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ABSTRACT. The concept of a hypertrace on a C*-algebra of bounded linear
operators on a Hilbert space has been used, somewhat unexplicitely, in several
recent works. In the present paper, we give an introduction to this concept
and its relation to amenability and nuclearity, and initiate a study of the
naturally emerging classes of so-called weakly hypertracial C*-algebras and
hypertracial C*-algebras.
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INTRODUCTION

Let A be a C™-subalgebra of B(H), the bounded linear operators on some non-zero
Hilbert space H. By a hyperirace on A we mean a state ¢ on B(H)} which contains
A in its centralizer, i.e. A C C, where C,, is the C*-algebra given by

Co ={Y € B(H) | o(XY) = p(YX) forall X € B(H)}.

This concept was introduced by Connes in his fundamental paper on the classifica-
tion of injective factors ([12]) as an Important tool in establishing that any injective
II;-factor A acting on a separable Hilbert space is *-isomorphic to the hyperfinite
II;-factor. The key observation was that from the existence of a hypertrace on A
one may deduce that A satisfies a property analogous to Fglner’s characterization
of the amenability of a group. The reader may also consult [29] or [30] to see how
the hyperfiniteness of A" may be obtained from this Fglner property. The analogy
between the existence of a hypertrace on N/ and the existence of an invariant mean
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on I*°(G) (where G denotes a discrete group), i.e. the amenability of G, is nicely
exposed in [13].

The concept of hypertrace for C*-algebras has also been of some interest,
though in a somewhat unexplicit form. For example, Connes uses it to rule out
the existence of finitely summable unbounded Fredholm modules on some C*-
algebras in [15]. Further, an operator T € B(H) is finite in the sense of Williams if
there exists a hypertrace on the C*-algebra generated by T (cf. [37], Theorem 4),
while a unitary representation U of a locally compact group G is amenable in the
sense of Bekka ([6]) if there exists a hypertrace on the C*-algebra generated by
U(G). Finally, it has also been useful in the recent work of Kirchberg ([20], [21]).

In the first section of these notes, we point out how [12], [13] and/or [6] may
be used to characterize the existence of a hypertrace on A as being equivalent to
the existence of a “Fglner net” for A of non-zero finite dimensional projections
in B(H). Then we explain how the notion of a Fglner net for A is related to
(2] and [5] where the problem of approximating the spectrum of some self-adjoint
operators in B(H) is considered. This problem is quite important from the point of
view of applications in quantum physics and it is therefore of interest to be able to
decide, when given a self-adjoint operator 7', which of the C*-algebras containing
T may be represented on a Hilbert space in such a way that their homomorphic
images possess a Fglner net, i.e. possess a hypertrace. This leads naturally to the
study initiated in the next two sections. The Arveson approach also requires the
existence of a unique trace on the actual C*-algebra, but it seems possible to us
that this rather strict condition may be somewhat weakened.

In the second section, we explore in some details the following notion, in-
spired by [6]: if A is a C*-algebra and 7 is a non-degenerate representation of A,
we say that 7 is hypertracial if m#(A) has a hypertrace, and we say that A is weakly
hypertracial if all faithful non-degenerate representations of A4 are hypertracial (it
is in fact enough that .A has one hypertracial non-degencrate representation).
We show that the class of weakly hypertracial C*-algebras is quite large and in-
cludes many familiar examples. Further, it behaves nicely with respect to crossed
products by amenable discrete groups and tensor products. Let us also mention
here that we recently received a preprint by G. Vaillant ([34]) where he studies
C*-growth, Voiculescu’s condition, Fglner type conditions for C*-algebras and
their relation to nuclearity in connection with a program initiated by Voiculescu
on the structure of C*-algebras inspired by the work of Gromov and Connes on
discrete groups, growth and Fredholm modules. One of his results may be stated
as follows: Voiculescu’s condition implies a strong Fglner type condition, which
itself implies weak hypertraciality.
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In many aspects, the class of weakly hypertracial C*-algebras is too large
and in the third and final section, we study the smaller class of hypertracial C*-
algebras: a C*-algebra is hypertracial if all its non-degenerate representations are
hypertracial. This class contains all strongly amenable C*-algebras {(as defined
in [19]) and many nuclear C*-algebras satisfying some finiteness condition. In
many cases hypertraciality is quite easy to establish compared to nuclearity. An
interesting open question is the following: is a separable unital hypertracial C*-
algebra necessarily nuclear? (the answer being no for non-separable C*-algebras).

As general references on operator algebras, we refer to [16], {24], [27], {31]
and [32]. Our notation shall mainly be as in [24]. Especially if A is a C*-algebra,
then 4 denotes its unitization (defined even if A is unital). If A is unital, then
U(A) denotes its unitary group.

Concerning amenability of groups, the reader should consult [26] or [28].
Nuclearity and amenability of C*-algebras are equivalent notions ([14], [17]). For
an overview, see [26], 1.31 and also [23]. A review of injectivity of von Neumann
algebras and its equivalent formulations is given in [26], 2.35.

Although not essential in this paper ;avhich deals mostly with C*-algebras,
we conclude this introduction by gathering for completeness some results on hy-
pertraces and finite von Neumann algebras.

Let A denote a finite von Neumann algebra acting on a Hilbert space H. If
N is injective, i.e. there exists a conditional expectation E : B(H) — N, then
7o E is a hypertrace on A for any tracial state 7 on A/. Conversely, if N is
countably decomposable and A has a hypertrace ¢ such that ¢|x is faithful, then
N is injective ([13]; [31], 10.27). Further, if A has a separable predua} and N has
a hypertrace, then A is approximately finite dimensional (this follows from [29] or
[30], if one uses the fact that the existence of a hypertrace on A is independent of
the Hilbert space on which A acts, cf. Theorem 2.1, so that one may assume that
H = L*(N, 1) where 7 is a faithful normal trace on A as in [29] or [30]}. Finally,

N is of course injective whenever A is approximately finite dimensional.



288 ERIK BEDOS

1. HYPERTRACES AND FOLNER NETS

In this section, A denotes a C*-algebra of bounded operators acting on a Hilbert
space H. We assume that A contains the identity operator I = Iy onH (if I ¢ A,
one may just replace A with A+C-I). If T is an operator on M, ||T}1 (resp. ||7|2)
denotes its trace-class norm (resp. its Hilbert-Schmidt norm). The C*-algebra of
compact operators on H is denoted by K(H).

Based on the work of Connes ({12], [13]) or alternatively on the work of
Bekka ([6]) which builds on [12], the existence of a hypertrace on .A may be char-
acterized by properties analogous to Reiter’s and Fglner’s characterizations of the
amenability of a group:

THEOREM 1.1. Consider the following conditions on A, where p= 1,2, end
where U(A) is considered as a discrete group.

(H) There ezists a hypertrace on A.

(B) The unitary representation of U{A) on M induced by the identily repre-
sentation of A on H is amenable in the sense of Bekka.

(Pp) There exists a net {Sa} of operators on M such that ||S|l, =1, S> 0
and

li;n”SaA — ASullp=0 forall A€ A.

(Fp) There ezists a net {Qy} of non-zero finite dimensional projections in
B(H) such that
lim "QO'A — AQGHP
& 1Qall

Then conditions (H), (B), (P1), (P2), (F1), (F2) are all equivalent. If A is
separable, then the nets {S,} and {Q,} may be chosen as sequences.

=0 foralAcA.

Proof. As every element of A is a linear combination of elements in U(A), it is
clear that (H) is equivalent to (B). The equivalences (P1) < (P2) and (F) & (F2)
are consequences of the Powers-Stgrmer inequalities (just as in 6], {12] and [13]),
while (F,) = (P,) and (P;) = (H) are quite obvious.

Further, the implications (H) = (P;) and (P;) = (F3) are shown by Connes
in [13], 2.4-2.6, under the assumption that A is a II;-factor acting on H = L?(A, 1)
where 7 denotes the tracial state of A. However, a careful reading of his arguments
assures one that the only assumption on A which is relevant to this part of Connes’
article is that A is a C*-algebra of operators acting on a Hilbert space H and
containing Iz. This means precisely that (H) = (P;) and (P;) = (F2) are true
in our setting. Alternatively, one may argue as follows to finish the proof: by [6],
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Theorem 6.2, (B) implies that given e > 0 and Uy, Us, ..., U, € U(A), there exists
a non-zero finite dimensional projection @ in B(#) such that

U;QU; - Qll < ell@Qlh,

i=1,2,...,n, from which (F;) easily follows and also that {Q4} and {P,} may
be chosen as sequences if A is separable. 4

REMARKS 1.2. (i) By invoking the Jordan decomposition, we have (H) &
there exists a non-zero bounded linear functional 1 on B(H) such that ¥(A4X) =
(X A) for all A € A, X € B(H) (cf. [9], Proposition 5).

(i1) By taking into account the generalized Powers-Stgrmer inequalities ([22]),
one may show that (H) < (P,) < (F,) for any p > 1.

(1) If {H, D} is a finitely summable unbounded Fredholm module over A,
Connes shows in {15], Lemma 9, the existence of a net satisfying (P;).

(iv) In the case when A is separable and AN K(H) = {0}, Kirchberg shows
in [21], Proposition 3.2, that the existence of a hypertrace on .4 is equivalent to
the fact that A has a “liftable” tracial state.

A net {Q} satisfying (F1) shall be called a Fglner net for A.

Inspired by Arveson’s paper ([2]) on C*-algebras and numerical linear alge-
bra, we introduced in [5] the following notion:

Let F = {Hp}nz1 be a filtration of H, t.e. each H, is a non-zero finite
dimensional subspace of H, H, C Hnq1 and H = W Then F is called a

n2l
weak A-filtration if

(1.1) lim [PaA — APl

=0 forall A& A,
n—too  ||Pallx

where P, denotes the projection of X onto H,. Our motivation was that we
could give an extended version of [2], Theorem 4.5, cf. {5], Theorem 1, to the case
when A has a unique tracial state and has a weak A-filtration, and that for some
interesting examples of A’s with a unique tracial state there exists a natural weak
A-filtration, thus making it possible to put some numerical approximations of the
spectrum of self-adjoint operators in A on a sornewhat firm ground.

However, an inspection of the proof of [5], Theorem 1, makes it clear that the
projections P, in fact don’t have to be associated to a filtration of H: it suffices
that they satisfy condition (1.1) for the proof to go through. Further, the proof
is easily adapted to handle nets instead of sequences of projections. This means
that the following result, holds:
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THEOREM 1.3. Suppose that A has a hyperirace ¢ such that p|a is the
only tracial state on A. Let {Q,} be a Fplner net for A (such a net ezisis by
Theorem 1.1). Then we have

lim - [f0) 4+ S0, 0)] = o(F(A) = [ 1(0dma()
R

for all f € Co(R), whered, = dimQ., A is a self-adjoint operatorin A, {Mi o). ..,
Md, ) is the list of eigenvalues (repeated according to multiplicity) of QuAlg.n
and pys is the speciral measure of A associated with @. If @|a 1s faithful, then

sp(A) = supp(pa).

REMARKS 1.4. (i) In a concrete situation where one wants to approximate
numerically the spectrum of a self-adjoint operator 4 in B(M), the problem is of
course to find if possible an appropriate A containing A and an explicit sequence
{Qx} satisfying the above assumptions.

(ii) i A has a faithful unique tracial state and .4 is infinite dimensional, one
gets easily from [3], Proposition 2.2, that the spectrum of a sclf-adjoint operator
in A coincides with its essential spectrum.

(iii) If A = B(C™) for some n 2> 1, then any net {Q4} of non-zero projections
in B(C") is a Fglner net for A if and only if Qo = I for all & 2 o (for some
ap) and A has only one hypertrace given by the normalized trace on B(C"). The
statement in Theorem 1.3 is then just an obvious corollary of the spectral theorem.

(iv) Another quite trivial example, but more instructive, is the following:
Suppose now H is infinite dimensional and let A = K(H) + C-I. Then A has a
hypertrace. Indeed, a state ¢ on B() is a hypertrace on A if and only if ¢ is
singular (since ¢ is singular < @|x(z) = 0, cf. [32]). On the other hand, let {Qa}
be any increasing net of non-zero finite dimensional projections in B(?) converging
strongly to I. Then {Q.} is a Fglner net for A, since

“QO'A - AQo-”l < rank(QaA - AQa)“QaA - A~QO!||
1Qallx = [1Qallx
< 21QuA — AQul| - 0

for all A € K(H).

Now, A has clearly a unique tracial state 7, so Theorem 1.3 applies. Let A be
a self-adjoint compact operator on H. For any f € Co(R) we have 7(f(A)) = f(0),
hence p4 = 8¢ (the Dirac measure at 0). If {¢;};¢s is an orthornormal basis for %
consisting of eigenvectors of A with associated eigenvalues {A;}, by choosing Qr
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as the projection onto the linear span of {{;};er when F is a non-empty finite

subset of J, we obtain

Z f(A;) = f(0) for all f € Cy(R).

li}n
JEF

1
#(F)
In the spirit of {2], this might be seen as an indication of the well-known fact that
the essential spectrum of A reduces to {0}.

Let now G denote a locally compact group, X its left regular representation
acting on L%(G), C*(M(G)) the C*-algebra generated by A(G) (so that C*(A(G)) =
C?(G) when G is discrete) and vN(G) = A(G)”, the group von Neumann algebra
of G. The following result is essentially well-known:

ProrosiTioN 1.5. Consider the four conditions:
(i) G is amenable;
(i) C*(U(G)) has a hypertrace for all continuous unitary representations U
of G;
(i) C*(A(G)) has a hypertrace;
(iv) vN(G) has a hypertrace.
Then (i) & (ii) © (iil) <= (iv). If G is discrete, all four conditions are

equivalent.

Proof. (1) & (il} < (iil) is merely a rephrasing of [6], Theorem 2.2, while (iv)
=> (iii) is trivial. If G is discrete, then vN(G) is a finite von Neumann algebra
which is injective whenever G is amenable ({12], Proposition 6.8), hence (i) = (iv)

follows. 1

We also mention a C*-algebraic analog to [12], Proposition 6.8. Let G denote
a right amenable discrete semigroup, i.e. there exists a state M on €%°(G) such
that

M{fr)=M(f) forall f€f*(G), hed,

where fr(g) = f(gh), g € G.
We shall use the suggestive notation | f(g) dM(g) for M(f).
G
Suppose there exists a map U : G — U(B(H)} satisfying U, AU; C A and
UgUnUy, € U(A) for all g,k € G. Let C*(A,U(G)) denote the C*-subalgebra of
B(H) generated by A and U(G). Then we have:
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PROPOSITION 1.6. If there exists a hypertrace p on A and G is right-amena-
ble, then there ezists a hyperirace on C*(A,U(G)), also.

Proof. For each X € B(H), define

F(X) = / o(UXU?) dM(g),
G

which is well-defined since
(U XU < llpll 10, XT3 1 < IXI] for all g € G.

One checks easily that & is a state on B(H). Set V(g,k) = U,UpUy, € U(A),
g,h€G. For X € B(H), h € G, A € A, we have:

FUXU) = [ (U TXT;T7) M (o)
G
= [e(Vlo. UnXULU;) aM ()
G
= / P(Ugn XURU;V (g, h))dM(g) (since ¢ is a hypertrace on A)
G
[ oanxvsm) ama)
G
/ w(U, XU;)dM (g) (since M is right-invariant)

G
= 5(X)

and

#4X) = [ o0, 4XU;) aM(a)
G

_ / o(U, AULU,XU?) dM(g)
G

- / (U, XU U, AU ) dM(g)
G

- / (U, XAU? ) dM ()
G

= F(XA).

Hence it follows that C*(A,U(G)) is contained in the centralizer of & and the
result follows. @
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Of course, one may also state a corresponding “left”-version of this propo-
sition. Tf G is a group, right- and left-amenability are equivalent notions; this is
not generally true in the semigroup case (cf. [26]). The semi-group case might be
of interest when dealing with twisted crossed products by semigroups of automor-
phisms, but we shall only consider the group case in the next sections. We just
mention here:

COROLLARY 1.7. Let G denote a discreie group and Z*(G,T) the set of
(normalized) 2-cocycles of G with values in the circle group T. Ifu € Z%(G,T),
we denote by Ay, the associated projeciive (left or right) reqular representation of
G on £3(G) and we set C}{G,u) = C*(AM(G)),vN(G,u) = Au(G)". Then the
following four condilions are equivalent:

(1) G is amenable;

(it C*(U(G)) has a hyperirace for all projeciive unilary representations
of G;

(iii) C?(G,u) has a hypertrace for some v € Z*(G, T);

(iv) vN(G,u) has a hypertrace for some u € Z*(G, T).

Proof. (1) = (it) follows from Proposition 1.6 by taking 4 = C. (ii) =
(iii) and (iv) = (iii) are trivial. (i) = (iv) follows easily for example from [1],
Proposition 3.12. Finally, (iii) = (i) follows in the “classical” way: if ¢ is a
hypertrace on C}(G,u) C B(¢?(3)), then a (left or right) invariant mean M on
£2°(G) is given by M{f) = ¢(myg), where m; denoctes the multiplication operator
by f € £°(G) on £*(G). An easy computation shows indeed that if A, is for
example the right regular representation, then one has A, (h)m; A, (h)* = my, for
allh € G, f € £2°(G) as usual. 1

Finally, there is another situation where the existence of hypertraces is easily
shown:

PROPOSITION 1.8. Suppose A has a non-zero multiplicative inear functional
Y (e.g. A is abelian). Then A has a hyperirace.

Proof. Since 1 preserves adjoints ([24], 2.1.9), it is positive, hence it is a state
on . A. We may therefore extend it to a state on B(H)} which is easily scen to be a
hypertrace on A by making use of the Cauchy-Schwartz inequality for states. &
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2. WEAKLY HYPERTRACIAL C*-ALGEBRAS

Let A be a C*-algebra. We shall use the notation = € Rep(A) to mean that = is
a non-degenerate *-representation of .4 on some non-zero Hilbert space Hy.

We say that = € Rep(A) is hypertractal if there exists a hypertrace on 7(A),
i.e. there exists a state ¢ on B(M, ) such that 7(A4) C C,.

Recall that when p, 7 € Rep(A), one says that p is weakly contained in
(resp. is weakly equivalent to ) whenever ker w C ker p (resp. ker = = ker p). The
following result is inspired by [9], Proposition 7:

THEOREM 2.1. Suppose p, 7 € Rep(A), p is weakly contained in w and p is
hypertracial. Then w is hypertracial.

Proof. Set B = n(A) C B(H,). Since kerw C ker p we may define ¢ : B —
B(H,) by

((A)) = p(A), A€A.

It is clear that 4 € Rep(B) with %y = H,. By [24], Theorem 5.5.1, we may extend
¥ to a non-degenerate *-representation ¥ : B(H,) — B(K), where K is a Hilbert
space such that there exists a closed subspace H/, of K which is invariant for {[:(B)
and a unitary operator U from H, onto #/, satisfying

$(B)lw, = Up(B)U" for all B € B,
ie. P(n(A))|r, = Up(A)U* for all A€ A
We let P denote the projection of K onto #j,. Since p is hypertracial, there
exists a state ¢ on B(H,) such that

Plp(A)X) = p(Xp(A)) forall A€ A, X € B(H,).
Define w on B(H.) by
w(Y) = p(U*PY(Y)lw, U), ¥ € B(H.).
Then w is a state on B(Hx) (since ||lw]| = w(I} = 1 is easily verified).
Further, for A € A, Y € B(H,), we have

w(Yn(A)) = U PH(Y 1(A))ls, U]
= @[U* PY(Y ), UU $((A)) 2, U]
= @[U" PH(Y )2, U p(A)]
= plp(A)U* PP(Y )5, U]
= @[U* (7 (AN, PY(Y )2, U]
= [U* PH(r(A)(Y )l U]
=w(r(A)Y).
Hence w is a hypertrace on n{A), i.e. 7 is hypertracial. 1
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CoOROLLARY 2.2. Hypertraciality is invariant under weak equivalence.

CoROLLARY 2.3. The following conditions are equivalent:
(i) There exists p € Rep(A) which is hypertracial;

(i) There exists a fasthful # € Rep(A) which is hypertracial;

(iil) Al faithful x € Rep(A) are hypertracial.

We say that A is weakly hyperiracial if A satisfies one of the conditions in
Corollary 2.3. This property is clearly invariant under *-isomorphism.

REMARK 2.4, The following facts are easily deduced:

(i) Any non-zero finite dimensional C*-algebra is weakly hypertracial.

(i) I J is a proper ideal in .4 and .A/J is weakly hypertracial, then 4 is
weakly hypertracial.

(ili) Any C*-algebra possessing a non-zero finite dimensional representation
is weakly hypertracial. Especially, any non-zero abelian C*-algebra is weakly
hypertracial (cf. also Proposition 1.8).

(iv) Any quasidiagonal C*-algebra (cf. [36]) is weakly hypertracial.

(v) Any injective finite von Neumann algebra is weakly hypertracial.

Before giving more examples of weakly hypertracial C*-algebras, we point
out that this notion is of interest only for unital C*-algebras.

PROPOSITION 2.5. Any non-zero non-unitael C*-algebra B is weakly hyper-
tracial.

Proof. Let # € Rep(B) be faithful. Then I = Iy, ¢ =(B), hence
7(B) + C- I ~ 7@’) is a C*-subalgebra of B(H,) which has a hypertrace ¢ in-
duced by the obvious non-zero multiplicative linear functional on 7(B) + C-I (cf.
Proposition 1.8). This implies that 7 is hypertracial, so B is weakly hypertracial. §

In the notation of the above proof, we have |3y = 0. This cannot happen
with unital C*-algebras: if A is unital, # € Rep(4) and ¢ is a hypertrace on
7(A), then T = p|r(A) is a tracial state on 7(A) (since I, = 7(1) € 7(A) and
7(I3,) = 1). The next proposition follows readily.

ProrositiON 2.6. If A is a unital weakly hypertracial C*-algebra, then A
has at least one tracial siafe.

Thus any unital C*-algebra without any tracial state, such as the Cuntz
algebras Op (n 2> 2) or the type III factors of countable type or B(H), H infinitely
dimensional, are not weakly hypertracial. We shall soon see that the converse of
Proposition 2.6 is not true,
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ProposiTioN 2.7. The following C*-algebras are weakly hyperiracial:
(i} All AF-algebras;

(i1) All inductive limils of postliminal (= type 1) C* -algebras;

(ii1) All strongly amenable (in the sense of [19]) C*-algebras;

(iv) All nuclear (= amenable) C*-algebras with at least one tracial state.

Proof. We may assume that the C*-algebras in consideration are unital. (i)
is a special case of (ii) which itself is a special case of (iii) (cf. [19]), which again is
a special case of (iv). However, (iii} follows immediately from (8], Proposition 1.
I one uses the amenability definition of a nuclear C*-algebra, (iv) follows from
(8], Proposition 2. It may also be deduced from Remark 2.4.(v): If 7 is a tracial
state on a unital nuclear C*-algebra A, then M = m,(A)"” C B(H,) is an injective
finite von Neumann algebra (cf. [23] or {26]), hence M (and therefore 7,.(A)) has
a hypertrace, so 7, is hypertracial. 4

Note that by [18] all stably finite nuclear unital C*-algebras have at least

one tracial state. Combined with Remark 2.4.(i), (i) may also be obtained from:

ProrosiTiON 2.8. Let S be a non-emply set of weakly hypertracial
C*-subalgebras of a C*-algebra A which is upwards direcied by inclusion and such

that |J S is dense in A. Then A is weakly hypertracial also.
5€s

Proof. We may assume that 4 and all elements in § are unital with the same
unit. Let » € Rep{A) be faithful. Then for each § € § we have x|s : § — B(H«)
is a faithful element in Rep(S5), so that there exists a hypertrace g5 on 7(S). But
clearly, any weak*-limit point of the net {¢s}ses is a hypertrace on w(A), ie. 7

is hypertracial as desired. #

The class of weakly hypertracial C*-algebras has the following interesting
property:

PROPOSITION 2.9. Let A be weakly hyperiracial C*-algebra and B be a C”-
subalgebra of A. Assume that A is unital and B contains the unit of A. Then B
is weakly hypertractal.

Proof. Choose ™ € Rep(.A), 7 hypertracial. Under the above assumption,
we have x|g € Rep(B). As 7| is obviously hypertracial, the result follows. &
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REMARKS 2.10. (i) The assertion in Proposition 2.9 is not necessarily true if
the assumption that B contains the unit of .4 is not satisfied: consider for example
A=06C, B=0:90.

(ii) Let A be a unital AF-algebra and B a C*-subalgebra of A containing the
unit of A, Blackadar has shown in [7], Theorem 1, that any non type I C*-algebra
8 contains a non-nuclear C*-subalgebra which may be chosen to contain the unit
of & if & is unital. Especially, this means that B is not necessarily nuclear if A 1s
infinite dimensional. However, B is weakly hypertracial by Proposition 2.10.

(1) The fact that the class of unital weakly hypertracial C*-algebras is larger
than the class of unital nuclear C*-algebras possessing at least one tracial state
may also be seen by considering the hyperfinite II;-factor on a separable Hilbert
space, which is known to be non-nuclear {[35], Corollary 1.9}, or by considering the
group C*-algebra C*(G) of a non-amenable discrete group (G possessing a non-zero
finite dimensional representation (e.g. G = F2 = the free group on two generators)
since C*(G) is then non-nuclear ([23]).

When G is a discrete group and u € Z2(G, T), we obtain from Corollary 1.7
that G is amenable & C!(G,u) is weakly hypertracial & vN(G, u) is weakly
hypertracial, and these conditions imply that C*(G,u) is weakly hypertracial.
When combined with Proposition 2.9 and by taking into account Remark 1.2.(jii),
the following result which is a slight generalization of [15}, Theorem 12 (see also
[5], Theorem 7) is obtained:

CoroLLarYy 2.11. Let A be a unital C*-algebra conlaining o undtally em-
bedded copy of C*(G,u) for some non-amenable discrete group G and some u €
ZYG,T). Then A is not weakly hyperiracial. Especially, there exists no finitely
summable unbounded Fredholm module over A.

Let now (A, G, «,u) denote a twisted C*-dynamical system as considered in
[25] and in [4], where A is a unijtal C*-algebra and G is a discrete group. Note
that since G is discrete, no separability assumptions are required (cf. [38] in the
case when the two-cocycle u takes values in the unitary group of the center at A).
We denote by C*(A, G, a,u) (tesp. C¥(A,G,a,u)) the associated (resp. reduced)
twisted C*-crossed product. Recall that these two C*-algebras coincide when G
is amenable (¢f. [25], Theorem 3.11).

ProrosiTion 2.12. Let (A, G, o, u) be as above.
(i) Suppose A is weakly hypertracial and G is amenabdle.
Then C*(A, G, a,u) ~ CHA, G, o, u) is weakly hypertracial.
(it) IfCH (A, G, &, u) or C*(A, G, o, u) is weakly hyperiracial, then A is weakly
hypertracial.
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(iii) If CX(A, G, a,u) is weakly hypertracial and u € Z*(G,T), then G is

amenable.

Proof. (i) Suppose A is weakly hypertracial and G is amenable. Pick some
faithful 7 € Rep(A). Then the associated regular representation # x R of
C*(A, G, a,u) is a non-degenerate *-representation of C*(A4, G, &, u) on £2(G, H)
such that CY (A, G, o, u) >~ #x R(C*(A, G, &, u)) = C*(#(A), R(G)) (cf. {25], 3.10,
3.12). Further # € Rep(A) is faithful, so # is hypertracial. By Proposition 1.6
we get that there exists a hypertrace on C*(7(A), R(G)), hence C} (A, G, a,u) is
weakly hypertracial.

(i) Follows from Proposition 2.9 since .A is unitally embedded in
C!(A,G,a,u) and in C*(A,G, o, u).

(iii) When v € Z*(G, T}, then C?(G, u) is unitally embedded in C*(A, G, o, u),
50 the result follows from Corollary 2.11. &

Remark that a crossed product C*(A, G, «) may be weakly hypertracial for
non-amenable G (take for example A = C, G = F3, a = id). It is a simple
consequence of Proposition 2.12.(i) that the rotation algebras A, are all weakly
hypertracial.

Tensor products behave nicely with respect to weak hypertraciality:

ProrosiTION 2.13. Let A, B denole two unital C*-algebras and let v de-
note a C"-norm on the algebraic lensor product A ® B. Then AQB is weakly
v
hypertracial < A and B are weakly hypertracial.

Proof. (=) Both A4 and B embed unitally in A® B, so that this implication
v

Js a consequence of Proposition 2.9.
(<) Suppose A and B are weakly hypertracial. Let o denote the spatial (=
minimal} C*-norm on A ® B. Since .A®B is a quotient of A@B it suffices to

show that A@B is weakly hypertracial. Let 7y € Rep(A4), 7, E Rep(B), =) and
wy faithful. Then we have

my ?Wz(A?B) = C"({m(A) ® 7?2(]3) I A€ A Be B})
=C'{U@V U elU(m(A)),V e U(=(B))})
C B(Hxr, @ Huy).

Let Gy = U(m1(A)), G2 = U(wa(A)) considered as discrete groups, and denote by
i1 (resp. iz) the identity unitary representation of G; on H,, (resp. Gz on Hx,).
Since #; and w, are hypertracial this means that i{; and i, are amenable in the
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sense of Bekka ([6]). By [6], Corollary 5.4, we get that i; ® iy is amenable, hence
that there exists a state ¢ on B(Hz, ® Hx,) such that

(URV|UEG, VEG)CC,.

This implies that 7 ® m2(A®B) C C,, i.e. that my ® 73 is hypertracial, which
a g g
shows that A ® B is weakly hypertracial as desired. &

Instead of invoking [6], Corollary 5.4, at the end of the above proof, one may
use Theorem 1.1: When m; (resp. m3) is hypertracial, there exists a Fglner net
{QL} for m1(A) in B(Hx,) (resp. {Q2%} for m5(B) in B(Mx,)), and one may then
check without too much difficulty that {Q(, gy}, where Qo p) = QL ® Qf;, s a
Fglner net (under the product order) for my %Dm(A(?B) m B(Hy, @ Hy,), from

which the hypertraciality of m; ® mo follows.
g

3. HYPERTRACIAL C*-ALGEBRAS

We say that a C*-algebra A is hyperiracial if 7 is hypertracial for all # € Rep(A).
Hypertraciality is clearly preserved under *-isomorphism. Further, a simple
C*-algebra is hypertracial if and only if it is weakly hypertracial. Especially, a
simple non-unital C*-algebra is hypertracial. So it seems that the concept of
hypertraciality will be mostly of interest for unital C*-algebras.

The class of hypertracial C*-algebras is obviously smaller than the class of
weakly hypertracial C*-algebras. For example, we have:

ProrositioN 3.1. Suppose A is hyperiracial and J is a non-zero proper
tdeal in A. Then J and A/J are hypertracial.

Proof. As we may extend any # € Rep(J) to a @ € Rep(A) satisfying
Hz = Hy, it follows readily from the hypertraciality of 4 that J is hypertracial.
Further, let # € Rep(A/J) and set # = m o ¢ where ¢ denotes the canonical
*-homomorphism from A onto A/7. Then # € Rep(A) with H; = H, and 7
is hypertracial since A is hypertracial. As 7(A) = 7(A/J), we get that 7 is
hypertracial. Hence, A/J is hypertracial. &

We don’t know whether the converse of Proposition 3.1 is true.

COROLLARY 3.2. A is hypertracial
< A/ T is weakly hyperiracial for all proper ideals J in A
< A/ T is hypertracial for all proper ideals 7 in A.

In light of Proposition 2.5, it is enough to consider modular ideals 7 in A
(i.e. such that 4/.7 is unital) in the above corollary.
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COoROLLARY 3.3. A 1s hypertracial & Ais hyperiracial,

Proof. (=) Let p € Rep(A), so that p(I) = I, where I denotes the unit
of A. Set 7 = pla. If In, € n(A), then n(A) = p(A) and 7 is non-degenerate,
hence p is hypertracial if A is hypertracial. Suppose now that Iy, ¢ 7(A4). Then
we have p(A) ~ 7(A4) . But 7r(.A)~ has a non-zero 1-dimensional representation,
thus it follows from Remark 2.4.(iii) that p(A) is weakly hypertracial, i.e. p is
hypertracial. So we have shown that p is hypertracial for all p € Rep(ﬂ) as
desired.

(<=) This implication follows from Proposition 3.1. &

To check the hypertraciality of A, it is enough to consider irreducible repre-
sentations of A:

PROPOSITION 3.4. A is hypertracial & p is hyperiracial for all irreducible
p € Rep(A).

Proof. The forward implication is trivial. So assume that p is hypertracial
for all irreducible p € Rep(A). Let ©# € Rep(A). Choose some irreducible p’ €
Rep(n(A)) and set p = p' ow € Rep(A). Then p is irreducible and p is weakly
contained in 7. Hence we get from Theorem 2.1 that 7 is hypertracial since p is
hypertracial. This shows that A is hypertracial. 1

An immediate consequence of Proposition 3.4 is that all liminal C*-algebras
are hypertracial. But in fact, since any quotient of a finite dimensional (resp.
abelian) (resp. postliminal) (resp. AF-algebra) (resp. strongly amenable)
C~-algebra inherits the respective property (cf. [24] and [19], 7.3), we get from
Corollary 3.2 and the results in Section 2 that the class of hypertracial C"-algebras
includes all finite dimensional C*-algebras, all abelian C*-algebras, ali postlimi-
nal C*-algebras and more generally all strongly amenable C*-algebras. It also
includes the irrational rotation algebras and the hyperfinite I1;-factor (since these
are simple weakly hypertracial C*-algebras). Further, we have:

ProrosiTiOoN 3.5. Suppose A is a nuclear C*-algebra satisfying the follow-
ing finileness condifion: for all proper (modular) ideals 7 in A, A/J has a tracial
state. Then A is hypertracial.

Proof. Let J be a proper (modular) ideal in A. By [11], Corollary 4, A/T
is nuclear, and it has a tracial state by assumption. Hence A/.7 is weakly hyper-
tracial by Proposition 2.7. By Corollary 3.2 (and its accompanying remark), this
shows that A is hypertracial. #
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It follows easily from [19], 7.3 and [8], Proposition 1, that any strongly
amenable C*-algebra satisfies the assumptions in Proposition 3.5. We don’t know
whether the converse is true. On the other hand, the converse of Proposition 3.5 is
not true, at least for non-separable C*-algebras: indeed, the hyperfinite II;-factor
is hypertracial, but as pointed out before, it is not nuclear. However, it would
be interesting to know whether any (unital) separable hypertracial C*-algebra is
nuclear.

Let us also remark that a C*-subalgebra of a hypertracial C*-algebra is not
necessarily hypertracial: Blackadar shows in (7], Theorem 2, that any non type I
C*-algebra A has a C*-subalgebra B (containing the unit of A if A is unital) which
has (@5 as a quotient, so that B is not hypertracial by Corollary 3.2.

The class of hypertracial C*-algebras behaves nicely with respect toinductive
limits and crossed products by amenable discrete groups.

ProPOSITION 3.6. (i) Let S be a non-empty set of hyperiracial C*-subalgebras

of @ C*-algebra A. Suppose that 8 is upwards directed by inclusion and |J S is
Ses
dense in A. Then A is hypertracial also.

(i) Suppose that (An, @)% is a direct sequence of hypertracial C*-elgebras.
Then the direct imit im A, is hypertracial also.

Proof. (i) Let 7 € Rep(A). Then &' = {n(S) | § € §} is upwards directed

by inclusion and |J S’ = n(A).
Slesl
Since every element in & is weakly hypertracial by assumption, it follows

from Proposition 2.8 that 7(A) is weakly hypertracial, hence that = is hypertracial.
So A is hypertracial as asserted.

(ii) Let ¢" : A, — A be the natural map, where A = limA, (cf. [24]).
Then S = {¢"(As) | n > 1} is an upwards directed family of hypertracial C*-
subalgebras of .A whose union is dense in A, so that A is hypertracial by (). &

Let G denote a discrete group. It is not difficult to deduce from [6], 'Theo-
rem 2.2, that G is amenable ¢ C*(G) is hypertracial < C}{G) is hypertracial.
More generally, we have:

ProprosiTioN 3.7. Let (A, G, o, u) denote a twisted C*-dynamacal system as
in Proposition 2.12, but where we do not assume that A ts unital if u s trivial.
Consider the following condilions:

(1) G is amenable and A is hypertracial;

(i1) C*(A, G, o, u) is hypertracial;

(1) Cr (A, G, o, u) is hyperiracial;

(iv) G is amenable.
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Then we have (i} = (i) = (iii). If u € Z%(G,T), then we have (iii) = (iv).

Proof. (1) = (ii} Suppose G is amenable and A is hypertracial. Let B =
C*(A, G, a, u} and assume first that A is unital. Let p € Rep(B). Recall from [25]
that we may write p = m x U, where 7 x U is the non-degenerate representation of
B associated to a covariant representation (m, U) of (A, G, «, u) on a Hilbert space
H,ie 7€ Rep(A), Hx = H and U : G — U(B(H)) is a map such that

U,Un = n(u(g, h)U,n  and  m(ag(A)) = Uyn(A)US

forall g,k € G, A € A, and that we have p(B) = 7 x U(B) = C*(v(A),U(G)). We
may now apply Proposition 1.6 and deduce that p is hypertracial. This shows that
B is hypertracial. Now, if u is trivial and A is non-unital, then we may extend «
to an action of G on A in the obvious way. As A is hypertracial by Corollary 3.3,
we get from the first part that C*(.Z, G, ) is hypertracial. But C*(A4, G, «) is an
ideal of C* (.Z,G, a), so that C*(A, G, a) is hypertracial by Corollary 3.2.

(i1) = (iii) follows from Corollary 3.2 since C!(A, G, a,u) is a quotient of
C"(A, G, a,u).

Finally, suppose that » € Z%(G, T) and that C(A, G, a,u) is hypertracial.
Then C!(A, G, o, u) is especially weakly hypertracial, so that G is amenable by
Proposition 2.12.(ii1). &

CoROLLARY 3.8. Let (A4, G, a,u) denote o C*-dynamical system where G is
a discrete group, A is a unital C*-algebra, and u € Z?(G, T).
(1) Suppose A is hypertracial. Then G is amenable
& C*(A, G, o, u) is hypertracial
< CIHA,G,a,u) is hypertracial.
(ii) Suppose A is simple. Then G is amenable and A is weekly hyperiracial
& C*(A, G, a,u) is hypertracial
& CHA,G,a,u) is hypertracial.

Proof. (i) follows from Proposition 3.7. (ii) follows from Proposition 3.7

combined with Proposition 2.9. &

The behaviour of hypertraciality with respect to tensor products seems more

difficult to handle. We can only show the following.
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ProprosiTiON 3.9. Let A be a hyperiracial C*-algebra and B a unital
C*-algebra such that there ezists a subgroup G of U(B) which generates B as a
C*-algebra and which is amenable as a discrele group. Let v denote a C*-norm
on A©B. Then A%}B is hypertracial (especially, B is hypertracial under the above

condttion).

Proof. As the C"-norm vy on A ® B may be extended to a C”-norm on
A®B and A ®B is then an ideal in A® B, we may assume that .4 is unital (cf.

Proposition 3. 1 and Corollary 3.3). Now let = € Rep(A@B) Then there exist
w1 € Rep(A), 72 € Rep(B) with Hr, = Hx, = Hy such that

7(A® B) = m(A)moB) = m(B)mi(A), A€A Bebh,

and

T(A® B) = C* (m1(A), m2(B)).

The restriction of w3 to G is a unitary representation of G on H,. Further, as G
generates B as a C*-algebra, it is clear that 72(G) generates 73(B) as a C*-algebra,
so that we have

(A % B) = C*(m1(A), m2(G)).

As G is amenable and 7y is hypertracial since A is hypertracial, we may invoke
Proposition 1.6 and obtain that « is hypertracial. This shows that .A® B is hy-
Y

pertracial. 1

As pointed out to us by the referee, a C*-algebra B as in Proposition 3.9 is
nuclear, since it is a quotient of C*(() (which is nuclear since G is amenable). This
means that v is in fact the spatial C*-norm on A © B. An analogous assumption
on B has been considered in [10] in the case when B is a von Neumann algebra.

COROLLARY 3.10. Suppose A is a hypertracial C*-algebra. Then
(i) A ® M, (C) is hypertracial for alln 2 1;

(i) A @ B is hypertracial whenever B is an AF-algebra;

(iii) A @ B is hypertracial whenever B is an abelian C*-algebra.

Proof. (i) Tt is not difficult to show that there exists a discrete amenable
subgroup of U (M, (C)) which generates M,(C) as a C*-algebra for any n 2 1, so
that this assertion follows from Proposition 3.9. However, this may also be shown
directly; if # € Rep(A® M,,(C)), then 7(A® M,(C)) ~ 7(A®1)® Mn(C), so that
 is hypertracial (by Proposition 2.13 if 7(A ® 1) is unital, trivially otherwise).

(ii) This follows easily from Proposition 3.6 combined with (i).
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(iii) Assume B is abelian and unital. Then U(B) is abelian, hence amenable
as a discrete group, so that the result follows from Proposition 3.9. The non-unital
case follows by unitization. §

There has been recently considerable interest in the study of nuclear
C*-algebras which may be written as an inductive limit A = limA, where each
A, is a finite direct sum of C*-algebras of the form Cp{X) ® A}k((ﬁ), X being a
locally compact Hausdorff space and k € N.

COROLLARY 3.11. Let A be as above. Then A is hypertracial.

Proof. Each direct summand of A, being hypertracial by Corollary 3.10, it
is clear that each A, is hypertracial. Hence .4 is hypertracial by Proposition 3.6. 8

One could also argue that A is (well known to be) strongly amenable and
therefore hypertracial, but the above proof is more elementary. In some cases, such
A’s may also be written as a twisted crossed product of an abelian C*-algebra by
an abelian discrete group (cf. [33]) and the hypertraciality of these A’s may then
also be deduced from Proposition 3.7.
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