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GROTHENDIECK TYPE NORMS
FOR BILINEAR FORMS ON C*-ALGEBRAS
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ABSTRACT. We consider three equivalent norms on the space Bil(A, B) of
bilinear forms on a pair of C*-algebras (A, B), namely the usual norm and
two norms (here denoted || - |3+ and || - ||sx+) related to the non-commutative
Grothendieck inequality and to completely bounded maps from A to B*. The
two latter norms were introduced by Blecher and the second named author
some years ago. We show that the three norms are mutually distinct, and
give estimates of the best constants in the comparison of these norms.
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INTRODUCTION

In this paper, we will make comparison between the following three norms on the
set of bounded bilinear forms Bil(A, B) on a pair of C*-algebras (A, B):

1. The usual norm {|V{| of a bilinear map V : A x B — C.

2. The tracially bounded norm — here denoted ||V ||t — considered by the
second named author ([9], under the name ||V||e,) and by Blecher ({2]), i.e.

[IVllews = sup |V,
neN
where V(") is the bilinear form on M, (A) x M,(B) given by

VO(ail bl = = 3 Vias bs).

i,7=1
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3. The norm {|V||3+ introduced by Blecher in [1] (under the name ||V||scb),
i.e. ||V]|s- is the smallest constant for which there exist states @1,z € S(A),
Y1, %2 € S(B) and numbers s,t € [0,1] such that

[V(a,b)] € |Vla- (sp1(a”a) + (1 = 5)pa(aa)) ¥ (tehs (b*b) + (1 — )2(bb*)) 7

for every pair (a,b) € A x B. Here S(A) and S(B) denote the state spaces of A
and B respectively.
Using the non-commutative Grothendieck inequality ([7]), one has

VIl < IVllees <2VI| and [V < [IV]l- < 20}V]]

(cf. Blecher [1] and {2]), so in particular the three norms are equivalent. Also, by
a simple modification of Blecher’s argument in [2], Proof of Theorem 1, one gets
[IVlleor < }Vls+ (see proof below), so altogether

(0.1) ' VI < [IV]lwe < {IVHls- < 21V
Define now
_ V] e -
Ky, = sup | sup V eBIl(A,B), V£0; ),
AB il

Kj = sup (SUP { ”|I|/IU|J|. lV € Bil(A,B), V # O}) )

Kj b = sup (sup { |i||:;|||h. IV € Bil(4,B), V # O})
where (A, B) runs through all pairs of C*-algebras. The constant Kj can be con-
sidered as the non-commutative analogue of the complex Grothendieck constant
KE (cf. [6], [8], [11]). It is clear from (0.1) that '

1€ K € K3 €2 and 1< Ky < K.

Blecher proved in [2] that K, > 4/7 and he included in his thesis ([1]) an
unpublished argument due to the first named author, which shows that Kj = 2
(cf. [1], Proposition 4.2.7). The main result of this paper is that the construction
leading to Kj = 2 can also — after some extra work — be used to prove that
Kiv, 2 7/2, hence improving Blecher’s lower bound from [2]. We show also that
the norms ||V ||t and ||V]|;+ ate in general distinet, 1.e. K > 1.

The two norms || - [ltor and || - [|;+ on Bil(A, B) can be realized as the dual
norms of two norms || |ley and || - ||; on the algebraic tensor product A® B. These
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N n
£ (E )]
tJ

where [a( )] € M,(4), [bff)] € Mn(B),k=1,...,N and N, n are arbitrary positive

1
) 5 }
.\ n
where the infimum is over all representations z = 3, a; ® b;. Since the usual norm

1=1
on Bil(A, B) is the dual norm to the projective tensor norm ||z|ly on A ® B, the

norms are given by (cf. 1], [2], [9]):

el = mf{Dl N

integers, and

I (h>r

n n
[lz]]y = inf { max (”Z aj o “, Hz a;a;
i=1 i=1

inequality (0.1) can be reformulated as

(0.2) lzlls < llaflon < flzlly < 2||zfl5, z€A®B.

Moreover the constants Ky, K7 and K ¢, can be expressed as

Ky, = sup (qup { ll|I !||'7 ]m CARB, z# O}) ,
tb

K; = (su {HZH‘*{%A@B :s#()})

KJcb—sup (sup{lgl Igltb]:cEAch, a::;éo}).

For further disscussion on tensor norms on C*-algebras, see [5] and [10].

We conclude this section by giving the announced proof of ||V||e= < ||V ]l5+:
if V & Bil(4, B), then for some choice of ¢1,¢2 € S(A),%1,9%2 € S(B) and
s,t €[0,1),

[V (e, b)| € [[V]l3+ (stp1(a"a) + (1 — s)pa(aa”))3 (£ (6°B) + (1 — £)a(bb*))
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for all (a,b) € A x B. Hence, for a = [a;;] € Mn(A) and b = [b;;] € Mn(B), we get

V(") (a,b)| E |V (as;, bi;)

i,5=1
n

H”V”J‘ z (S‘pl(aualj) + (1 - s)‘PZ(alg t;)) (twl(b tj)

Hhi=1

//\

W=

+ (1= ) (bisb]y))

< —HVIIJ-{ Y (serlafjmiz) + (1 - s)pa(asa ,,))}5{ En: (e (b35545)
£j=1 §,j=1
= ettty
J
<a{ 5 e 0= S ]} {455 0
§,j=1 i,j=1 ij=]

s

i,j=t }

+(1—t)‘|z bijby;

But

| < nlla*all = nllal

n n
»
| 32 e = [ e
i,7=1 i=1

and

n
E : *
£,j=1

This together with the corresponding inequalities for the &;’s gives

n
| = [ D2 tea)ss] < et = il
i=1

[V (a, )| < [V]]a- llall 12l

which proves that |[V]|spe <

Note that the two other inequalities in the triple inequality {0.1) are easy:
(IV]] € [IV]ltbe is trivial and ||V][;+ < 2||V|] is an immediate consequence of the
non-commutative Grothendieck inequality ([7]).

The rest of this paper is organized in the following way: Section 1 contains
the construction leading to Kj = 2. Section 2 contains an explicit computation
of the spectra of certain graphs. This computation is crucial for the last section
(Section 3), which contains the main results.
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1. THE NONCOMMUTATIVE GROTHENDIECK CONSTANT K ;

The following plays the central role throughout this paper.

THEOREM 1.1. For any integern 2 1, there ezist a finite dimensional Hilberl
space H and 2n+ 1 partial isometries a1, . .., an41 € B(H) such that

2n41
“Zak@ak“ =2n41
k=1 ¥

and
2n41 2n41
Z a,‘cak = Z akai = (n + 1)IH.
k=1 k=1

Proof. Put m = 2n+ 1 and let K be an m-dimensional Hilbert space. We
consider the CAR-algebra over K (cf. [4]).
Let K = @ K; where Ko = C, Ky = K and Kj is the antisymmetric part
j=0
fR®---Q K, (j 2 2),so Ky is the j-particl in the Fock tati
o ® . & » ( ), so Kj is the j-particle space in the Fock representation

j
of the CAR-relations. Note that dimKj; = (';),(] =0,...,m). For f € K,
let a*(f),a(f) be the corresponding creation and annihilation operators. Then
f +— a*(f) is a linear map from K to B(K) and a*(f) = a(f)* for all f. Moreover,

(1.1) a(falg)" + a(9)*a(f) = (g1)1
(1.2) a(falg) + a(g)a(f) = 0.

The o(f)’s map Kj;, into Ky and the a(f)*’s map K; into Kj;41. Moreover,
(2) If f is a unit vector, then a(f) is a partial isometry.
(b) If ey,...,em is an orthonormal basis for K, then the restriction of the

7
operator N = ¥ a(ex)*a(er) to Kj is just multiplication with j (i.e. N is the
k=1

number operator).

m
This combined with (1.1) shows that the restriction of N’ = )~ a{ex)a(ex)*
k=1
to Kj is multiplication with m — j.
Choose now a fixed orthonormal basis e1,...,e2n41 for K and let ax €

B(Kn4+1,K,) be the restriction of a(er) to Knt1. Then each a; is a partial
isometry and a} € B(K,, Kn41) is the restriction of a*(ex) to K,. Hence

2n+1

> atar = Nigy, = (0 + Dk,
k=1
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and
2n+1

3" aat = N, = (n+ DIk,
k=1

2n+1
We now compute the norm of Y ai ® ax in B(Kny1, Kn) ® B(Knt1, Kn).
k=1

It 1s clear that
2n41

“ ; ag ®ak|‘1 < 2n+41.

To prove the converse inequality, consider the bilinear form V on B(K, 41, Kn) X
B{(Kn+1, Kn) given by
2n4-1
V(z,y) = Y 7(za})r(ya})

k=1

where 7 is the normalized trace on B(Ky). Since the Fock representation is basis
indepenent, the number

m(a(Ha(Hix,)
can only depend on |{|fl|, and since f+ a(f)* is linear, we get

7(a(f)a(f)ix,) = CIAIP

where C 2 0 is a constant. By the polarization identity, we have

m(a(f)alg)jx,) = Clglf)-

In particular, 7(aza;) = Co,.
2n+1

Using ) arai =(n+1)Ig,, weget C= 2%‘% Therefore, we have
k=1
2n+1 2n+1 2n+1
Z Viar,ax) = Z r(aga;)7(ara;) = Z r(azal)? = (2n +1)CL
k=1 kt=1 k=1

If we can show that ||V]] € C? (as a bilinear form on B(K,41, Ka) X

2n+1
B(Kn41,Kn)) then it will follow that || 3 ar ® a ” 2 2n + 1, so actually
¥
2n4-1

k=1
> ak®ak“ =2n+1.
k=1 ¥
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Observe first that the definition of V is invariant under change of the basis:

2n41
ie. if [gtk]t e ! is a unitary matrix and by = 3 gy, (k =1,...,2n+ 1), then
£=1
also
241
V(z,g) = ) m(abi)r(ub}).
k=1

Let z € B{(Ku41,Kn) be fixed, and let zo be the orthogonal projection onto
span{aj,...,azn4+1} With respect to the inner product 7(z123) on B(Kn41,Kn).
Since ay,...,azn41 are pairwise orthogonal and [jai]lz = - = [[azas1]lz = VC,
one can choose by, ...,bany1 as above such that b; and zg are proportional.
Hence
r(zby) =0, fork=2,...,2n+1

Therefore
V(z,y) = r(zb])r(yb]).

Since the map f v~ a(f)ix,,, is conjugate linear, b is of the form b = a(fo)x, for
some unit vector fo € K. In particular, b, is a partial isometry and 7(bib}) =
Hence we also have 7(|b3|) = C. Thus {r(zb})| £ C||z|| and 7(yb}) < C||yl}, wlnch
imply that |V (z,y)| < C*z| [|yll.

Since this holds for all 2,y € B(Kp41, K,), we have ||V|] < C? and so

“Z ak®akn 2 2n+ 1.

Since (*%}1) = (%)), we have dim K, = dim Kp11. Thus it is possible to

realize the az’s as operators from a Hilbert space H into itself, where dim H =
(2n+1)l '
n

COROLLARY 1.2.

K; =2.
2n+1 2n41
Proof. Since || Y ax ®ak" =2n+1land | ¥ ar®oax “J < n+1, we have
k=1 v k=1
2n+41
Zak®ﬂk”’y 2n+1__+2 n o). 1
> n+1 ’

2n+1
[ oul,

REMARK 1.3. By the same method, one can prove that if n;, ny are positive_
ﬂ1+ﬂ2+1),

ny

integers, then there exist two Hilbert spaces Hj, H, with dimH, =
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dimHz = (M*7**)) and partial isometries a1, ...,n,4n,41 in B(H1, Ha) such
that
nytna+l
“ Z ak®ak" =n;+ny+1
k=1 7
and
nit+ng+1 ny4natl
Z ayar = (n1 + VIn,, Z aray = (n2 + V)Ix,.
k=1 k=1

By tensoring H; and H, with £2, one can actually obtain that the a;’s live on the
same infinite dimensional Hilbert space. This shows that the dual version of the

[ onl, < (IS el [l (I85wd+ St

cannot be improved, in the sense that the smallest function f(-,-) for which

[$oncon, < ([Seind 5w )%f (ngy.-—y.-n,ugmsu)*

holds for arbitrary C*-algebras is f(s,t) = s + 1.

non-commutative Grothendieck inequality ([7])

REMARK 1.4. It is straightforward to check that

2n41
“ ; ak@ak“.} =n+l Vi = 21:11

and IV = (225)”

with ax, k= 1,2,...,2n+ 1 and V as in the proof of Theorem 1.1.

2. SPECTRA OF THE KNESER GRAPH K7, FOR k = 1

Put T = {1,...,2r+1} and let T(") be the set of r-subsets of 7. The Kneser
graph K'E,:)H (cf. [3]) consists of the vertices T{") where two r-sets are joint if and
only if they are disjoint, so the adjacency matrix A for the Kneser graph K-E,:Ll
is, for M, N € T(",
1 fMNN=90,

A(M,N) =
( ) {0 otherwise.

Each vertex in K§?+1 is joint to r + 1 vertices, so each row and each column
in A contains (r + 1) 1’s.
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THEOREM 2.1. Let A be the adjacency matriz of the Kneser graph K.E,:}H.
Then

sp(A) ={r+1,-rr-1,-(r-2),...,(-1)}

and the dimension for the eigenspace of A belonging to (—1)"+1-%k, k = 1, %,

r+11is
2r+1 2r+1
(r-{-l—k) B ('r——k)'
Proof. First, we compute the spectrum of A. Define (0, 1)-matrices Ep, E1,
.., Er by
1 fIMON|=r—i,
0 otherwise.

B(M, ) = {

Then Ey = I and E, = A. Elementary combinatrial arguments give that the E;’s
are mutually commuting matrices and that

E.Ey = Ey,

E, By =rE, +2E,_;,

E,Ey = (r = )Eyp_y +3B,_s,
E Ey=(r—2)E,_3+4E,_3,

li

(2.1)

E.E.=F, + (7‘ + 1)Eo.

From this, it follows that alg(A, I) the algebra generated by A and I is equal
to
Span{EO’ E1> vy Ef‘}

which has dimension r + 1. Since A is selfadjoint, it follows that A has precisely
r+1 distinct eigenvalues Ay, ..., Ap41. The projection Py of the eigenspace corre-
sponding to A € {A1,..., Ar41} Is contained in alg(A, I): 1.e.

r
Py = ZCA,iEi; exi ER.

3z20

r
Then APy = APy = 3 dea i By
=0
If (oo, ..., ) € R it follows from (2.1) that

A (Xr; aiEé) = i BiE;
i= i=0
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where (Bo, ..., 06:) € R™t! is given by

r
r—-1 2

(%) SRV

2 r—-1 : o
)\ ) \e.)
Hence if A € sp(B), then A € sp(A), where

r+1
( r 1 \
r—1 2

3
2 r—1
\1 r

So if B has r + 1 distinct eigenvalues, we will get that sp(A) = sp(B). Put

zg=(1,1,...,1) yw={(1,1...,1)

zy = (r, rr— 1,. 7- ’_9)1 wn = (0,.. .,T—rl'lrl) .
”z((2)< ) o) Jz(o( 2. (3))
:1:,.;-(1,0,...,0) 1,‘::_(0,...,0,1).

Then one easily gets

Bz = (r + Dwo
Bz, =ry,
B:Cz = (1‘ A l)yz

Bz, = y,.
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However y; € span{zo,..., 2} for ¢ = 0,...,r. Explicitly
Yo = To

Y1 =TT — I

r r—1
n=(g)e- ("7 mee

T -1 -2
“=(3)”°‘( 2 )”’”( 1 )‘”3

Yr=2g— 21+ -+ (-1)z,.

Hence the matrix of B with respect to the basis zo, @1, .. ., 2, is an upper triangular
matrix with diagonal elements r + 1,—r,r — 1,—(r — 2),...,(=1)". This proves
that

sp(A) =sp(B)={r+1,-r,r—1,-(r—2),...,(-1)"}.
Next, we compute the dimensions of the eigenspaces. Let di, (kK = 1,...,

r + 1) denote the dimension of the eigenspace belonging to the eigenvalue A =

(~=1)"t=*k. Then
41

T(A™) = 3 dedT,
k=1
where Tr is the usual trace with Tr(Ep) = |7 = (**'). On the other hand,

A" = A By = 3 M,

=0
where
cgm)

— Bn'l
o) 0
Since Tr(E;)=0fori=1,...,r, we have
) 2r + 1\ (m 2r+1
'H(Am): ( . )Cg )::(Tr )(Bm)oo,

where (B™),, denotes the element of B™ in the upper left corner. Clearly B?is

of the form
*

*
B?

i
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By induction, one gets that the matrix elements of B?**! is zero unless
r—n+2<i+j<r+n+3. Inparticular, (B*"+1),, = 0forn=0,1,...,r-1L:
Le.

Tr(A**Y =0 forn=0,1,...,r—1

or equivalently
41

de)\i""'l =0 forn=0,1,...,r— 1
k=1

Since |Ag] =k and Ay, Az, ..., Arqy alternate in sign, we get

r+1
(2.2) > (-1)fdk* =0 forn=0,1,...,r -1,

k=1

These r equations together with the obvious equation
r+1
2r 41
2. di =
(23) > ()

determines the multiplicities dy..
Put

_1\k
gkz( ’:) dy fork=12,...,r+1
gr=gr fork=12...,74+1

and choose gq such that

r+1
Z gk = O
k=—r—~1
Then (2.2) is equivalent to
r+1
z g k"t =0 forn=0,1,...,r—1.
kz-r-1
Hence
r+1
(2.4) > @k™=0 form=0,1,...,2r+1.
k=—r-1

(The sum is 0 when m is odd, because gx = g—.) The polynomials 1,k,k2, ...,
k¥+2 form a basis for the (2r + 3)-dimensinal vector space of functions on
{-r—1,...,0,...,7 + 1}. Therefore any two non-zero solutions to the equations
(2.4) are proportional.
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We claim that

2r+2
! (—1)F [ .
gr = (1) (r+1—k> for k r—1,...,r+1

is a solution.
Let X be the set of polynomials : Z — R and define a linear map 7 : X — X
by
T(P)k) = —P(k+ 1)+ 2P(k)— P(k —1).

Then it is easy to see that
degree T{P) < degree P — 2.

Thus 77+ (P) = 0 for any polynomial of degree € 2r + 1. However
r+1
2
N CIORED SR (N 1O}
k=—r—1

This shows that

r41
(2.5) Z g k™ =0 form=20,1,...,2r+1.
k=—r—1

Hence we have proved that

. 2r + 2
o= (=1 kg = ¢ fork=1,2,...,7+1
di = (1) kg rk(r-{—l»k) fork=1,2,...,7+1,

where ¢ 1s a constant. But

2r + 2 2r + 1 2r +1
L(r+1—k) =0 +1){(r+1——k) B (r—k)}'
Thus

%d},"CT‘F])f{( if;r_l ) (2::”»—0( )(%jl)

By (2.3), ¢c= and we get

-1
r+1

& = k 2042\ _ [ 2r+1 Y\ 2?'-{—1) .
Rl +1-k) T \r+i—k r—k /)’
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3. COMPARISON OF THE NORMS || - |[s, (| - {]ts and || - |+

Let {e1,..., €41} be an orthonormal basis of a Hilbert space K such that
dimK = 2n + 1 as in Section 1. For a base e, A- - Aem, € R, and a base
emy Ao A em!,, € Kpn41, the exterior product satisfies that

er A Neapgy
(emi Ao Aemr  JA(emy Ao Aem,) = 4 0r et A-r-Aeaays
or 0

after alternating. Then we may regard
(emi A=+ Nem:  JA(emy Ao Nem,)

as a number, explicitly 1,—1 or 0. Let M be a set {m,...,m,} ordered by
my < --- < my where mg € {1,...,2n+ 1} and denote e, A -+ Aem, by ear.
We choose {m],...,my .} C{1,...,2n+ 1} such that

(emr1 /\---/\em;“)f\eM: 1

and denote ep A A em’ by epre.
Note that the inner products on the basis of K, and K, 11 are respectively
given by
(eMIeN) =epmc Aey for em,eny € Ky,
(eMcieNc) = epmc Aey for EMc,ENc E I\)ﬂ-{"l-

In this setting, it is clear that
(ar ® arep- @ en<les Q@ er) = (af @ ajem ® enles: @ ere).

So if we identify K, with K,,; by letting epr correspond to epse, then ap ® ai. is
selfadjoint on H @ H in Theorem 1.1.

From now on, we shall use this identification.

Let v be the selfadjoint unitary operator on H ® H given by

Wf®n)=n®L foré,ne H.
Since
(ar @ arverr ® enles @er) =er Aen Aes - e Aey Aer
= (var ® arepr Q@ enles @ er),

2n4-1
v commutes with a; @ ax. It follows that 3 ax ® arv is selfadjoint.
k=1
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Let C and D be subsets in {1,...,2n + 1} such that
[Cl=|Dl=n—-4i (0<i<n) and CND=0

and eqq the one-dimensional projection : H — Ceg, where eq is a base in H as
above. For fixed C, D and i (0 € 7 € n), we put

Picp= Z eQq @ enn.

QR
[QAR|=1
Q\R=C
R\Q=D

Note that {P; ¢ p}ic,p are mutually orthogonal projections such that

EB €B Fiep=1
c.p

on H@H.

LeEMMA 3.1.
2n-1

() Pic,p commutes with Y aj ® apv.
k=1
2n4-1 . .
(ii) P,"C’D( Yo ar® ak)v has the matriz representation (—1)"~ A} where

k=1
AW s the adjacency matriz of the Kneser graph Kggl.
Proof. Put Fiep = {(Q,R)| IQNR| =i, Q\R=C,R\Q = D}. For
em,en,es,er € H, we have

(Pi,c,par @ arvey ® enles @ er)

= Z ((ex Aen) ® (ex Aear)les ® er)bo sérT
(QRYeFic,p
= Z exNeny Neg - e /\BM/\eTtSQ,stSR,T
(QR)EF c,p
ex Ney Neg ~ex ANeyr Aep df (M,N), (S,T) € F;,cJ) and
{kYUNUS| = [{E}UMUT|=2n + 1,

(3.1)

0 otherwise.

By the same way, it is easy to see that P; ¢ p commutes with a; ® azv. In
the upper case of (3.1), we note that

C1 ... Cp—i dl dn—i)

ek/\eN/\eszck/\eM/\eT-sn(
& d1 dn_,' (5] ve. Cpg
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where C = {cy,...,en—i} and D = {dy,...,dn_;}. Thus it follows that

er Neny ANes - ep ANepr ANep
1 .o om—1 n-—i4+1 ... 2(71—2'))
= sgn . ) .
n—i+1 ... 2(n-—i) 1 .. n—1
= (-1,

This implies that the number (P; ¢ par @ arven ® enles ® ex) does not depend
on the choise of k, that is {(—1)"~* or 0.
On the other hand, we have

2n41

{(M,N),(S,T)) | (Piep Y, ax ® arven @ enles ® er) # 0}
k=1
= {((M,N),(S,T) | (M,N),(S5,T) € Frcp, NNS=MNT =0}

(3.2)

Moreover the set in (3.2) is bijective to

(3.3) {(X,V)|X,Yc{1,....2n+1}\(CUD),XNY =0,|X|=|Y| =14}

by

(M, N),(S5,T)) — (MNN,SNT) and (X,Y)— ((XUC,XUD),(YUC,YUD)).

Since |{1,...,2n+1}\(CUD)| = 2i+1, the set in (3.3) is the indices which the
2n41
Kneser graph K.f,,)“ is joint. Hence the matrix corresponding to Picp 3 ar ®

E=1
apv is (1" 140 g

For z € B(H) @ B(H), we set ||z]|; = 7 ® 7(]z|) where 7 is the normalized
trace on B(H).

LEmMA 3.2,
2n+1 (4n+1)

” Z k ®a""1 - (2’;1)2'

2n41
Proof. We may identify P; ¢ p Z a; @ apv with {(—=1)"*" i AG). Then we can

respect that
2n41 2n+1

Zw@mv—@@ﬂcn Z ar @ axv

i C.D

— @@( l)n—:A(:

i+ CD
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Yor fixed i, the multiplicity of (=1)"~*A®) is |{(C,D)|Cn D = 8,|C| = |D| =
n — i}/, that is r;:%'%
2n+1

Since AC) has the eigenvalues (— 1)t ~75, (j=1,...,i+1), then Pep 3 ax
k=1

®arv has the eigenvalues A; = (-—1)"‘+l‘jj, (7 =1,...,i+ 1) and the dimension
n+1
of the eigenspace of Picp ¥ ar ® axv belonging to A; is
k=1
2i4+1 2141
i+1—3j i-j /)
2n+1

Let E; be the eigenspace of 3 ar ® axv belonging to A;, then we have
k=1

= (211)- (7))

{2+ w41\’
T\n+1l-j n—j )’

Since {A;} = 7, we get

2n41 2n+1

dlmH@H“E ak®ak| = dll’ﬂH@.H” Z ak®akv“

_Z(2n+1 B 12"251(%4-1)2
=4 T2 E

k=0

_l{an42) _ fan+1
To\2n+1) U 20}

Since dim H = (***'), we obtain

2n4-1 dn41
H ;; “® ak"l - ((Aﬂn+1)
LEMMA 3.3.
2n+1

D R

Proof. As in the proof of Theorem 1.1, |lax{l} = $EL for all k. Then we
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have

I35 o= rer( ;amak)*.(?gak@ak))

2n+1l 2n+1

= Y r(atar)r(atar) = Y r(ajar)’
k=1 k=1
2n+1l

> ol = o] D

Let H be the “conjugate” Hilbert space whose underlying real vector space
is the same as H and the identity map £ — € is conjugate linear with the inner
product (€]7) = (€[n). If A is a set in B(H) and @ € A, then there exists a unique
T € B(H) such that £ = z£ for £ € H. We denote {Z € B(H) |a: € A} by A.

Define the bilincar form W on B(H)} x B(H) by

2n+1

W( y) = 1

V(z,y*") forz e B(H)and 7€ B(H)

and let P be the orthogonal projection: B(H) — span{ai,...,azn41} With respect
to the inner product (z|y), on B(H): i.e

2n+1

Z (zlag)ra

2n+1

We note that W(z,7) = (P(x)|P(y)})--
Let W) be the bilinear form on My (B(H)) x Mi(B(H)), such that

W(k)([zz J] y; Z W(xu 3 yl]

6i=1
for [zij] € My(B(H)) and [g;;] € My(B(H)). Then

W= = sup W ®).

THEOREM 3.4.
K 2

zol:]

Proof. 1t is easy to see that
WO (z5),[75]) = (P © LulesllP ® Bus))

where 7 is the normalized trace on Mi(C).
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2n+1 2n+1
Let u| 3 ay ®ak| be the polar decomposition of 5™ ar ®ag. Then we have
k=1 k=1

2n+1 2
l (P®I)u| z ar ®ak)
TRT

k=1

Wlleor 2 I(P ® Tull} >

2n41 2

3 ar®ag
k=1 2
an+1 2 n+1 2
l(u[ Zak®ak) ‘ Z%@%H
_ k=1 Terl W= 1
- 2n+41 2 T op2n41 2°
> ak@Gk“ ay @ ag
k=1 2 k=1 2

Since ||[W|| = 721 by Remark 1.4 and the definition, and n! ~ +/27n (="
by the Stirling formula, we obtain that

(2 1 2n+4-1 2
o faoal
I P
IS
(n+ D 3 ak®ak”2

k=1

_ @a12()”
(1P’

— g (n—>o00). 1
THEOREM 3.5.
Kym > 1.

Proof. Put A = Mj3(C) with the normalized trace 7 and let W(z,7) =
(P(z)|P(y))r for z € A and § € 4 as in Theorem 3.4. Since the unit ball in
a unital C*-algebra is the closed convex hull of the unitary elements and the
unit ball in M, (A) is compact, we can choose unitary elements u, € M, (A) and
Ty € M, (Z) for cach n such that

W un, 5a) = W),
It is easy to see that
Wz, 5)| < W (2, B) T W (y,7)F  for all & € Mo(A) and all 7 € M, (7).
Thus we may assume that

W(n)(“n, Un) = ||W(n)“~
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Let w € AN\ N be a free ultrafilter and 7, the normalized trace on M,(C). We
set that

2 My (A)
=t
n=1

where

L={(z.) € éMﬂ(A)] Jim 7 @ 7 (5 n) = o}.

n=1
Then M is a factor of type 11; with the trace

TQ(z) = 1}%7@ Tn(zn)

where (z,,) are representing sequences for . It is clear that M is *-isomorphic to
A ® N where

N = @ M3£C)’ Ju = {(z,,) € @Mn(C) | Jim 7 (s}20) = ()}‘

We define the bilinear form W on M x M by
W(z,5) = lim W")(z,,,75,),

where M is the “conjugate” algebra for M as in Theorem 3.4. Let u be the unitary
in M with representing sequence (u,). Then clearly

W(u, ) = lim W (uy, %) = || Wl
Assume that
Wl = [|W]lae  (ee. ||W]|w = 1 by Remark 1.4).

Then
1P ® In(u)lI3 = W (4, T@) = W]l = [lull3.

This implies that u is in the range of P ® Iy. Thus there exist z,y,z € N such
that

u=a®c+a:0y+az®@z:

0 z -y
u=1{ -z 0 z .
y -z 0

1e.
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Clearly it follows that
2ty =+ yty=1

}

22tz =2+ 22 =1
zz" +yy = yy+atz=1
and
0z ~-2"0-9y"2 =0,

X

Hence we get that zz* =z*z =yy* = ¢’y =L and "2 = 0.

This is a contradiction. 1
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