in e-canonical form relative to the basis X (notation: T € C(K, X, ¢))
if ' € V(K,X) and if the matrix (¢;;) of 7" with respect to the basis X has the
property that if t;; # 0 for some 1 < 1< j < nthenty < ¢ and t;; <e. If
{W.}ien is a bounded sequence in £(K) then the operator S}, acting on K (Ra)
is said to be in the e-canonical form relative to the basis ¥ if for every i € N, W;
belongs to C(K, X,¢), and in this case we write Sqw,) € C(K, X, ).

The significance of the subclass above comes from the following lemma.

LEMMA 2.2. Letn, K, and ‘H be as above. Suppose 0 < ¢ £ 1/2, M 2 1,
and let Sqw,} be a power bounded operator-weighted shift with power bound M,
that is in C(K, X,€). Then there ezisis an invertible operator X € £ (KJ(N“)) such
that [| X 1SwaX|| <1 and [|X]| < 1, || X7 = (2M /).

Proof. We define an operator L in £(K) as

L = Diag (1% (537)2 (ﬁfﬁ)“yl) ,

and an operator X in £ (KJ(N“)) as X = @ L; where Ly = Lforall i e N. Tt is
iEN

easy to see that ||X|| = 1 and || X~} = (2M/e)"~!. Furthermore, X " Siw X =

S{W)’ where W; = L™'W;L for every ¢ € N. Thus it suffices to show that

[[L=*W;L|| € 1 for every i € N. We fix i € N, and let (ax;) be the matrix of W;

in the basis ¥. Then the matrix of L~ 1W;L is

(s G2 ™)

and it is easy to see that L™'W;L € C(K,X,¢). Let Jy = {i:1 < i< nand a5 2

e} and J_ = {i:1< i< nanday < ¢}. Using the notation X = {z1,...,zn} we
see that the subspace H, = \/ =, is reducing for L~'W;L and since L=*W; L{M 4+
iEJy
is clearly a contraction, we concentrate on L™1W;L|H_, where H_ = \/ z;. Of
i€

course, if J_ is empty there is nothing to prove, so we consider the nontrivial case
when J_ is nonempty.

We make an easy observation that the norm of L= W, L|H_ is the same as
the norm of the matrix A obtained from L~'W,L by substituting a;; by 0, for
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t € Jy. The norm of A is clearly dominated by the sum of the norms of its
diagonal and its superdiagonals. In other words

4l < > 14kl
k=1

where, for every 1 < k < n, Ap = (@), with @y, = ape(¢/2M)9 P ifg—p=k—1,
and @y, = 0 otherwise. Using the obvious fact that |ap,| < M for p # ¢, and
lapp| < €, 1 € p < n, we have that

sl < M (552)

for 2 < k < n, and ||44]| € ¢, so that

n n-1
Ml <e+ oM (55)  mer M (z37)
k=2

<edo—gmr
21~ (g%)
This completes the proof of this lemma. 1
REMARK 2.3. We note that (with the notation above) if (a;;) is the matrix
of an operator T' € V(K, X) then T is in ¢-canonical form if and only if for every
1< i< j < nthe 2 x 2 matrix
[aii aij
0 aj;

is m e-canonical form. Accordingly, an operator-weighted shift Sy, where W; =
(w ) belongs to V(K, X) for every ¢ € N, is in e-canonical form if and only if, for
every 1 € j < k € n, the weighted shift with weight sequence

(B L,

Wii Wik

0 ,w(’)
kk 1EN

REMARK 2.4, It is easy to see that if n € N, K is a Hilbert space of dimension
n, X is an ordered orthonormal basis of £, and {W; }ieN Is a bounded sequence
in L(K) such that for every ¢ € N, the matrix of W; in X is (w_g?);*,k:l, then
the operator Syw,} is unitarily equivalent to an n x n operator matrix (Sjx)} -,
where, for every 1 < j, %k < n, Sj is a (scalar) weighted shift with weight sequence
{wyk)}iew

Using this remark we can extend Definition 2.1 to some n x n operator

is in e-canonical form.

matrices.
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DEFINITION 2.5. If (Sjk)7 r—; and Sqw,} are as in Remark 2.4, we say that
(Sik)} k=) is in e-canonical form, and we write (S;x) € C(K, X, £), if and only if
Siw,) has the same property.

It is obvious that if (Sjx) € C(K, X, ¢), then (Sji )} is an n x n upper triangular
matrix, where, for every j, k, 1 < j,k < n, Sj 1s a weighted shift with weights in
[0,1]. The following lemma is another easy consequence of the previous remarks
and definitions.

LeEMMA 2.6. Letn € N, let G be o Hilbert space, and let (S;i) be an upper
triangular n X n operator matriz acting on G, such that, for every 1 € j < k < n,
Sjk 15 o weighted shift with nonnegative weighls notl exceeding 1, relative fo the
same decomposition of G. Then (Sji) is in e-canonical form if and only if every
2 x 2 operator malriz

15 in e-canonical form.

Lernma 2.2 has shown that in order to prove Theorem 1.2 it suffices to es-
tablish a weaker conclusion that 7" € C(K, X,¢). The next lemma shows that we
can also make a weaker hypothesis.

LEmMMA 2.7, Let M 2 1, letn € N, let K be a Hilbert space of dimension n,
let X be an orthonormal basis of K, and let {W, }ien be a bounded sequence in £(K)
such that Syw,y €(PW) and My (Siw,3) = M. Then there exists an inverlible
operator X in L (K™} such that X~'Swy X = Stipgy XN X € M and,
for everyie N, W; € VK, X).

Proof. One knows that each operator T € £(K) can be uniquely decomposed
as T = QR where Q is a unitary operator and R has an upper triangular matrix
relative to X. We define, by induction, a sequence {U;}ien of unitary operators
in L(K). Let Uy = I. If U, has been selected we define U, 4; to be the unitary
factor of W,,U, in the decomposition above. Lei I/ be a unitary operator in

£ (K()) defined as U = Diag(Us, Uz, .). Then U*Sqw,)U = S, where W, =
U1 W.U;. Since, by definition, W;U; = U;y1 Riz1, we have that ﬁ;, = Rit1,
Le., IT", is represented by an upper triangular matrix, for every i € N. Once
again using the unitary equivalence set forth in Remark 2.4, we see that S W3
(and, hence, S¢w;}) is unitarily equivalent to an n x n upper triangular operator
matrix (S;;). We construct the operators {¥;}1., in such a way that Y;7'5;¥;

is a weighted shift whose weights are nonnegative numbers not greater than 1
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and ||Y;]] - [|Y;7 M € M (see [7] for details). If we define ¥ = Diag(Y1,...,Ya),
we have that ||V - ||[Y=1] € M. Since Y~}(S;;)Y is unitarily equivalent to an

operator-weighted shift S, ., where W e V(K, X) for every 1 € N, the proof is

(W)
comnplete. #

Thus in order to prove Theorem 1.2 it suffices to exhibit a similarity X €
£(G™) such that X~1(S;z)X = (S;x) and (Sjx) has one of the two equivalent

properties stated in Lemma 2.6. More precisely, we shall prove

THEOREM 2.8. Letn € N, n = 2, let G be o Hilbert space, and suppose
M 2 1. Then for every e, 0 < € < 1/2, and for every §, 1 < § < 1/¢, there
exists a positive number w = w(M, ¢, 8) such that for every upper triangular n X n
operator matriz (Sji) in L(G™), where, for every 1 € j €< k < n, Sjr 15 a
weighied shifl, and, for every 1 < j < n, the weights of S;; belong to [0,1] (relative
to the same basis of G ), there exists an invertible operator X in L(G™)) satisfying
XN XM € w, X~H(S5)X = (§Jk) and (Sj;) is in €1-canonical form, where
g1 = max{1/6, ée}.

Clearly, Theorem 1.2 follows from Theorem 2.8, Lemma 2.2, Lemma 2.7, and
the observation that, if n = 1, the result follows from Proposition 1.1. Thus, we
concentrate on Theorem 2.8, but we shall postpone the proof of this theorem until
Section 6, because our first goal is to establish a slightly stronger assertion in the

special case n = 2.

PROPOSITION 2.9. Let K be a Hilbert space of dimension 2, let X be an
orthonormal basis of K, and suppose M > 1. Then for every e, 0 < € < 1/2,
and for every §, 1 < 6 < 1/e, there exists a positive number w = w(M,¢,$)
such that for every sequence {W;}2, in V(K,X) satisfying Sqw,) € (PW), and
Mpw(Sqw:}) € M, there ezists a scquence {Xi}ien 1 UK, X) such that the op-
erator X = Diag(X;) satisfies | X||, |X "] € w, X" 'Sw ) X = Sy and, for
every i € N, W; is in the ¢;-canonical form where €1 = max{1/6, 6¢}. Further-

more, with the notatwn W; = (wgk) JZL 1) ('('Egzk) Jzk —q, Jor i € N, we have

that w(‘) 5w , forevery j, 1 < j € n, and every i € N, such that w( 9 <
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3. PROOF OF PROPOSITION 2.9

Let ¢ be an arbitrary positive number less than 1/2, let 1 < § < 1/¢, and let
M 2> 1. We define the following three subclasses of matrices

(3.1) [“ B]

0 ~

in V(K,X). A matrix of the form (3.1) is

(1) Type IM,e) if 0 L l,e<y< 1, |8 <

(2) Type 1I(M,¢) if 0 < o e 18] < M;

(3) Type NI(M,e) if 0 K y<e<a < 1, |8 €

In the case when it is clear from the context what; values of M and € are
being used, we shall use the notation type I for type I(M,¢), and similarly for
types II and III.

Let {W;}ien be as in the statement of the proposition and let T = Syw,3.
It is easy to see that, for every ¢ € N, W; must be in one of the classes above. In
order to complete the proof we shall need several technical propositions which we
state here. The proofs of these assertions are postponed until Section 5.

PROFPOSITION 3.1. Let K be a Hilbert space of dimension 2, let X be an
orthonormal basis of K, and suppose M > 1. Then for everye, 0 < e < 1/2, and
forevery 6, 1 < § < 1/e, there ezisls a positive number w = w(M, €, 8) such that for
every sequence {W;}82, in V(K, X) that contains infinitely many operators of iype
I (=I(M,¢)) and that satisfies Syw,} € (PW), and Mpw(S(w,}) € M, there exists
an operator X € £ (K®M)) such that || X||,|X~Y € w, X~ 'Sw,3X = S{W}
and, for every i € N, W; is in the €;-canonical form , where e; = max{1/$, é¢}.
Furthermore, with thc notation W; = (wgl) 2 k=15 Wi = (ﬁ(i))?k -, Jori €N, we
have that “() “ , for every 7, 1 € j < n, and everyi € N, such that w (’) <e.

An easy consequence of this proposition is that if T has infinitely many
weights of type I then T satisfies the conclusions of Proposition 2.9. Thus there
remains to investigate the case when 7" has only finitely many weights of type I,
or none at all. The next proposition shows that another restriction is available.

ProrosiTioN 3.2. Let K be a Hilbert space of dimension 2, lel X be an
orthonormal basis of K, and suppose M 2 1. Then for every e, 0 < € < 1/2,
and for every §, 1 < & < 1/e, there ezists a posilive number w = w(M,¢,$)
such that for every sequence {W;}2, in V(K,X) that contains infinilely many
eperators of type 11, and finilely many or no weights of type I and that satisfies
Siwiy € (PW), and My (Sqw,}) < M, there ezists an operator X € L (K())
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such that || X, |IX~|| S w, X~ Siwy X = S, = AL and, for every i € N, W is in

the e1-canonical form , where e1 = max{1/4, 65} Furthermore, with the notation
= (w.s’k) ? =t Wi = ~('))] w1, Jor i €N, we have that w(') 6w” , for every

j, 1< 5K n, and every i € N, such that w(z) <e.

Clearly, these two propositions imply that, unless 7" has only finitely many
weights of type I and of type II (or none at all), 7" satisfies the conclusions of
Proposition 2.9.

So we may suppose that there exists N € N such that W; is of type III, for
every i > IV, Again, we note that Syy,) is unitarily equivalent to a 2x 2 operator

matrix

St} e}
(3.2) [ PR ]
0 St

acting on an orthogonal direct sum of two copies of a Hilbert space G, with 0 <
v <&< o €1 and |f| <M for every i > N. One knows (cf. [5], Lemma 3.3
and the proof of Proposition 2.7) that there exists an operator X € £(G) whose
matrix relative to the same basis of G is diagonal and which satisfies || X|| < M,
IX7Y € 1/e, and X280 X = Sz, Where, for i > N, & = lora; <e¢
and &; € o; whenever a; £ e. Then the operator X € L(G @ G) defined as
X = Diag(X, I) has the property that

o S{%} Sivi)

where S{ﬁ) =X~ S{ﬂ ;3. and it is obvious that for every i > N, 8; = 0 if and
) and M = MPW(T)

M?(1/e). Furthermore, it suffices to show that T satisfies the conclusions of the

proposition. Finally, we note that for every i > N, W; is type III(M, e) (with

only if ﬁ = 0. Of course, T is unitarily equivalent to S, ~

&; = 1). Thus, we concentrate on the operator-weighted shift 7 with the property
that, for any ¢ > N, W; is of type I1I of the form

@9 o 4]

with 0 < % < e and 3] £ < M. The following proposition shows how to handle

this sﬂ;udtlon.
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PrOPOSITION 3.3. Lel K be a Hilbert space of dimension 2, let X be an
orthonormal basis of K, and suppose M > 1. Then for everye, 0 < € < 1/2, and
for every §, 1 < § < 1/e, there exists a positive number wy = w1 (M, ¢, 6) such that
for cvery sequence {W;}22, in V(K,X) for which there erists a positive integer
N such that, for i > N, W; is type 11 of the form (3.3), end which satisfies
Siw;) € (PW), and Illpw(S{W 1) € M, there ezists an operator Xecl (A,(ND))
such that || X[, | X7 € wy, X~ 'Siw X = S Wy and, for every i € N, Wi is in
the €,-canonical form , where £; = max{1/§, 66} Furthermore, with ihc notation
W; = (w(’))J pep) Wi = (@;’k) Z ¢=1) fori €N, we have that @ "(‘ < swl?

i3
7, 1 €7 € n, and every 1 €N, such thatw“\

for every

Clearly, it follows from Proposition 3.3 that T satisfies the conclusions of
Proposition 2.9 with wy(M) instead of w(M). But that, in its turn, implies that
T satisfies the conclusions of Proposition 2.9 with w(M) = M(I/E)wl(]\?). This
completes the proof of Proposition 2.9.

4. SOME USEFUL SIMILARITIES

Before we can prove Propositions 3.1-3.3, we need several lemmas. It will be help-
ful to introduce some notation and terminology in order to simplify the statements
of these lemmas. The letter J will stand for either N or any initial finite segment
of N. The letter A (with or without an index) will denote a finite subset of N,
(with or without an index) will be the smallest, and ¥ (with or without an index)
the largest element of A. The letter £ (with or without an index) will denote the
set of all positive integers between g and v that do not belong to A, and, finally,
the symbol = stands for the set of positive integers that are not in A or . Also,
we shall employ the notation A < B for nonempty subsets of N, if sup A < inf B.
In the case when A = {a} we shall write ¢ < B for A < B, and B < a for B < A.
Since the mentioned lemmas are needed to point out some relationship between
weights of types I-1II, we fix M > 1,0 < e € 1/2,and 1 < 6 < 1/¢, and we
shall work under a hypothesis that Sgw,} is power bounded with power bound M,
acting on K®0) where dim K = 2, and that there exists a fixed orthonormal basis
of K in which every weight W; is represented by an upper triangular matrix of one
of the types I-11I. We shall be employing the following terminoclogy.

DEFINITION 4.1. Let (A;)ies be a family of subsequences of N. We say that
(A;) is increasing if for any ¢,j € J, i < j, we have that A; < A;. If (A{)iesr and
(AY)icyn are two (finite or infinite) increasing families, we say that (A{) interlaces
(AY) if for any 4,5 € J' there exists k € J” such that A} < A} < Aj. If each
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of the two families interlaces the other one, we say that they are interlaced. In
this situation, we extend the definition of  so that it includes also the set of all
k € N such that A} < k < A} or A} < k < A] for some ¢ € J',j € J"; and

ke (Un)u(uay).
i 3
We start with a very simple assertion.

LEMMA 4.2. Let A = {u,v}, and let W,, W, be operators of type III such
that Vk € Q, Wi is of iype I1. Then there exists an invertible operator X in
L (KO such that || X||, IX M < 1+ M, X 'Sqw X = S5, where W =W,
Jori €%, & = o, ¥ = i, |Bil < M(M + 1)? for everyi € AUQ, and W, is
diagonal.

Proof. Let X = Diag(X;) where X; = I for i € EU {u}, and

X; = [[1} ‘f”}, for i € QU {v}).

Clearly, X is a bounded invertible operator satisfying || X]||,(|X "}l € 1 + M, and
the weight sequence {W,} has desired properties. 1

Lemma 4.2 easily generalizes to the case when A has more than 2 elements.

LEMMA 4.3. Let N € N, let A = {n;}],, and let W; be of type 111 for every
i € A. Moreover assume that W; is of type I1 for cvery i € Q. Then there exisis
an invertible operator X in L (KB} such that {|X||,IX~) € 1+ M/(1 —¢),
X-1S5waX = S{VT’,-} where Wy = W; fori € B, & = i, ¥ = 7, 18] €
M1+ M/(1—¢))? for everyi € AUS, and W; is diagonal for i € A\ {u}.

N i-1
Proof. Let ap = 3. B; TI s, for 1 € k € N, with the understanding that
i=k s=k
k=1
Il 7s = 1. Let

s=k

l ~~ar
w=l )

Define X = Diag(X;) where X; = I for i € EU g, and X; = Agqy for np <
i< npyy, kB =1,...,N — 1. It is easy to see that |ax| € M/(1 —¢),s0 X is a
bounded invertible operator with || X||, [|X 1|} € 1+ M/(1 — €). Verification of
the properties of the sequence {FVT/’,} is left to the reader. 1

Our next step is an easy generalization of Lemma 4.3.
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LeEMMA 4.4. Let (Ai)ics be an increasing family of finite sequences in N.
Suppose that for any 1,5 € J, 1 < j, and any = € Ay, y € A; we have z < y.
Suppose that Vi€ J,Vk € Ay, W is of type 111, and that Vi€ J, Vk € i, Wi is
of type I1. Then there exists a bounded inveriible operator X in £ (KM0)) such that
X[, IX 2 < 14 M/(1 ~€) and such that X~ Spw,) X = S, where W =W;
foranyi €=, & = o5, ¥ = 75, |,§.] < M1+ M/(1-¢)}? for cvery i ¢ =, and Ww;
is diagonal for any j € N and any i € A; \ {y;}-

Our next task is to establish the analogues of lemmas 4.2-4.4 for the operators
of type L. Again we start with the simplest case.

LEMMA 4.5. Let A = {u, v}, and let W,, W, be operators of iype 1 such that
VkeQ, Wi ts of type 11. Then there ezists an invertible operator X in L (JC(““))
such that | X|L X Y <1+ M, X~ 1SwaX = S{ﬁ;_}, where W; = W; fori € E,
o=y, Fi =V, }ﬁ.l < M(1+ M)? for everyi € AUQ, and W,, is diagonal.

Proof. Let X = Diag(X;) where X; = I fori€ ZU{g} , and
1 B,
0 1

It is easy to verify that X is invertible with ||X||,||X || € 1 + M and that the
weight sequence {W;} has desired properties. &

X.-:{ ], fori € QU {r}.

The case when A has more than two elements is slightly different from the
situation in Lemma 4.3.

LEMMA 4.6. Let A = {ni}rcs, and let W; be of type I for every 1 € A.
Moreover, assume that W; is of type Il for every 1 € 2. Then there ezxtsts an
invertible operator X in £ (K®M)) such that || X||,[[X~'[| < 1+ M/(1 +¢) and
sgch that X 'S X = S{ﬁ:’i}’ Jo
18il € M{14 M/(1 —¢€))? for every i € AU, and W; is diagonal fori € A ezcepl
fori= v in the case when J is finite.

where W; = W; fori € 2, &i = o4, % = ¥,

k k
Proof. Let by = z( I as) B;,for 1 < k < N+1, with the understanding
ji=1ts=j+1

k
that J] o, =1. Let
s=k41 .

1 b
B, = .
¢ [0 1]

Define X = Diag(X;) where X; = I for i € EU {u}, and X; = By for np < i <
nkt1, k < N. It is easy to see that |bz] € M/(1—¢), so X is a bounded invertible
operator with ||X|},]|X ]| < 1+ M/(1 — €). Verification of the properties of the
sequence {W;} is left to the reader. &
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As before, the case when there is more than one sequence A is an easy
extension of the previous lemmas.

LEMMA 4.7. Let (A;)ics be an increasing family of finile sequences in N.
Suppose that Vi €N, Yk € A;, Wy, is of type I, and thatVie J, Yk € Q;, Wy is
of type II. Then {here erists a bounded inveriible operator X in £ (}C(ND)) such that
NXIL X~ € 14+ M/(1—¢) and such that X SwyX = S{W,—}’ where W; = W;
forany i€ 5, & = o, ¥ = i, )B:! S M1+ M/(1—¢))? for every i ¢ Z, and w;
15 diagonal for any j € J and any i € A; \ {v;}.

In the previous lemmas we were concerned with operators of type III or
type I. Now we can work on both types simultaneously.

LEMMA 4.8. Let Ay = {n;}iey and Ay = {m; }ies be increasing sequences of
positive integers such that for any i € J,

(4.1) n; < m;,
and if i+ 1€ J then
(42) m; < Niq1.

Let W; be of type I (resp. type IN1) for every i € Ay (resp. i € As), and suppose
thatVie J, and Vi, n; < k < m;, Wy is of type 11. Let & be a positive number,
1 < 6 < 1/c. Then there ezists an invertible operator X in £ (K™M)) such that
IXILIX = < 6 and such that X18waX = S{W;}’ where Wi = Wi whenever
m; < k< njp1, & = ok, Ve = 7k, |§k| < 62°M whenever n; < k < my, and W is

of type I(6° M, max(1/8, 6¢)) with ﬁj(f) < 6w§?), 1€7<2, forany k€ Aj UA,.

Proof. Let X = Diag(X;) where X = I for k¥ € n; and whenever m; < & <

ni41, and
i 9
_ k]
X’“‘[o 6]

otherwise. Once again, it is easy to see that X is a bounded invertible operator on
KR satisfying || X{|,|X~2|| < 6, and that the sequence {W} has the required
properties. &

In Lemma 4.8 we have assumed that the first weight that is not of type II
must be of type I. However, we can easily dispense of this assumption.
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LEMMA 4.9. Lemma 4.8 remains valid if the conditions (4.1) and (4.2) are
replaced by the condilions

(4.3) m; < ny,
and
(44) n; < mit1.

Proof. If we define the operator T as the operator-weighted shift with weight
sequence {W;}82,, where

(4.5) Wo = [8 ?] ,

then, since Wy is of type I, 7" satisfies the hypotheses of Lemma 4.8. In other
words, there exists an invertible operator X’ such that X'~ 7TX’ is a weighted
shift whose weights {W 182, satisfy the conclusions of Lemma 4.8. Mareover, it
follows from the proof of Lemma 4.8 that X’ is a diagonal operator, with some
sequence {X;}2, on the diagonal. It is easy to see that if X is a diagonal operator
with the sequence {X;}ien on the diagonal, then X —ITX is an operator-weighted
shift satisfying the conclusions of Lemma 4.8. &

The following lemma is an easy consequence of the preceding results.

LemMa 4.10. Let (Aj)iesr and (A )igsn be two interlaced families of sub-
sequences of N. Suppose that for every i € J' and every k € A}, Wy 1s of type
I, that for any i € J' and any k € AY, Wy 1s type 111, that for any k € Q, Wy s
type 1. Then there exists a bounded invertible operator X in L (K,(“")) such that

(4.6) 1XAL X ) <€ [1 + T—-f‘f—] [1 + -1‘% (1 + 11\_46)2} 8,

and such thai X~ 1S{W X = S5, where W; = W, for any i € Z, and W,’

(w.y
is either a diagonal contraction or it is of type 11(62M, max(1/86,6¢)) otherwise.
Furthermore, wﬁ) §w§;), 172, 1eN.

Proof. In the notation of Lemma 4.4, there exists a similarity X such that

[IXH X~ € 14 M/{1~¢) and such that T} =X~ !1Sw X = =S, where each

weight of type IT becomes type II{M [l + M/(1 — €))?,¢), each welght of type I
remains unchanged and each weight of type 11l is diagonal (hence a contraction)
except for W,,, 1 € N, which is of type ITI{M[1+ M/(1—¢)}?,¢). Also it = ¥

i i3
1< 5 <2,i€N. Obviously, M} = My (Ti) € M[14+M/(1—¢€)}?. To this operator



ON POLYNOMIALY BOUNDED WEIGHTED SHIFTS. II 231

and its power bound M; we apply Lemma 4.7, thereby obtaining a similarity Y
such that ||[Y{,||Y || € 1+ M;1/(1 — £) and such that 75 = Y“‘ls{ Y=5p,
where each weight of type IT becomes type II(M;[1+ M; /(1 —¢))%,€), each weight
of type III remained unchanged, and each weight of type I is diagonal (hence
a contraction), except for W,,, ¢ € N. Furthermore, w() g;) , 1 €5 €2
i € N. Now Lemma 4.8 or Lemma 4.9 yields another s1m11anty Z such that

NZII,I1Z=Y) € § andsuch that T3 = 27132 = S v is an operator-weighted shift
whose each weight is either a diagonal contraction or of type 11(6% M,, max(1/86, 6¢))

with w( 6w§?, 1€j<2,ieN Thus (XY2Z)"'T(XYZ) is a weighted shift

with the required propertxes and, clearly,

1- l1—e¢
2
<{1+ MHH M <1+ M)}S,
1—¢ 1—¢ l1—¢

which completes the proof of this lemma. &

ey oy 2s (e 2] e 22 o

In the previous lemmas we have studied the interplay between weights of
types IIl and I. Now we turn our attention to weights of types II and IIL

LEMMA 4.11. Let Ay = {n;}ies end Ay = {my}ics be two interlaced families
of one-element subsets of N. Let W; be of type IT (resp. type 111) for every i € Ay
(resp. i € Ay), and suppose that Vk € Q, Wy is either diagonal or of type I1. Then
there exisis an invertible operator X in L (IC(N”)) such that [ X[] =1, X7 =6
and such that X~ 1S{W 1 X = S’{W ¥ where Wk = Wi whenever k € Xi, and Wk
is either diagonal or of type IN(6 M, max(1/6, b)) with @ N(k) 6w§f), 1€5<2
forany k ¢ 2.

Proof. Let X = Diag(Xy) where X; = I for k € ny and whenever m; < k <
Nit1, and

X, [1/5 0]

0 1

otherwise. Once again, we leave the details of the proof to the reader. 8
Again, the following lemma is an easy corollary of the previous results.

LEMMA 4.12. Let (Al)ies and (AY)icsn be two interlaced families of sub-
sequences of N such that Q is empty. Suppose that for every i € J' and every
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k € A}, Wi is of type 111, and that for any 1 € J and any k € AY, Wy 1s of type
II. Then there ezists a bounded invertible operator X in L (K(N")) such that

XL 1) < (1 + 1—.1‘_4—6) 5

and such that X~ 1Sy X = S{ Wi where W, = W; for any i € E, and 72
is either a diagonal operator of type 11 (hence a cantraction) or il is of lype

II(6M,€1), otherwise. Furthermore, () ‘5w§3),1 £2,ieN.

Proof. We apply Lemma 4.4 to the family (Af)iesr to obtain a bounded
invertible operator X in £ (K(®°)} such that || X{}, |IX || € 1+ M/(1 - s) and

such that X~ 'SpwyX = Sii,y» Where W; = W forany i ¢ |J Aj, Wi is a
jed’

diagonal operator of type III for any j € J' and any i € A; \ {5}, and for every
j € J', W,, is of type HI(M[1+ M/(1 — €)],¢€). Also ,:,;;,3 =uwl), 1<k <2,
i € N. Now the families Ay = {;}jesr, A2 = {vj}jesn satisfy the hypotheses
of Lemma 4.11, hence there exists a bounded invertible operator Y in £ (K(®))
' — -1f — r—1 1
such that |£}\’H =1, [Y~!| = §, and such that X S{W }X S{W} where the
sequence {W;}ien has the required properties. Clearly
_ M
< (11 )6

and the lemma is proved. 1

5. PROOFS OF PROPOSITIONS
In this section we will prove the propositions 3.1-3.3, thereby completing the proof
of Proposition 2.9.

5.1. Proof of Propesition 3.1. Let ¢ and § be arbitrary rcal numbers such
that 0 < e<1/2and 1 < 6 < 1/e. We set

2] e 2 (25 )

Using all weights of type III and type I, we obtain two interlaced families (A])ieyr,

(A?)ics» which satisfy the conditions of Lemma 4.10. Of course, if there are no
weights of type III, then J* is the empty set and J' = {1}. Thus Lemma 4.10
shows that there exists an invertible operator X satisfying (4.6) and such that

Ty = X~'TX is a weighted shift S, ~ . all of whose weights are either diagonal

(W}
contractions or they are of type II(6°M, ), where €, = max{1/§, é¢}, and w( ) €
6w§j~), 1 €37 <2, i€ N. In other words, T} is in the ¢;-canonical form, and

[IX1l, 1X || € w. This completes the proof of this proposition.
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5.2. Proof of Proposition 3.2. Let ¢ and § be arbitrary real numbers such
that 0 <e<1/2and 1 <6< 1/e. We set

M M M \?
wo_[y+1_] 1+1_5(1+1_6)]a
and R
w:wg[l+Mw°]6.
1_61

First we consider the case when {W,};cn contains finitely many weights of type
III or none at all. Then all weights of type Il and of type I form two interlaced
families (A{)ics: and (A});jes» where both J' and J are either finite or empty.
Therefore, Lemma 4.10 implies that there exists an invertible operator X satisfying
(4.6) and such that 73 = X~1TX is an operator-weighted shift S{VT/;} whose all
weights are of type 11(62M €1), or diagonal operators of type III or type I (hence
contractions) with @ w J( J), 1<€7<2,7€N. Since wy < w, this completes the
proof in the case when there are ﬁmtely many weights of type IIL

Next, we consider the case when {W,; }ien contains infinitely many weights of
type IIL. Let iq be the largest positive integer such that W;, is of type I, let jo be
the smallest positive integer greater then i such that W, is of type I1I, and let ko
be the smallest positive integer greater than jo such that Wy, is of type II. Again,
all the weights of type I and the weights W; of type I for i < &y are indexed
by two interlaced families (A{)ies and (AY);cs» where both J' and J” are either
finite or empty. Using Lemma 4.10 we obtain an invertible operator X satisfying
(4.6), and such that 71 = X~'TX is a power bounded operator-weighted shift
with power bound M; = Mpy(Ti) € Mwe?, whose all weights W,-, for 7 < ko, are
either diagonal operators of type III or type I (hence contractions), or they are
of type II(62M €1). Also w(’) = , 1 <37 <2 i€ N. Now we concentrate
on weights T/V =W; fori2> ko, and we notice that the operators of type II and
III form two interlaced families that satisfy the hypotheses of Lemma 4.12. Thus,
there exists a similarity ¥ satisfying {|Y{], ||Y =Y < [1 + M1 /(1 - €1)]6, and such

that 7o = Y~'T1Y is an operator-weighted shift whose all weights Wi, for i > ko,
are either diagonal contractions or of type II(&M €1), and W A(‘ 6w§;), 1€5<€72

i € N. Since, for 7 < ko, all the weights W, of Ty coincide thh the correspondmg
weights W; of T}, we conclude that the operator T is in the £1-canonical form.
Finally, we note that 75 = (Y X))~ !T(Y X) and

I X)), Y X < [-+f“Ja=w

This completes the proof of this proposition. 1
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5.3. Proof of Proposition 3.3, Let € and § be arbitrary real numbers such
that 0 < e < 1/2and 1 < § < 1/e. We set

] 2
w1=[1+ Ml][u- M, (1+_@_)}5<1+ M ),
1- 1 - — 1—¢

and we consider a sequence {W; };en such that for i > N, where N is some positive
integer, W; is type III of form (3.1). Let k be a positive integer greater than N.

Consider the infinite series
o) -1
Soa: 1 v
i=k  j=k
E—1

with the understanding that [] y; = 1. We will show that this series converges.
=k

1=
Indeed, let {B;}ien be the nonzero members of {f#i}i>r. Then the series above

can be rewritten as
ki—1

Zﬁk; H Y-

We note that if §; # 0 for some 7 > N} then W; is of type III, so ; < €. Since for
every 1 € N, 9; € 1 we have that

ki—1 00 k=1 00
Zﬁk H wl <18l T % < Z;m.lﬂn <S Mot = m ]
=1 i=k i=1 [£31

Thus, the series converges for every & > N. We denote its sum by sg, and note
that |sx| € M/(1 —¢). Let

1 —si ,

Y = [0 f’*} € LK), k>N,
let Yy = I fork < N and let Y = Diag(Ys) € £ (KMo)). Then ||Y 2|, ||Y]| €
1+ M/(1—¢), i =Y 'Sw,Y = Sti,) is a power bounded operator-weighted

shift with power bound M; = My (Th) < (1 + M/(1 —€))?M, and
W; = [1 0}, forany i > N,
0 7

with 0 <y < 1, and Wi = W; for i < V. Clearly {7 = w{?, 1< j <2, i eN.

Next we split all the weights of type III and type I (among t)he first N) into
two interlaced families satisfying the conditions of Lemma 4.10. Thus, there exists
a bounded invertible operator X in £ (K(X9)) satisfying (4.6) with M, instead
of M, and such that 75 = XT3 X is an operator-weighted shift with weight
sequence {W} ‘2o, Where, for any i < N, W is elther a diagonal contractlon or
it is of type II{(6°M1,¢;) with @ "(’) < 6w§;), 1<j<2i€eN, and W; = W, for
¢ > N. Thus T is in the e;-camomca,l form and, since Ty = (Y X)"1T(Y X) and
(Y X)~1|,[[Y X]|| € wy, the proposition is proved. &
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6. PROOF OF THEOREM 2.8

We introduce an ordering in the set {(¢,7) : 1 < ¢ < j € n}. We say that
(21, 41) precedes (i3, j2), and we write (i1,71) < (é2,72) if j1 ~ @1 < ja — 4z or if
Ji— i1 = jo — i3 and 4; < iy (and, hence, j; < j2). In other words we have a
sequence

(6.1) (1,2),(2,3),....(n—1,n),(L,3),....(n=2,n),...,(L,n—1),(2,n), (1,n).
For any p, ¢, such that 1 £ p < ¢ € n, Proposition 2.9 yields diagonal operators
A,B,C in £(G) such that A and C are both invertible and

62) [A*l ~A-1Bc-1Hspp Spq][A B}_[Kl Kg]
' 0 c-1 0 Sullo ¢l™lo ks

where K, K3, K3 are weighted shifts (with weights belonging to [0, 1]) relative to
the same basis of G, and the matrix on the right side of (6.2} is in the £;-canonical
form. Furthermore, if any weight of Sp, (resp. Sy,) is at most €, the corresponding
weight of K (resp. K3) is at most é¢, hence does not exceed €;. Applied to the
n x n matrix (5;;) this implies that, if we define X = (2;;) as

A ifi=p,
:l:h':{c if ¢ = gq,

I otherwise;
and, for ¢ # j

- B ifi=p j=g¢
Y710 otherwise;

then X—1(S;;)X = (S;;) has the submatrix
[ Sep ‘gpq }

in the €;-canonical form. The key observation, which we shall prove now, is that
if (r,1) < (p,¢) and if

Srr Srt
6.3
(63) 5 5
is in the e-canonical form, then

grr §rt
4 ~
o9 s

is in g;-canonical form. In other words, going along the sequence (6.1), we can
transform {one by one) the 2 x 2 submatrices into e-canonical form without losing
this property for the preceding submatrices. Therefore, we concentrate on the
statement above, which we state as '
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LEMMA 6.1. Let n € N, let G be a Hilbert space, and let (Si;) be an upper
triangular n x n operator mairiz acting on G, such that Si; is a weighted shift
(relative to the same basis of G). Let p and q be positive integers salisfying 1 <
p < ¢ € n, and suppose that, for every (r,t) < (p,q), the matriz (6.3) is in the
e-canonical form. Then there ezists an invertible operator X = X(p,q) on G(™)
such that || X[],[|IX~!|| € w(M) and such that X~2(Si;;)X = (5;) is an n x n
upper irianguler operator matriz, §.-,- is @ weighted shift for every 1 € i < 7 < n,
and the 2 X 2 mairiz

See §pq]
(65) ks

is in £1-canontcal form. Moreover, for every (r,t) < (p,q), the matriz (6.4) is in
the €y -canonical form.

Proof. We define X = (zi;) as above. Clearly, §,~J- is an upper triangular
matrix, and the estimates on || X|| and |[[X~}|| follow from Proposition 2.9. In
order to prove the remaining assertions of this lemma we introduce the notation
(aij) = X~! = Igm, (cij) = X ~ Igem. Then, an easy calculation shows that
(8i) = X~1(S;;)X is a matrix whose (i, j) entry 3; is ‘

(6.6) Sij + Sipcpj + Sigcqj + GipSpj + 8igSgj + GipSpppj + AipSpgCqj + BigSeqCes-

Since both (a;;) and (c:i;) have the only nonzero entries if i € {p, ¢} or j € {p,q},

it is obvious that : ¢ {p, ¢} and j ¢ {p, ¢} 1mplies g’,—,- = Si;. Therefore, it suffices

to establish the assertion in the case when at least one of ¢, j belongs to {p, ¢}.
First we consider the case when ¢ = p. Then (6.6) reduces to

(6.7) Spj 4 SppCps + SpaCqj + tppSps + apgSej + AppSpptpj + AppSpgCej + apgSeqtys-
If j = p then (6.7) is
(6-8) Spp+ SppCop +appSpp + CppSpppp = (14 8pp)Spp(1+pp) = A7 Spp A = K.
If j =g then (6.7) 1s

Spg+SppCog + SpgCeq+8ppSpg+pgSeq+app SppCog+appSpeCeq+apgSeqteq
(6.9) = (1 + app)Spa(1 + cgq) + @pgSgq(l + €q) + (1 + app)SppCpq

= A718,,C + (AT BC™1)S,,C + A7, B = K.

If j # pand j # g, (6.7) becomes

Spi + @ppSp; + apgSe; = (1 + app)Sp; + apgSy;

6.10
(6.10) = A71S,; 4+ (—A"1BC™)S,;.
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It is easy to see that if j < p, §i; = 0, and if p < j < g, (6.10) becomes A~1S5,;.
This shows that if { = p, S,, =0for j < pand 5'” is a weighted shift for § 2 p.

Next we turn our attention to the case ¢ = ¢. In this situation, (6.6) reduces
to
Sgi + Sqqej + a99Syj + agqSyqcei = (14 agq)(Sgs + SgqCqi)

= C™}{(Sg; + Sgecq;)-

If j < q, then g’,vj = ( and it is clear that §qj is a weighted shift for every j = ¢
Notice that, if j = ¢, then (6.11) is

(6.12) (14 agq)Seq(1 + ¢g) = C715,,C = Ks.

(6.11)

Finally, if ¢ # p and i # ¢, then, as we noticed before, we consider two
possibilities: j = p or j = ¢. If § = p, we can write (6.6} as

(6.13) Sip + SipCpp + @ipSpp + Aip SppCop-

Of course, i > p implies S;; = 0 and if i < p, (6.13) reduces to

(6.14) Sip(1+ ¢pp) = SipA,

and it follows that, for j = p, §ij is a weighted shift. If 7 = ¢, (6.6) becomes
(6.15) Sig + SipCpq + SigCqq + @ipSpg + @igSqq + aipSppCpg + ipSpgCeq + AigSgqqq-

It is easy to see that ¢ > ¢ implies §,:j =0, and if i < ¢ (and 7 # p), then (6.15)
reduces to

(6.16) Sig + SipCpq + SigCqq = Sip B+ 5;,C,

which shows that, once again, §,'j is a weighted shift.

Next we investigate the properties of 2 x 2 submatrices. We notice that (6.8),
(6.9), and (6.12), together with the fact that the right side of (6.2) is in the €;3-
canonical form, show that the matrix (6.5) has the same property. It remains to
be proved that, if (r,t) < (p, g), the matrix (6.4} is in the £;-canonical form. Since,
for i ¢ {p,q}, Sii = Si; we see, using (6.8) and (6.12), that both 5., and Sy have
nonnegative weights not greater than 1. Since (r,t) < (p, q), S, is given by one of
the formulae (6.9), (6.11), (6.12), or (6.13). In each case, for any nonzero weight of
§,t, the corresponding weight of S,; is also different from zero which implies that
the corresponding weights of S, and S;; are at most . For r ¢ {p, ¢}, Ser = Spr
50 its appropriate weight is at most ¢, and similarly for Sy;. Finally, if r = p or
7 = g, then S, is given by (6.8) or by (6.12), and the similar statement can be
made for Sy;. But, we have already seen that if a weight of Sy, or Spy is at most
¢, then the corresponding weight of Ky or K3 is at most ;. This completes the
proof of this lemma. 1
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Now we can finish the proof of Theorem 2.8. If n = 2, the assertion follows
from Proposition 2.9. If n 2 3, we define

ninel
£=2"2 ;
and we define the sequence €1 = ¢, e = /-1, 2 € k < n(n — 1)/2, and the

sequence {6} as & = 6;1/2, 1 €%k < n(n—1)/2. Notice that for every %,

max(1/8x,6xex) = max(ex/?, 6,1/%) = €,'/? = €141 so Lemma 6.1 provides the
inductive step to get from first k submatrices in gx-canonical form to first £ + 1
submatrices in x4 1-canonical form. Thus, after repeating the procedure n{(n—1)/2
times, we obtain a matrix (§,-,-) that is in €,(n_1)/2-canonical form. Since an easy
calculation shows that en(n_1y/2 < 1/2, the theorem is proved. &
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