A NOTE ON THE REFLEXIVITY OF WEAKLY CLOSED SUBSPACES OF OPERATORS

CHAFIQ BENHIDA

Communicated by Florian-Horia Vasilescu

ABSTRACT. Many results connect reflexivity and systems of simultaneous equations in the predual (well known by Property $(A_{m,n})$ and $(B_{m,n})$) of weakly*-closed subspaces of operators on Hilbert space ([4], [6] and [9]). Here we prove under a suitable hypothesis on the dual space \mathcal{A} (weak*-closed subspace of $\mathcal{L}(\mathcal{H})$) that the dual space generated by \mathcal{A} and a compact operator K is reflexive if the rank of K is greater than 5.

KEYWORDS: Dual space, predual, property $(A_{m,n})$, reflexivity.

AMS SUBJECT CLASSIFICATION: Primary 47D15; Secondary 47D25, 47A55.

1. INTRODUCTION

Let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on the Hilbert space \mathcal{H} and \mathcal{A} be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$; $Q_{\mathcal{A}}$ denote the predual of \mathcal{A} . If $[L] \in Q_{\mathcal{A}}$, [L] has the form $\sum_{n \geq 1} [x_n \otimes y_n]$ where $\sum_{n \geq 1} ||x_n||^2 < +\infty$ and $\sum_{n \geq 1} ||y_n||^2 < < +\infty$.

For x and y in $\mathcal{H} \setminus \{0\}$, we write as usual $x \otimes y$ for the rank-one operator on \mathcal{H} defined by $(x \otimes y)(u) = (u, y)x$, for $u \in \mathcal{H}$ and of course $[x \otimes y] \in Q_{\mathcal{A}}$, $\langle T, [x \otimes y] \rangle = (Tx, y), T \in \mathcal{A}$.

DEFINITION 1.1. A weak*-closed subspace of $\mathcal{L}(\mathcal{H})$, \mathcal{A} , is said to have the property $(A_{m,n})$ for m,n cardinal numbers less than or equal to \aleph_0 , if for every doubly indexed family $([L_{ij}])_{0 \leqslant i < m, 0 \leqslant j < n}$ in $Q_{\mathcal{A}}$, there exist vectors $(x_i)_{0 \leqslant i < m}$ and $(y_j)_{0 \leqslant j \leqslant n}$ in \mathcal{H} such that $[L_{ij}] = [x_i \otimes y_j]$ for $0 \leqslant i < m$ and $0 \leqslant j < n$.

252 Chafiq Benhida

We usually shorten $(A_{n,n})$ to (A_n) .

We recall from [12] that a linear subspace \mathcal{A} is reflexive if it contains every operator $T \in \mathcal{L}(\mathcal{H})$ with the property that $Tx \in (\overline{\mathcal{A}x})$ for every $x \in \mathcal{H}$.

This concept of reflexivity was introduced by Loginov and Sulman in [12]. Of course reflexive subspaces are weakly closed and this definition coincides with the usual definition ($\mathcal{A} = \text{AlgLat } \mathcal{A}$) if \mathcal{A} is subalgebra of $\mathcal{L}(\mathcal{H})$.

We say that $T \in \mathcal{L}(\mathcal{H})$ is reflexive if the weak-closed algebra \mathcal{A}_T generated by T is.

Many works show the relationship between the reflexivity of weak*-closed algebras generated by one contraction in the class A (the Sz.-Nagy-Foiaş functional calculus is an isometry) ([13], Chapter 3)) and the properties $(A_{m,n})$, using the fact that these algebras are isomorphic to H^{∞} ([5] and [9]). The techniques developed in this study yield a main result that every contraction in the class A is reflexive ([7]).

In [4] and [6], it is established that the notion of reflexivity does not require isomorphism with H^{∞} . Here we are interested in the reflexivity of perturbation of reflexive linear subspace and then in the extension of properties $(A_{m,n})$; in this area we obtained two results [2] and [3].

THEOREM 1.2. ([2]) If A is a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ (0 < $\gamma \leq 1$), and R is a non-trivial finite rank operator, then $A + \mathbb{C}R$ has the property $(A_{n,\aleph_0}) \cap (A_{\aleph_0,n}) \setminus (A_{n+1})$, where $n = \operatorname{rank}(R)$.

THEOREM 1.3. ([3]) Let A be a weak*-closed subspace of $L(\mathcal{H})$ with the property $X_{0,\gamma}$, $(0 < \gamma \le 1)$ and a compact operator K of infinite rank, then $A + \mathbb{C}K$ has the property (A_{\aleph_0}) .

Let $0 \le \theta < 1$; the following subset of the predual of \mathcal{A} were defined in [5] and [10] by $\mathcal{X}_{\theta}(\mathcal{A})$, the set of all $[L] \in Q_{\mathcal{A}}$ such that there exist $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in $(\mathcal{H})_1$ (the closed unit ball of \mathcal{H}) which converge weakly to 0 and satisfy (1.1), (1.2) and (1.3):

(1.1)
$$\limsup_{n \to +\infty} ||[L] - [x_n \otimes y_n]|| \leq \theta;$$

(1.2)
$$\lim_{n \to +\infty} ||[x_n \otimes w]|| = 0, \quad \forall w \in \mathcal{H};$$

(1.3)
$$\lim_{n \to +\infty} ||[w \otimes y_n]|| = 0, \quad \forall w \in \mathcal{H}.$$

Note that $\mathcal{X}_{\theta}(A)$ is closed and absolutely convex set.

DEFINITION 1.4. ([5]) Let \mathcal{A} be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$; \mathcal{A} is said to have the property $X_{\theta,\gamma}$, $(0 \leq \theta < \gamma \leq 1)$ if $\mathcal{X}_{\theta}(\mathcal{A}) \supset (Q_{\mathcal{A}})_{\gamma}$ (the closed ball in $Q_{\mathcal{A}}$ centered at 0 with radius γ).

The following result is established in [8], Chapter 3.

THEOREM 1.5. If A is a dual algebra with the property $X_{\theta,\gamma}$ $(0 \le \theta < \gamma \le 1)$, then A has the property (A_{\aleph_0}) .

This theorem is still true if A is a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$.

A reflexivity theorem proved in [4] states in particular that a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$, $(0 < \gamma \le 1)$ is reflexive. The purpose of this paper is to show that in this case $\mathcal{A} + \mathbb{C}K$ is reflexive when K is a compact operator such that its rank is greater than 5. It is worthy to note that $\mathcal{A} + \mathbb{C}K$ (with rank(K) > 0) can not have the property $X_{0,\gamma}$ ([3]).

2. PRELIMINARIES

Note that we can also define the space $\mathcal{X}_0(\mathcal{A})$ and the property $X_{0,\gamma}$ for a dual space of $\mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$, where \mathcal{H}_1 and \mathcal{H}_2 are two Hilbert spaces.

The following result is proved in [1], Proposition 3.1, in the case n = m.

PROPOSITION 2.1. Let A be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$, $(0 < \gamma \le 1)$; $M_{m,n}(A) = \{(T_{ij})_{1 \le i \le m, 1 \le j \le n}; T_{ij} \in A\}$ has the property $X_{0,\frac{\gamma}{nm}}$, for every $m \ge 1$ and $n \ge 1$.

Note that $M_{m,n}(\mathcal{A})$ is naturally identified with a dual space of $\mathcal{L}(\mathcal{H}^{(n)}, \mathcal{H}^{(m)})$ and $Q_{M_{m,n}(\mathcal{A})}$ is identified with $M_{m,n}(Q_{\mathcal{A}})$.

We have the following result, which have been shown in ([8], Chapter 1) when $\mathcal{H}_1 = \mathcal{H}_2$.

PROPOSITION 2.2. Let A be a dual space of $\mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$ with the property $X_{0,\gamma}$, $(0<\gamma\leqslant 1)$. Suppose given $[L]\in Q_A$, vectors $a\in\mathcal{H}_1$, $b\in\mathcal{H}_2$, \mathcal{L}_1 and \mathcal{L}_2 finite codimensional subspace of \mathcal{H}_1 and \mathcal{H}_2 , $\varepsilon>0$ and δ such that $||[L]-[a\otimes b]||<\delta$; then there exist x in \mathcal{H}_1 and y in \mathcal{H}_2 such that :

$$[L] = [x \otimes y], \ (x - a) \in \mathcal{L}_1, \ (y - b) \in \mathcal{L}_2,$$

$$\max(||x - a||_1, ||y - b||_2) < \sqrt{\frac{\delta}{\gamma}}.$$

DEFINITION 2.3. Let \mathcal{A} be a dual space. \mathcal{A} has the property (P) if \mathcal{A} has the property $(A_{1,2})$ and for $x_1, x_2, y_1, y_2 \in \mathcal{H}$, and ε a given positive number, there exist vectors $\xi_1, \xi_2, \eta_1, \eta_2, \eta_3 \in \mathcal{H}$ such that

254 Chapiq Benhida

$$\text{(i) } [\xi_i \otimes \eta_j] = [x_i \otimes y_j], \quad 1 \leqslant i, j \leqslant 2, \quad [\xi_1 \otimes \eta_3] = [x_2 \otimes y_2], \quad [\xi_2 \otimes \eta_3] = 0,$$

(ii)
$$||x_i - \xi_i|| < \varepsilon$$
, $||y_j - \eta_j|| < \varepsilon$, $1 \le i, j \le 2$.

Bercovici, Foiaş and Pearcy have shown in [6] the following result (Lemma 14, Theorem 15).

THEOREM 2.4. Assume that M is a weakly closed subspace of $\mathcal{L}(\mathcal{H})$. If M has property (P), then M is hereditarily reflexive (every weakly closed subspace of M is reflexive).

3. REFLEXIVITY RESULTS

Let $\mathcal{K}(\mathcal{H})$ denote the set of all compact operators on \mathcal{H} . The main result is:

THEOREM 3.1. Let A be a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with the property $X_{0,\gamma}$ (0 < $\gamma \leq 1$) and $K \in \mathcal{K}(\mathcal{H})$ such that $\mathrm{rank}(K) \geq 5$. Then $A + \mathbb{C}K$ is hereditarily reflexive.

Proof. We will prove that A + CK has property (P) and conclude by Theorem 2.4.

We may suppose that ||K|| = 1 because $A + CK = A + C\frac{K}{||K||}$. Since the proof is quite technical we will distinguish two cases.

Finite rank case. Let $R = \sum_{i=1}^{n} \lambda_{i} \varepsilon_{i} \otimes e_{i}$ the canonical writing of R. Then $\lambda_{1} = 1$ and λ_{i} is a decreasing sequence of positive numbers.

Note that an element φ of $Q_{\tilde{\mathcal{A}}}$ ($\tilde{\mathcal{A}} = \mathcal{A} + \mathbb{C}R$) is split into its action [L] $(= \varphi | \mathcal{A})$ on \mathcal{A} and $d (= \varphi(R))$ on $\mathbb{C}R$.

To make the notations easy for the reader, we will note [L] instead of $[L]_A$ for an element of Q_A .

Set $\tilde{\psi} \in M_{2,3}(Q_{\tilde{\mathcal{A}}})$, $(\tilde{\mathcal{A}} = \mathcal{A} + \mathbb{C}R)$, $\tilde{\psi} = (\psi_{ij})_{\substack{1 \leq i \leq 2 \\ 1 \leq j \leq 3}}$ such that there are vectors $(x_i)_i$ and $(y_j)_j$ in \mathcal{H} with

$$\psi_{ij} = [x_i \otimes y_j]_{\tilde{\mathcal{A}}}, \ 1 \leqslant i, j \leqslant 2, \quad \psi_{13} = [x_2 \otimes y_2]_{\tilde{\mathcal{A}}} \quad \text{and} \quad \psi_{23} = 0.$$

We can write $\tilde{\psi} = ([\tilde{L}], (d_{ij})_{1 \leq i \leq 2, 1 \leq j \leq 3})$ where $[\tilde{L}] = ([L_{ij}])_{1 \leq i \leq 2, 1 \leq j \leq 3}, [L_{ij}] = \psi_{ij} | \mathcal{A}$ and $d_{ij} = \psi_{ij}(R)$.

$$[\tilde{L}] = \begin{pmatrix} [x_1 \otimes y_1] & [x_1 \otimes y_2] & [x_2 \otimes y_2] \\ [x_2 \otimes y_1] & [x_2 \otimes y_2] & 0 \end{pmatrix} \in M_{2,3}(Q_A)$$

and let

$$[\tilde{\tilde{L}}] = egin{pmatrix} [x_1 \otimes y_1] & [x_1 \otimes y_2] & \delta^2[x_2 \otimes y_2] \\ [x_2 \otimes y_1] & [x_2 \otimes y_2] & 0 \end{pmatrix} \in M_{2,3}(Q_{\mathcal{A}}),$$

where δ is a positive number ($\delta < 1$). Since rank(R) $\geqslant 5$, take

$$\tilde{u} \in \text{span}\{e_1, \dots, e_5\} \cap \{R^* R x_i, R^* y_i; 1 \leq i, j \leq 2\}^{\perp}$$
 and $\|\tilde{u}\| = 1$.

It easy to see that $||R\tilde{u}|| \geqslant \lambda_5$. Put $u = \delta \bar{u}$ and $v = \delta \bar{d} \frac{R\tilde{u}}{||R\tilde{u}||^2}$ where $d = d_{13} = (Rx_2, y_2)$; we have $(Ru, v) = \delta^2 d = \delta^2 (Rx_2, y_2)$ from which we deduce

$$(R(x_1 + u), y_j) = (Rx_1, y_j), \quad j = 1, 2,$$

 $(R(x_1 + u), v) = (Ru, v) = \delta^2 d,$
 $(Rx_2, v) = 0.$

Now take the vectors

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} u \\ 0 \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix}.$$

Using the fact that the norm of an element in $M_{2,3}(A)$ is less or equal than the sum of the norms of each of its entries, we have

$$\begin{split} \|[\tilde{\tilde{L}}] - [X \otimes Y]\| &\leq \|u\|(\|y_1\| + \|y_2\|) + \|u\|\|v\| + (\|x_1\| + \|x_2\|)\|v\| + \delta^2\|[x_2 \otimes y_2]\| \\ &\leq \delta \left(\frac{d}{\lambda_5}(1 + \|x_1\| + \|x_2\|) + \|y_1\| + \|y_2\| + \|x_2\|\|y_2\|\right) \\ &\leq c\delta. \end{split}$$

Note that a simple calculation gives

$$||u|| = \delta, \quad ||v|| \leqslant \frac{d}{\lambda_5} \delta.$$

Suppose now that $0 < \delta < \inf(\frac{\gamma}{24c}\varepsilon^2, 1, \frac{\varepsilon}{4})$, and apply Proposition 2.2 and Proposition 2.1, then there exist \tilde{X}, \tilde{Y} two vectors $\tilde{X} \in \mathcal{H}^{(2)}, \tilde{Y} \in \mathcal{H}^{(3)}$ such that

$$\begin{split} &[\tilde{\tilde{L}}] = [\tilde{X} \otimes \tilde{Y}], \quad \max(\|\tilde{X} - X\|, \|\tilde{Y} - Y\|) < \sqrt{\frac{c\delta}{\tilde{Y}}} < \frac{\varepsilon}{2}, \\ &(\tilde{X} - X) \in ((R\mathcal{H} \cup R^*\mathcal{H})^{\perp})^{(2)}, \\ &(\tilde{Y} - Y) \in ((R\mathcal{H} \cup R^*\mathcal{H})^{\perp})^{(3)}. \end{split}$$

This implies that

$$(R\tilde{X}_i, \tilde{Y}_j) = (Rx_i, y_j) = d_{ij}, \quad 1 \leqslant i, j \leqslant 2,$$

 $(R\tilde{X}_1, \tilde{Y}_3) = \delta^2 d,$
 $(R\tilde{X}_2, \tilde{Y}_3) = 0.$

CHAFIQ BENHIDA

On the other hand

$$\max\left(\|\tilde{X} - X\|, \|\tilde{Y} - Y\|\right) < \frac{\varepsilon}{2}$$

implies that $\max(\|\tilde{X}_i - x_i\|, \|\tilde{Y}_j - y_j\|) < \varepsilon$ for $1 \le i, j \le 2$; since $\max(\|u\|, \|v\|) < \varepsilon/2$ and $\|\tilde{Y}_3 - v\| < \varepsilon/2$ we have $\|\tilde{Y}_3\| < \varepsilon$. Setting $\xi_i = \tilde{X}_i$, $\eta_j = \tilde{Y}_j$ $1 \le i, j \le 2$,

and
$$\eta_3 = 1/\delta^2 \tilde{Y}_3$$
. We have $\tilde{\psi} = [\xi \otimes \eta]_{\tilde{\mathcal{A}}}$, where $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$ and $\eta = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}$. Then

A + CR has the property (P) if $5 \le \text{rank}(R) < +\infty$ and so is reflexive.

Infinite rank case. We keep the same notations as before. For $\varepsilon > 0$ given, if we take a suitable sequence of finite rank operators which approaches K we will show by induction that there exists vectors $(X^k)_{k=1}^n \subset \mathcal{H}^{(2)}$ and $(Y^k)_{k=1}^n \subset \mathcal{H}^{(3)}$ such that

$$(3.1) [\tilde{L}] = [X^k \otimes Y^k], \text{ for } k \geqslant 1;$$

(3.2)
$$(R_k X_i^k, Y_i^k) = d_{ij}$$
, for $k \ge 1, i = 1, 2$ and $1 \le j \le 3$;

(3.3)
$$\max(\|X_i^k - X_i^{k-1}\|, \|Y_i^k - Y_i^{k-1}\|) < \frac{\varepsilon}{2^k}$$
, for $i = 1, 2$ and $k \ge 1$.

Put

$$X^0 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 and $Y^0 = \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix}$.

Suppose that the canonical writing of K is $K = \sum_{i \ge 1} \lambda_i \varepsilon_i \otimes e_i$, where $(\lambda_i)_i$ is a decreasing sequence to 0, $\lambda_1 = 1$ and denote $\lambda_7 = \lambda$.

Put $R_n = \sum_{i=1}^{p_n-1} \lambda_i \varepsilon_i \otimes e_i$, $\tilde{R}_n = R_n - R_{n-1}$ and $r_n = ||\tilde{R}_n|| = \lambda_{p_{n-1}}$ for $n \ge 2$; we may choose R_1 such that $\operatorname{rank}(R_1) \ge 7$ $(p_1 \ge 8)$ and

(3.4)
$$r_n < \frac{\gamma^2 \lambda}{(3M)^3 (1+M)} \frac{1}{2^{4(n+2)+1}} \varepsilon^4,$$

where $M = \max(1 + ||X^0||, 1 + ||Y^0||)$, which is possible since $(\lambda_i)_{i \ge 1}$ is decreasing sequence of positive numbers.

Let $(\beta_n)_{n\geqslant 1}$ the following sequence

$$\beta_n = \frac{\gamma}{3M} \frac{1}{2^{2(n+3)}} \varepsilon^2.$$

Step 1.
$$(R_1x_i, y_j) = d_{11} - ((K - R_1)x_i, y_j)$$
.

Put $\alpha_{ij}^1 = ((\overline{K} - R_1)x_i, y_j)$ and let $\mathcal{L} = \operatorname{span}\{e_1, e_2, \dots, e_7\} \cap \{R_1^*R_1x_i, R_1^*y_i, i = 1, 2\}^{\perp}$. $R_1|\mathcal{L} : \mathcal{L} \to \mathcal{H}$ has a canonical writing $R_1|\mathcal{L} = \sum_{i=1}^{m_1} \varepsilon_i^1 \otimes e_i^1$, where $(e_i^1)_{1 \leq i \leq m}$ is an orthonormal system and $(\varepsilon_i^1)_{1 \leq i \leq m}$ an orthogonal system. It is clear that $2 \leq m_1 \leq 7$ and $||\varepsilon_i^1|| \geqslant \lambda_7 =: \lambda$ for $1 \leq i \leq m_1$. Set $U^1 = \begin{pmatrix} U_1^1 \\ U_2^1 \end{pmatrix} =$

$$\begin{pmatrix} \frac{\delta}{\sqrt{2}}e^1_1\\ \frac{\delta}{\sqrt{2}}e^1_2 \end{pmatrix} \text{ and } V^1 = \begin{pmatrix} V^1_1\\ V^1_2\\ V^1_3 \end{pmatrix} \text{, where }$$

$$V_j^1 = \frac{\sqrt{2}}{\delta} \left(\alpha_{1j}^1 \frac{\varepsilon_1^1}{||\varepsilon_1^1||^2} + \alpha_{2j}^1 \frac{\varepsilon_2^1}{||\varepsilon_2^1||^2} \right), \quad j = 1, 2$$

and

$$V_3^1 = \sqrt{2}\delta \bar{d} \frac{\varepsilon_1^1}{||\varepsilon_1^1||^2}$$
, where $d = d_{13}$.

We have $||U^1|| = \delta$; like in finite rank case take $\delta = \inf(1, \frac{\gamma \lambda}{960M^3} \varepsilon^2, \frac{\varepsilon}{4})$. Thus

$$|\alpha_{ij}^1| \le ||K - R_1|| \, ||x_i|| \, ||y_j|| \le r_2 M^2 \le \delta^2 M^2$$

and

$$|d| = |(Kx_2, y_2)| \le ||K|| ||x_2|| ||y_2|| \le M^2.$$

Then $||V_j^1|| < \frac{2}{\lambda}\delta M^2$, j=1,2 and $||V_3^1|| \leqslant \frac{\sqrt{2}\delta}{\lambda}|d| \leqslant \frac{\sqrt{2}M^2}{\lambda}\delta$. We deduce $||V^1|| < \frac{4\delta}{\lambda}M^2$.

One may easily verify that $(R_1(X_i^0 + U_i^1), Y_j^0 + V_j^1) = d_{ij}$ if $(i, j) \neq (1, 3)$ and $(R_1(x_1 + U_1^1), V_3^1) = \delta^2 d$.

Let
$$\tilde{X} = X^0 + U^1$$
 and $\tilde{Y} = Y^0 + V^1$. We have

$$\begin{split} ||[\tilde{\tilde{L}}] - [\tilde{X} \otimes \tilde{Y}]|| &\leq ||U^{1}|| \, ||Y^{0}|| + ||X^{0}|| \, ||V^{1}|| + ||U^{1}|| \, ||V^{1}|| + \delta^{2} ||x_{2}|| \, ||y_{2}|| \\ &\leq \delta M^{2} \left(1 + \frac{4}{\lambda} M + \frac{4}{\lambda} + 1\right) < \frac{10}{\lambda} M^{3} \delta. \end{split}$$

Since $M_{2,3}(\mathcal{A})$ has the property $X_{0,\frac{\pi}{6}}$ by Proposition 2.1, then Proposition 2.2 provides vectors $X^1 \in \mathcal{H}^{(2)}$ and $Z^1 \in \mathcal{H}^{(3)}$ such that $[\tilde{\tilde{L}}] = [X^1 \otimes Z^1]$,

$$\max(\|X^{1} - \tilde{X}\|, \|Z^{1} - \tilde{Y}\|) < \sqrt{\frac{\frac{10M^{3}}{\lambda}\delta}{\frac{\gamma}{6}}} < \frac{\varepsilon}{4},$$
$$(X^{1} - \tilde{X}) \in ((R_{1}\mathcal{H} \cup R_{1}^{*}\mathcal{H})^{\perp})^{(2)}$$

and

$$(Z^1 - \tilde{Y}) \in ((R_1 \mathcal{H} \cup R_1^* \mathcal{H})^{\perp})^{(3)}.$$

This implies that

$$(R_1X_i^1, Z_i^1) = d_{ij}, \quad i = 1, 2, \quad 1 \le j \le 3, \quad (i, j) \ne (1, 3)$$

and

$$(R_1X_1^1, Z_3^1) = \delta^2 d_{13}.$$

If we take $Y^1=\begin{pmatrix} Z_1^1\\ Z_2^1\\ \frac{1}{12}Z_3^1 \end{pmatrix}$, one can easily check that

$$[X^1 \otimes Y^1] = [\tilde{L}],$$

$$(R_1X_i^1, Y_j^1) = d_{ij}, \quad i = 1, 2, \quad 1 \le j \le 3,$$

and

$$||X_i^1 - x_i|| < \frac{\varepsilon}{2},$$

$$||Y_i^1 - y_i|| < \frac{\varepsilon}{2}, \quad i = 1, 2.$$

Step (n+1).

Suppose now that we can find vectors $(X^k)_{1 \leq k \leq n} \subset \mathcal{H}^{(2)}$ and $(Y^k)_{1 \leq k \leq n} \subset \mathcal{H}^{(3)}$ satisfying (3.1), (3.2) and (3.3). It is clear that $||X^k|| < M$, $||Y^k|| < M$, and the action of R_{n+1} is

$$(R_{n+1}X_i^n, Y_j^n) = d_{ij} + (\tilde{R}_{n+1}X_i^n, Y_j^n).$$

Put
$$\alpha_{ij}^{n+1} = -\overline{(\tilde{R}_{n+1}X_i^n, Y_j^n)}$$
.

Let $\mathcal{L}_n = \operatorname{span}\{e_1,\dots,e_7\} \cap \{R_{n+1}^*Y_j^n,R_{n+1}^*R_{n+1}X_i^n,\ 1\leqslant i\leqslant 2 \text{ and } 1\leqslant j\leqslant 3\}^\perp$ and $R_1|\mathcal{L}_n = \sum_{i=1}^{m_{n+1}} \varepsilon_i^{n+1}\otimes e_i^{n+1}$ be the canonical writting of $R_1|\mathcal{L}_n:\mathcal{L}_n\to\mathcal{H}$ where $(e_i^{n+1})_{1\leqslant i\leqslant m_{n+1}}$ is an orthonormal system and $(\varepsilon_i^{n+1})_{1\leqslant i\leqslant m_{n+1}}$ is an orthogonal system. Then it is not hard to see that $2\leqslant m_{n+1}\leqslant 7$ and $\|\varepsilon_i^{n+1}\|\geqslant \lambda_7\stackrel{\mathrm{def}}{=}\lambda$ for $1\leqslant i\leqslant m_{n+1}$. Setting

$$U^n = \begin{pmatrix} U_1^n \\ U_2^n \end{pmatrix} = \begin{pmatrix} \frac{\beta_n}{\sqrt{2}} & e_1^{n+1} \\ \frac{\beta_n}{\sqrt{2}} & e_2^{n+1} \end{pmatrix}$$

and

$$V^{n} = \begin{pmatrix} V_{1}^{n} \\ V_{2}^{n} \\ V_{3}^{n} \end{pmatrix}, \text{ where } V_{j}^{n} = \frac{\sqrt{2}}{\beta_{n}} \Big(\alpha_{1j}^{n+1} \frac{\varepsilon_{1}^{n+1}}{\|\varepsilon_{1}^{n+1}\|^{2}} + \alpha_{2j}^{n+1} \frac{\varepsilon_{2}^{n+1}}{\|\varepsilon_{2}^{n+1}\|^{2}} \Big), \ 1 \leqslant j \leqslant 3$$

we have by simple calculation:

$$\begin{split} (R_{n+1}U_{i}^{n},V_{j}^{n}) &= \left(\left(R_{1}/\mathcal{L}_{n} \right) \left(U_{i}^{n} \right),V_{j}^{n} \right) \\ &= \left(\varepsilon_{i}^{n+1},\alpha_{1j}^{n+1} \frac{\varepsilon_{1}^{n+1}}{||\varepsilon_{1}^{n+1}||^{2}} + \alpha_{2j}^{n+1} \frac{\varepsilon_{2}^{n+1}}{||\varepsilon_{2}^{n+1}||^{2}} \right) = \overline{\alpha_{ij}^{n+1}}. \end{split}$$

Thus $(R_{n+1}(X_i^n + U_i^n), (Y_j^n + V_j^n)) = d_{ij}$ (since $U_i^n \in \mathcal{L}_n$). Put $\tilde{X}^n = X^n + U^n$ and $\tilde{Y}^n = Y^n + V^n$. We have

$$\begin{split} ||[\tilde{L}] - [\tilde{X}^n \otimes \tilde{Y}^n]|| &\leq ||[U^n \otimes Y^n]|| + ||[U^n \otimes V^n]|| + ||[X^n \otimes V^n]|| \\ &\leq ||U^n|| \, ||Y^n|| + ||U^n|| \, ||V^n|| + ||X^n|| \, ||V^n||. \end{split}$$

Let us seek uper bounds for $||U^n||$ and $||V^n||$. It is easy to see that $||U^n|| = \beta_n$ and from the definition of α_{ij}^{n+1} , we clearly have

$$|\alpha_{ij}^{n+1}| \le r_{n+1} ||X^n|| ||Y^n|| \le M^2 r_{n+1}.$$

Then $||V_j^n|| \le \frac{2}{\beta_n \lambda} M^2 r_{n+1}$. We deduce $||V^n|| \le \frac{6}{\beta_n \lambda} M^2 r_{n+1}$ and it follows then that

$$\|[\tilde{L}] - [\tilde{X}^n \otimes \tilde{Y}^n]\| \leq M\beta_n + \frac{6}{\lambda}M^2r_{n+1} + \frac{6M^3}{\lambda\beta_n}r_{n+1}$$
$$\leq M\beta_n + \frac{6}{\lambda\beta_n}M^2(1+M)r_{n+1}.$$

Since we have the relations (3.4) and (3.5),

$$\begin{split} ||[\tilde{L}] - [\tilde{X}^n \otimes \tilde{Y}^n]|| &< \frac{\gamma}{3} \frac{1}{2^{2(n+3)}} \varepsilon^2 + \frac{\gamma}{6} \frac{\varepsilon^2}{2^{2(n+2)+1}} \\ &< \frac{1}{2^{2(n+2)}} \frac{\gamma \varepsilon^2}{6} \stackrel{\text{def}}{=} \rho_n. \end{split}$$

By applying Proposition 2.1 and Proposition 2.2 we can find vectors $X^{n+1} \in \mathcal{H}^{(2)}$ and $Y^{n+1} \in \mathcal{H}^{(3)}$ such that

$$\begin{split} [\tilde{L}] &= [X^{n+1} \otimes Y^{n+1}], \\ \max(||X^{n+1} - \tilde{X}^n||, \ ||Y^{n+1} - \tilde{Y}^n||) &< \sqrt{\frac{\rho_n}{\frac{\gamma}{6}}} = \frac{1}{2^{n+2}} \varepsilon, \end{split}$$

$$(3.6) (X^{n+1} - \tilde{X}^n) \in ((R_{n+1}\mathcal{H} \cup R_{n+1}^*\mathcal{H})^{\perp})^{(2)},$$

$$(3.7) (Y^{n+1} - \tilde{Y}^n) \in ((R_{n+1}\mathcal{H} \cup R_{n+1}^*\mathcal{H})^{\perp})^{(3)}.$$

260 Chafiq Benhida

From (3.6) and (3.7), it follows that $(R_{n+1}X_i^{n+1}, Y_j^{n+1}) = d_{ij}$ for i = 1, 2 and $1 \le j \le 3$. Furthermore, since $\max(||U^n||, ||V^n||) < \frac{\epsilon}{2^{n+2}}$, we obtain

$$||X^{n+1} - X^n|| \le ||X^{n+1} - \tilde{X}^n|| + ||U^n||$$

 $< \frac{1}{2^{n+1}} \varepsilon,$

and

$$\begin{split} \|Y^{n+1} - Y^n\| & \leq \|Y^{n+1} - \tilde{Y}^n\| + \|V^n\| \\ & \leq \frac{1}{2^{n+1}} \varepsilon. \end{split}$$

If we consider $(X_i^n)_n$ and $(Y_j^n)_n$, there are two Cauchy sequences and thus converge. Let ξ_i and η_j their respective limits; we have

$$[\tilde{L}] = \lim_{n \to +\infty} [X^n \otimes Y^n] = [\xi \otimes \eta] \quad \text{where,} \quad \xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \quad \text{and} \quad \eta = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix},$$

$$d_{ij} = \lim_{n \to +\infty} (R_n X_i^n, Y_j^n) = (K \xi_i, \eta_j), \quad \text{for} \quad i = 1, 2 \quad \text{and} \quad 1 \leqslant j \leqslant 3.$$

This means that

$$\tilde{\psi} = [\xi \otimes \eta]_{\tilde{A}}.$$

On the other hand

(3.9)
$$\begin{aligned} \|\xi_{i} - x_{i}\| &= \lim_{n \to +\infty} \|X_{i}^{n} - x_{i}\| \\ &= \lim_{n \to +\infty} \left\| \sum_{k=2}^{n} (X_{i}^{k} - X_{i}^{k-1}) + X_{i}^{1} - x_{i} \right\| \\ &\leq \lim_{n \to +\infty} \sum_{k=2}^{n} \|X^{k} - X^{k-1}\| + \|X_{i}^{1} - x_{i}\| \\ &< \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{2^{k}} \varepsilon = \varepsilon \quad \text{for,} \quad i = 1, 2. \end{aligned}$$

The same argument shows that

The relations (3.8), (3.9) and (3.10) mean that $\tilde{A} = A + CK$ has the property (P) and then is hereditarily reflexive by the Theorem 2.4.

REFERENCES

- C. APOSTOL, H. BERCOVICI, C. FOIAŞ, C. PEARCY, Invariant subspaces, dilation theory and the structure of the predual of a dual algebra I, J. Funct. Anal. 63(1985), 369-404.
- 2. C. BENHIDA, Espace duaux et propriétés $(A_{m,n})$, Acta. Sci. Math. (Szeged) 58(1993), 431-441.
- 3. C. BENHIDA, On the extention of the properties $(A_{m,n})$, J. Operator Theory, to appear.
- H. BERCOVICI, A reflexivity theorem for weakly closed subspaces of operators, Trans. Amer. Math. Soc. 288(1985), 139-146.
- H. BERCOVICI, C. FOIAS, C. PEARCY, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math., vol. 56, Amer. Math. Soc. Providence, R.I., 1985.
- H. BERCOVICI, C. FOIAŞ, C. PEARCY, On the reflexivity of algebras and linear spaces of operators, Michigan Math. J. 33(1986), 119-126.
- S. BROWN, B. CHEVREAU, Toute contraction à calcul fonctionnel isométrique est réflexive, C.R. Acad. Sci. Paris Sér. I Math. 307(1988), 185-188.
- 8. B. CHEVREAU, Thèse d'état, Bordeaux I, 1987.
- 9. B. CHEVREAU, G. EXNER, C. PEARCY, On the structure of contraction operators III, Michigan. Math. J. 36(1989), 29-61.
- B. CHEVREAU, C. PEARCY, On the structure of contraction operators I, J. Funct. Anal. 76(1988), 1-29.
- D. HADWIN, E. NORDGREN, Subalgebras of reflexive algfebras, J. Operator Theory 7(1982), 3-23.
- A. LOGINOV, V. SULMAN, Hereditary and intermediate reflexivity of W*-algebras [Russian], Izv. Akad. Nauk. SSSR Ser. Mat. 39(1975), 1260-1273; English transl., Math. USSR Izv. 9(1975), 1189-1201.
- B.-Sz. NAGY, C. FOIAS, Harmonic Analysis of Operators on Hilbert Space, North Holland, Amsterdam 1970.

CHAFIQ BENHIDA URA CNRS 751 UFR de Mathématiques Université de Lille I 59655 Villeneuve d'Ascq Cedex FRANCE

Received July 19, 1994; revised July 20, 1995.